--- _id: '11961' abstract: - lang: eng text: Flow chemistry involves the use of channels or tubing to conduct a reaction in a continuous stream rather than in a flask. Flow equipment provides chemists with unique control over reaction parameters enhancing reactivity or in some cases enabling new reactions. This relatively young technology has received a remarkable amount of attention in the past decade with many reports on what can be done in flow. Until recently, however, the question, “Should we do this in flow?” has merely been an afterthought. This review introduces readers to the basic principles and fundamentals of flow chemistry and critically discusses recent flow chemistry accounts. article_processing_charge: No article_type: original author: - first_name: Matthew B. full_name: Plutschack, Matthew B. last_name: Plutschack - first_name: Bartholomäus full_name: Pieber, Bartholomäus id: 93e5e5b2-0da6-11ed-8a41-af589a024726 last_name: Pieber orcid: 0000-0001-8689-388X - first_name: Kerry full_name: Gilmore, Kerry last_name: Gilmore - first_name: Peter H. full_name: Seeberger, Peter H. last_name: Seeberger citation: ama: Plutschack MB, Pieber B, Gilmore K, Seeberger PH. The Hitchhiker’s Guide to flow chemistry. Chemical Reviews. 2017;117(18):11796-11893. doi:10.1021/acs.chemrev.7b00183 apa: Plutschack, M. B., Pieber, B., Gilmore, K., & Seeberger, P. H. (2017). The Hitchhiker’s Guide to flow chemistry. Chemical Reviews. American Chemical Society. https://doi.org/10.1021/acs.chemrev.7b00183 chicago: Plutschack, Matthew B., Bartholomäus Pieber, Kerry Gilmore, and Peter H. Seeberger. “The Hitchhiker’s Guide to Flow Chemistry.” Chemical Reviews. American Chemical Society, 2017. https://doi.org/10.1021/acs.chemrev.7b00183. ieee: M. B. Plutschack, B. Pieber, K. Gilmore, and P. H. Seeberger, “The Hitchhiker’s Guide to flow chemistry,” Chemical Reviews, vol. 117, no. 18. American Chemical Society, pp. 11796–11893, 2017. ista: Plutschack MB, Pieber B, Gilmore K, Seeberger PH. 2017. The Hitchhiker’s Guide to flow chemistry. Chemical Reviews. 117(18), 11796–11893. mla: Plutschack, Matthew B., et al. “The Hitchhiker’s Guide to Flow Chemistry.” Chemical Reviews, vol. 117, no. 18, American Chemical Society, 2017, pp. 11796–893, doi:10.1021/acs.chemrev.7b00183. short: M.B. Plutschack, B. Pieber, K. Gilmore, P.H. Seeberger, Chemical Reviews 117 (2017) 11796–11893. date_created: 2022-08-24T11:07:46Z date_published: 2017-06-01T00:00:00Z date_updated: 2023-02-21T10:09:28Z day: '01' doi: 10.1021/acs.chemrev.7b00183 extern: '1' external_id: pmid: - '28570059' intvolume: ' 117' issue: '18' language: - iso: eng month: '06' oa_version: None page: 11796-11893 pmid: 1 publication: Chemical Reviews publication_identifier: eissn: - 1520-6890 issn: - 0009-2665 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: The Hitchhiker’s Guide to flow chemistry type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 117 year: '2017' ... --- _id: '11976' abstract: - lang: eng text: The way organic multistep synthesis is performed is changing due to the adoption of flow chemical techniques, which has enabled the development of improved methods to make complex molecules. The modular nature of the technique provides not only access to target molecules via linear flow approaches but also for the targeting of structural cores with single systems. This perspective article summarizes the state of the art of continuous multistep synthesis and discusses the main challenges and opportunities in this area. article_processing_charge: No article_type: original author: - first_name: Bartholomäus full_name: Pieber, Bartholomäus id: 93e5e5b2-0da6-11ed-8a41-af589a024726 last_name: Pieber orcid: 0000-0001-8689-388X - first_name: Kerry full_name: Gilmore, Kerry last_name: Gilmore - first_name: Peter H. full_name: Seeberger, Peter H. last_name: Seeberger citation: ama: Pieber B, Gilmore K, Seeberger PH. Integrated flow processing - challenges in continuous multistep synthesis. Journal of Flow Chemistry. 2017;7(3-4):129-136. doi:10.1556/1846.2017.00016 apa: Pieber, B., Gilmore, K., & Seeberger, P. H. (2017). Integrated flow processing - challenges in continuous multistep synthesis. Journal of Flow Chemistry. AKJournals. https://doi.org/10.1556/1846.2017.00016 chicago: Pieber, Bartholomäus, Kerry Gilmore, and Peter H. Seeberger. “Integrated Flow Processing - Challenges in Continuous Multistep Synthesis.” Journal of Flow Chemistry. AKJournals, 2017. https://doi.org/10.1556/1846.2017.00016. ieee: B. Pieber, K. Gilmore, and P. H. Seeberger, “Integrated flow processing - challenges in continuous multistep synthesis,” Journal of Flow Chemistry, vol. 7, no. 3–4. AKJournals, pp. 129–136, 2017. ista: Pieber B, Gilmore K, Seeberger PH. 2017. Integrated flow processing - challenges in continuous multistep synthesis. Journal of Flow Chemistry. 7(3–4), 129–136. mla: Pieber, Bartholomäus, et al. “Integrated Flow Processing - Challenges in Continuous Multistep Synthesis.” Journal of Flow Chemistry, vol. 7, no. 3–4, AKJournals, 2017, pp. 129–36, doi:10.1556/1846.2017.00016. short: B. Pieber, K. Gilmore, P.H. Seeberger, Journal of Flow Chemistry 7 (2017) 129–136. date_created: 2022-08-25T10:47:51Z date_published: 2017-09-01T00:00:00Z date_updated: 2023-02-21T10:10:02Z day: '01' doi: 10.1556/1846.2017.00016 extern: '1' intvolume: ' 7' issue: 3-4 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1556/1846.2017.00016 month: '09' oa: 1 oa_version: Published Version page: 129-136 publication: Journal of Flow Chemistry publication_identifier: eissn: - 2063-0212 issn: - 2062-249X publication_status: published publisher: AKJournals quality_controlled: '1' scopus_import: '1' status: public title: Integrated flow processing - challenges in continuous multistep synthesis type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 7 year: '2017' ... --- _id: '1211' abstract: - lang: eng text: Systems such as fluid flows in channels and pipes or the complex Ginzburg–Landau system, defined over periodic domains, exhibit both continuous symmetries, translational and rotational, as well as discrete symmetries under spatial reflections or complex conjugation. The simplest, and very common symmetry of this type is the equivariance of the defining equations under the orthogonal group O(2). We formulate a novel symmetry reduction scheme for such systems by combining the method of slices with invariant polynomial methods, and show how it works by applying it to the Kuramoto–Sivashinsky system in one spatial dimension. As an example, we track a relative periodic orbit through a sequence of bifurcations to the onset of chaos. Within the symmetry-reduced state space we are able to compute and visualize the unstable manifolds of relative periodic orbits, their torus bifurcations, a transition to chaos via torus breakdown, and heteroclinic connections between various relative periodic orbits. It would be very hard to carry through such analysis in the full state space, without a symmetry reduction such as the one we present here. acknowledgement: 'This work was supported by the family of late G. Robinson, Jr. and NSF Grant DMS-1211827. ' author: - first_name: Nazmi B full_name: Budanur, Nazmi B id: 3EA1010E-F248-11E8-B48F-1D18A9856A87 last_name: Budanur orcid: 0000-0003-0423-5010 - first_name: Predrag full_name: Cvitanović, Predrag last_name: Cvitanović citation: ama: Budanur NB, Cvitanović P. Unstable manifolds of relative periodic orbits in the symmetry reduced state space of the Kuramoto–Sivashinsky system. Journal of Statistical Physics. 2017;167(3-4):636-655. doi:10.1007/s10955-016-1672-z apa: Budanur, N. B., & Cvitanović, P. (2017). Unstable manifolds of relative periodic orbits in the symmetry reduced state space of the Kuramoto–Sivashinsky system. Journal of Statistical Physics. Springer. https://doi.org/10.1007/s10955-016-1672-z chicago: Budanur, Nazmi B, and Predrag Cvitanović. “Unstable Manifolds of Relative Periodic Orbits in the Symmetry Reduced State Space of the Kuramoto–Sivashinsky System.” Journal of Statistical Physics. Springer, 2017. https://doi.org/10.1007/s10955-016-1672-z. ieee: N. B. Budanur and P. Cvitanović, “Unstable manifolds of relative periodic orbits in the symmetry reduced state space of the Kuramoto–Sivashinsky system,” Journal of Statistical Physics, vol. 167, no. 3–4. Springer, pp. 636–655, 2017. ista: Budanur NB, Cvitanović P. 2017. Unstable manifolds of relative periodic orbits in the symmetry reduced state space of the Kuramoto–Sivashinsky system. Journal of Statistical Physics. 167(3–4), 636–655. mla: Budanur, Nazmi B., and Predrag Cvitanović. “Unstable Manifolds of Relative Periodic Orbits in the Symmetry Reduced State Space of the Kuramoto–Sivashinsky System.” Journal of Statistical Physics, vol. 167, no. 3–4, Springer, 2017, pp. 636–55, doi:10.1007/s10955-016-1672-z. short: N.B. Budanur, P. Cvitanović, Journal of Statistical Physics 167 (2017) 636–655. date_created: 2018-12-11T11:50:44Z date_published: 2017-05-01T00:00:00Z date_updated: 2021-01-12T06:49:07Z day: '01' ddc: - '530' department: - _id: BjHo doi: 10.1007/s10955-016-1672-z file: - access_level: open_access checksum: 3e971d09eb167761aa0888ed415b0056 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:01Z date_updated: 2020-07-14T12:44:39Z file_id: '5319' file_name: IST-2017-782-v1+1_BudCvi15.pdf file_size: 2820207 relation: main_file file_date_updated: 2020-07-14T12:44:39Z has_accepted_license: '1' intvolume: ' 167' issue: 3-4 language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version page: 636-655 publication: Journal of Statistical Physics publication_status: published publisher: Springer publist_id: '6136' pubrep_id: '782' quality_controlled: '1' scopus_import: 1 status: public title: Unstable manifolds of relative periodic orbits in the symmetry reduced state space of the Kuramoto–Sivashinsky system type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 167 year: '2017' ... --- _id: '123' abstract: - lang: eng text: The Leidenfrost effect occurs when an object near a hot surface vaporizes rapidly enough to lift itself up and hover. Although well understood for liquids and stiff sublimable solids, nothing is known about the effect with materials whose stiffness lies between these extremes. Here we introduce a new phenomenon that occurs with vaporizable soft solids - the elastic Leidenfrost effect. By dropping hydrogel spheres onto hot surfaces we find that, rather than hovering, they energetically bounce several times their diameter for minutes at a time. With high-speed video during a single impact, we uncover high-frequency microscopic gap dynamics at the sphere/substrate interface. We show how these otherwise-hidden agitations constitute work cycles that harvest mechanical energy from the vapour and sustain the bouncing. Our findings suggest a new strategy for injecting mechanical energy into a widely used class of soft materials, with potential relevance to fields such as active matter, soft robotics and microfluidics. acknowledgement: A.S. acknowledges funding from the Delta Institute for Theoretical Physics and the hospitality of the IBS Center for Theoretical Physics of Complex Systems, Daejeon, South Korea. We acknowledge funding from the Netherlands Organisation for Scientific Research through grants VICI No. NWO-680-47-609 (M.v.H. and S.R.W.), VENI No. NWO-680-47-445 (C.C.) and VENI No. NWO-680-47-453 (S.R.W.). author: - first_name: Scott R full_name: Waitukaitis, Scott R id: 3A1FFC16-F248-11E8-B48F-1D18A9856A87 last_name: Waitukaitis orcid: 0000-0002-2299-3176 - first_name: Antal full_name: Zuiderwijk, Antal last_name: Zuiderwijk - first_name: Anton full_name: Souslov, Anton last_name: Souslov - first_name: Corentin full_name: Coulais, Corentin last_name: Coulais - first_name: Martin full_name: Van Hecke, Martin last_name: Van Hecke citation: ama: Waitukaitis SR, Zuiderwijk A, Souslov A, Coulais C, Van Hecke M. Coupling the Leidenfrost effect and elastic deformations to power sustained bouncing. Nature Physics. 2017;13(11):1095-1099. doi:10.1038/nphys4194 apa: Waitukaitis, S. R., Zuiderwijk, A., Souslov, A., Coulais, C., & Van Hecke, M. (2017). Coupling the Leidenfrost effect and elastic deformations to power sustained bouncing. Nature Physics. Nature Publishing Group. https://doi.org/10.1038/nphys4194 chicago: Waitukaitis, Scott R, Antal Zuiderwijk, Anton Souslov, Corentin Coulais, and Martin Van Hecke. “Coupling the Leidenfrost Effect and Elastic Deformations to Power Sustained Bouncing.” Nature Physics. Nature Publishing Group, 2017. https://doi.org/10.1038/nphys4194. ieee: S. R. Waitukaitis, A. Zuiderwijk, A. Souslov, C. Coulais, and M. Van Hecke, “Coupling the Leidenfrost effect and elastic deformations to power sustained bouncing,” Nature Physics, vol. 13, no. 11. Nature Publishing Group, pp. 1095–1099, 2017. ista: Waitukaitis SR, Zuiderwijk A, Souslov A, Coulais C, Van Hecke M. 2017. Coupling the Leidenfrost effect and elastic deformations to power sustained bouncing. Nature Physics. 13(11), 1095–1099. mla: Waitukaitis, Scott R., et al. “Coupling the Leidenfrost Effect and Elastic Deformations to Power Sustained Bouncing.” Nature Physics, vol. 13, no. 11, Nature Publishing Group, 2017, pp. 1095–99, doi:10.1038/nphys4194. short: S.R. Waitukaitis, A. Zuiderwijk, A. Souslov, C. Coulais, M. Van Hecke, Nature Physics 13 (2017) 1095–1099. date_created: 2018-12-11T11:44:45Z date_published: 2017-07-24T00:00:00Z date_updated: 2021-01-12T06:49:14Z day: '24' doi: 10.1038/nphys4194 extern: '1' external_id: arxiv: - '1705.03530' intvolume: ' 13' issue: '11' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1705.03530 month: '07' oa: 1 oa_version: Preprint page: 1095 - 1099 publication: Nature Physics publication_status: published publisher: Nature Publishing Group publist_id: '7931' quality_controlled: '1' status: public title: Coupling the Leidenfrost effect and elastic deformations to power sustained bouncing type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 13 year: '2017' ... --- _id: '12571' abstract: - lang: eng text: We consider the problems of maintaining approximate maximum matching and minimum vertex cover in a dynamic graph. Starting with the seminal work of Onak and Rubinfeld [STOC 2010], this problem has received significant attention in recent years. Very recently, extending the framework of Baswana, Gupta and Sen [FOCS 2011], Solomon [FOCS 2016] gave a randomized 2-approximation dynamic algorithm for this problem that has amortized update time of O(1) with high probability. We consider the natural open question of derandomizing this result. We present a new deterministic fully dynamic algorithm that maintains a O(1)-approximate minimum vertex cover and maximum fractional matching, with an amortized update time of O(1). Previously, the best deterministic algorithm for this problem was due to Bhattacharya, Henzinger and Italiano [SODA 2015]; it had an approximation ratio of (2+ϵ) and an amortized update time of O(logn/ϵ2). Our result can be generalized to give a fully dynamic O(f3)-approximation algorithm with O(f2) amortized update time for the hypergraph vertex cover and fractional matching problems, where every hyperedge has at most f vertices. alternative_title: - LNCS article_processing_charge: No author: - first_name: Sayan full_name: Bhattacharya, Sayan last_name: Bhattacharya - first_name: Deeparnab full_name: Chakrabarty, Deeparnab last_name: Chakrabarty - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 citation: ama: 'Bhattacharya S, Chakrabarty D, Henzinger MH. Deterministic fully dynamic approximate vertex cover and fractional matching in O(1) amortized update time. In: 19th International Conference on Integer Programming and Combinatorial Optimization. Vol 10328. Springer Nature; 2017:86-98. doi:10.1007/978-3-319-59250-3_8' apa: 'Bhattacharya, S., Chakrabarty, D., & Henzinger, M. H. (2017). Deterministic fully dynamic approximate vertex cover and fractional matching in O(1) amortized update time. In 19th International Conference on Integer Programming and Combinatorial Optimization (Vol. 10328, pp. 86–98). Waterloo, ON, Canada: Springer Nature. https://doi.org/10.1007/978-3-319-59250-3_8' chicago: Bhattacharya, Sayan, Deeparnab Chakrabarty, and Monika H Henzinger. “Deterministic Fully Dynamic Approximate Vertex Cover and Fractional Matching in O(1) Amortized Update Time.” In 19th International Conference on Integer Programming and Combinatorial Optimization, 10328:86–98. Springer Nature, 2017. https://doi.org/10.1007/978-3-319-59250-3_8. ieee: S. Bhattacharya, D. Chakrabarty, and M. H. Henzinger, “Deterministic fully dynamic approximate vertex cover and fractional matching in O(1) amortized update time,” in 19th International Conference on Integer Programming and Combinatorial Optimization, Waterloo, ON, Canada, 2017, vol. 10328, pp. 86–98. ista: 'Bhattacharya S, Chakrabarty D, Henzinger MH. 2017. Deterministic fully dynamic approximate vertex cover and fractional matching in O(1) amortized update time. 19th International Conference on Integer Programming and Combinatorial Optimization. IPCO: Integer Programming and Combinatorial Optimization, LNCS, vol. 10328, 86–98.' mla: Bhattacharya, Sayan, et al. “Deterministic Fully Dynamic Approximate Vertex Cover and Fractional Matching in O(1) Amortized Update Time.” 19th International Conference on Integer Programming and Combinatorial Optimization, vol. 10328, Springer Nature, 2017, pp. 86–98, doi:10.1007/978-3-319-59250-3_8. short: S. Bhattacharya, D. Chakrabarty, M.H. Henzinger, in:, 19th International Conference on Integer Programming and Combinatorial Optimization, Springer Nature, 2017, pp. 86–98. conference: end_date: 2017-06-28 location: Waterloo, ON, Canada name: 'IPCO: Integer Programming and Combinatorial Optimization' start_date: 2017-06-26 date_created: 2023-02-20T07:52:31Z date_published: 2017-05-24T00:00:00Z date_updated: 2023-02-20T07:57:24Z day: '24' doi: 10.1007/978-3-319-59250-3_8 extern: '1' external_id: arxiv: - '1611.00198' intvolume: ' 10328' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1611.00198 month: '05' oa: 1 oa_version: Preprint page: 86-98 publication: 19th International Conference on Integer Programming and Combinatorial Optimization publication_identifier: eisbn: - '9783319592503' isbn: - '9783319592497' issn: - 0302-9743 - 1611-3349 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Deterministic fully dynamic approximate vertex cover and fractional matching in O(1) amortized update time type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 10328 year: '2017' ... --- _id: '1113' abstract: - lang: eng text: 'A drawing of a graph G is radial if the vertices of G are placed on concentric circles C 1 , . . . , C k with common center c , and edges are drawn radially : every edge intersects every circle centered at c at most once. G is radial planar if it has a radial embedding, that is, a crossing-free radial drawing. If the vertices of G are ordered or partitioned into ordered levels (as they are for leveled graphs), we require that the assignment of vertices to circles corresponds to the given ordering or leveling. We show that a graph G is radial planar if G has a radial drawing in which every two edges cross an even number of times; the radial embedding has the same leveling as the radial drawing. In other words, we establish the weak variant of the Hanani-Tutte theorem for radial planarity. This generalizes a result by Pach and Toth.' article_processing_charge: No article_type: original author: - first_name: Radoslav full_name: Fulek, Radoslav id: 39F3FFE4-F248-11E8-B48F-1D18A9856A87 last_name: Fulek orcid: 0000-0001-8485-1774 - first_name: Michael full_name: Pelsmajer, Michael last_name: Pelsmajer - first_name: Marcus full_name: Schaefer, Marcus last_name: Schaefer citation: ama: Fulek R, Pelsmajer M, Schaefer M. Hanani-Tutte for radial planarity. Journal of Graph Algorithms and Applications. 2017;21(1):135-154. doi:10.7155/jgaa.00408 apa: Fulek, R., Pelsmajer, M., & Schaefer, M. (2017). Hanani-Tutte for radial planarity. Journal of Graph Algorithms and Applications. Brown University. https://doi.org/10.7155/jgaa.00408 chicago: Fulek, Radoslav, Michael Pelsmajer, and Marcus Schaefer. “Hanani-Tutte for Radial Planarity.” Journal of Graph Algorithms and Applications. Brown University, 2017. https://doi.org/10.7155/jgaa.00408. ieee: R. Fulek, M. Pelsmajer, and M. Schaefer, “Hanani-Tutte for radial planarity,” Journal of Graph Algorithms and Applications, vol. 21, no. 1. Brown University, pp. 135–154, 2017. ista: Fulek R, Pelsmajer M, Schaefer M. 2017. Hanani-Tutte for radial planarity. Journal of Graph Algorithms and Applications. 21(1), 135–154. mla: Fulek, Radoslav, et al. “Hanani-Tutte for Radial Planarity.” Journal of Graph Algorithms and Applications, vol. 21, no. 1, Brown University, 2017, pp. 135–54, doi:10.7155/jgaa.00408. short: R. Fulek, M. Pelsmajer, M. Schaefer, Journal of Graph Algorithms and Applications 21 (2017) 135–154. date_created: 2018-12-11T11:50:13Z date_published: 2017-01-01T00:00:00Z date_updated: 2023-02-23T10:05:57Z day: '01' ddc: - '510' department: - _id: UlWa doi: 10.7155/jgaa.00408 ec_funded: 1 external_id: arxiv: - '1608.08662' file: - access_level: open_access content_type: application/pdf creator: dernst date_created: 2019-10-24T10:54:37Z date_updated: 2019-10-24T10:54:37Z file_id: '6967' file_name: 2017_JournalGraphAlgorithms_Fulek.pdf file_size: 573623 relation: main_file success: 1 file_date_updated: 2019-10-24T10:54:37Z has_accepted_license: '1' intvolume: ' 21' issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 135 - 154 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Journal of Graph Algorithms and Applications publication_status: published publisher: Brown University publist_id: '6254' quality_controlled: '1' related_material: record: - id: '1164' relation: earlier_version status: public - id: '1595' relation: earlier_version status: public scopus_import: 1 status: public title: Hanani-Tutte for radial planarity type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 21 year: '2017' ... --- _id: '169' abstract: - lang: eng text: We show that a twisted variant of Linnik’s conjecture on sums of Kloosterman sums leads to an optimal covering exponent for S3. article_processing_charge: No author: - first_name: Timothy D full_name: Browning, Timothy D id: 35827D50-F248-11E8-B48F-1D18A9856A87 last_name: Browning orcid: 0000-0002-8314-0177 - first_name: Vinay full_name: Kumaraswamy, Vinay last_name: Kumaraswamy - first_name: Rapael full_name: Steiner, Rapael last_name: Steiner citation: ama: Browning TD, Kumaraswamy V, Steiner R. Twisted Linnik implies optimal covering exponent for S3. International Mathematics Research Notices. 2017. doi:10.1093/imrn/rnx116 apa: Browning, T. D., Kumaraswamy, V., & Steiner, R. (2017). Twisted Linnik implies optimal covering exponent for S3. International Mathematics Research Notices. Oxford University Press. https://doi.org/10.1093/imrn/rnx116 chicago: Browning, Timothy D, Vinay Kumaraswamy, and Rapael Steiner. “Twisted Linnik Implies Optimal Covering Exponent for S3.” International Mathematics Research Notices. Oxford University Press, 2017. https://doi.org/10.1093/imrn/rnx116. ieee: T. D. Browning, V. Kumaraswamy, and R. Steiner, “Twisted Linnik implies optimal covering exponent for S3,” International Mathematics Research Notices. Oxford University Press, 2017. ista: Browning TD, Kumaraswamy V, Steiner R. 2017. Twisted Linnik implies optimal covering exponent for S3. International Mathematics Research Notices. mla: Browning, Timothy D., et al. “Twisted Linnik Implies Optimal Covering Exponent for S3.” International Mathematics Research Notices, Oxford University Press, 2017, doi:10.1093/imrn/rnx116. short: T.D. Browning, V. Kumaraswamy, R. Steiner, International Mathematics Research Notices (2017). date_created: 2018-12-11T11:44:59Z date_published: 2017-06-19T00:00:00Z date_updated: 2021-01-12T06:52:32Z day: '19' doi: 10.1093/imrn/rnx116 extern: '1' external_id: arxiv: - '1609.06097' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1609.06097 month: '06' oa: 1 oa_version: None publication: International Mathematics Research Notices publication_status: published publisher: Oxford University Press publist_id: '7752' quality_controlled: '1' status: public title: Twisted Linnik implies optimal covering exponent for S3 type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2017' ... --- _id: '172' abstract: - lang: eng text: We study strong approximation for some algebraic varieties over ℚ which are defined using norm forms. This allows us to confirm a special case of a conjecture due to Harpaz and Wittenberg. article_processing_charge: No author: - first_name: Timothy D full_name: Browning, Timothy D id: 35827D50-F248-11E8-B48F-1D18A9856A87 last_name: Browning orcid: 0000-0002-8314-0177 - first_name: Damaris full_name: Schindler, Damaris last_name: Schindler citation: ama: Browning TD, Schindler D. Strong approximation and a conjecture of Harpaz and Wittenberg. International Mathematics Research Notices. 2017. doi:10.1093/imrn/rnx252 apa: Browning, T. D., & Schindler, D. (2017). Strong approximation and a conjecture of Harpaz and Wittenberg. International Mathematics Research Notices. Oxford University Press. https://doi.org/10.1093/imrn/rnx252 chicago: Browning, Timothy D, and Damaris Schindler. “Strong Approximation and a Conjecture of Harpaz and Wittenberg.” International Mathematics Research Notices. Oxford University Press, 2017. https://doi.org/10.1093/imrn/rnx252. ieee: T. D. Browning and D. Schindler, “Strong approximation and a conjecture of Harpaz and Wittenberg,” International Mathematics Research Notices. Oxford University Press, 2017. ista: Browning TD, Schindler D. 2017. Strong approximation and a conjecture of Harpaz and Wittenberg. International Mathematics Research Notices. mla: Browning, Timothy D., and Damaris Schindler. “Strong Approximation and a Conjecture of Harpaz and Wittenberg.” International Mathematics Research Notices, Oxford University Press, 2017, doi:10.1093/imrn/rnx252. short: T.D. Browning, D. Schindler, International Mathematics Research Notices (2017). date_created: 2018-12-11T11:45:00Z date_published: 2017-10-30T00:00:00Z date_updated: 2021-01-12T06:52:45Z day: '30' doi: 10.1093/imrn/rnx252 extern: '1' external_id: arxiv: - '1509.07744' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1509.07744 month: '10' oa: 1 oa_version: None publication: International Mathematics Research Notices publication_status: published publisher: Oxford University Press publist_id: '7749' quality_controlled: '1' status: public title: Strong approximation and a conjecture of Harpaz and Wittenberg type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2017' ... --- _id: '391' abstract: - lang: eng text: 'Three-dimensional topological insulators are bulk insulators with Z 2 topological electronic order that gives rise to conducting light-like surface states. These surface electrons are exceptionally resistant to localization by non-magnetic disorder, and have been adopted as the basis for a wide range of proposals to achieve new quasiparticle species and device functionality. Recent studies have yielded a surprise by showing that in spite of resisting localization, topological insulator surface electrons can be reshaped by defects into distinctive resonance states. Here we use numerical simulations and scanning tunnelling microscopy data to show that these resonance states have significance well beyond the localized regime usually associated with impurity bands. At native densities in the model Bi2X3 (X=Bi, Te) compounds, defect resonance states are predicted to generate a new quantum basis for an emergent electron gas that supports diffusive electrical transport. ' author: - first_name: Yishuai full_name: Xu, Yishuai last_name: Xu - first_name: Janet full_name: Chiu, Janet last_name: Chiu - first_name: Lin full_name: Miao, Lin last_name: Miao - first_name: Haowei full_name: He, Haowei last_name: He - first_name: Zhanybek full_name: Alpichshev, Zhanybek id: 45E67A2A-F248-11E8-B48F-1D18A9856A87 last_name: Alpichshev orcid: 0000-0002-7183-5203 - first_name: Aharon full_name: Kapitulnik, Aharon last_name: Kapitulnik - first_name: Rudro full_name: Biswas, Rudro last_name: Biswas - first_name: Lewis full_name: Wray, Lewis last_name: Wray citation: ama: Xu Y, Chiu J, Miao L, et al. Disorder enabled band structure engineering of a topological insulator surface. Nature Communications. 2017;8. doi:10.1038/ncomms14081 apa: Xu, Y., Chiu, J., Miao, L., He, H., Alpichshev, Z., Kapitulnik, A., … Wray, L. (2017). Disorder enabled band structure engineering of a topological insulator surface. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/ncomms14081 chicago: Xu, Yishuai, Janet Chiu, Lin Miao, Haowei He, Zhanybek Alpichshev, Aharon Kapitulnik, Rudro Biswas, and Lewis Wray. “Disorder Enabled Band Structure Engineering of a Topological Insulator Surface.” Nature Communications. Nature Publishing Group, 2017. https://doi.org/10.1038/ncomms14081. ieee: Y. Xu et al., “Disorder enabled band structure engineering of a topological insulator surface,” Nature Communications, vol. 8. Nature Publishing Group, 2017. ista: Xu Y, Chiu J, Miao L, He H, Alpichshev Z, Kapitulnik A, Biswas R, Wray L. 2017. Disorder enabled band structure engineering of a topological insulator surface. Nature Communications. 8. mla: Xu, Yishuai, et al. “Disorder Enabled Band Structure Engineering of a Topological Insulator Surface.” Nature Communications, vol. 8, Nature Publishing Group, 2017, doi:10.1038/ncomms14081. short: Y. Xu, J. Chiu, L. Miao, H. He, Z. Alpichshev, A. Kapitulnik, R. Biswas, L. Wray, Nature Communications 8 (2017). date_created: 2018-12-11T11:46:12Z date_published: 2017-02-03T00:00:00Z date_updated: 2021-01-12T07:53:08Z day: '03' doi: 10.1038/ncomms14081 extern: '1' intvolume: ' 8' language: - iso: eng month: '02' oa_version: None publication: Nature Communications publication_status: published publisher: Nature Publishing Group publist_id: '7438' status: public title: Disorder enabled band structure engineering of a topological insulator surface type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8 year: '2017' ... --- _id: '393' abstract: - lang: eng text: 'We use a three-pulse ultrafast optical spectroscopy to study the relaxation processes in a frustrated Mott insulator Na2IrO3. By being able to independently produce the out-of-equilibrium bound states (excitons) of doublons and holons with the first pulse and suppress the underlying antiferromagnetic order with the second one, we were able to elucidate the relaxation mechanism of quasiparticles in this system. By observing the difference in the exciton dynamics in the magnetically ordered and disordered phases we found that the mass of this quasiparticle is mostly determined by its interaction with the surrounding spins. ' acknowledgement: "Z.A. gratefully acknowledges discussions with P. A. Lee and A. Kemper. A conversation with J. Zaanen was instrumental in clarifying the physical picture described in this paper. We would also like to thank A. Kogar for thoroughly reading the manuscript and making valuable comments. This work was supported by Army Research Office Grant No. W911NF-15-1-0128 and Gordon and Betty Moore Foundation EPiQS Initiative through Grant No. GBMF4540 (time resolved optical spectroscopy), Skoltech, as part of the Skoltech NGP program (theory) and National Science Foundation Grant No. DMR-1265162 (material growth).\r\n\r\n" author: - first_name: Zhanybek full_name: Alpichshev, Zhanybek id: 45E67A2A-F248-11E8-B48F-1D18A9856A87 last_name: Alpichshev orcid: 0000-0002-7183-5203 - first_name: Edbert full_name: Sie, Edbert last_name: Sie - first_name: Fahad full_name: Mahmood, Fahad last_name: Mahmood - first_name: Gang full_name: Cao, Gang last_name: Cao - first_name: Nuh full_name: Gedik, Nuh last_name: Gedik citation: ama: Alpichshev Z, Sie E, Mahmood F, Cao G, Gedik N. Origin of the exciton mass in the frustrated Mott insulator Na2IrO3. Physical Review B. 2017;96(23). doi:10.1103/PhysRevB.96.235141 apa: Alpichshev, Z., Sie, E., Mahmood, F., Cao, G., & Gedik, N. (2017). Origin of the exciton mass in the frustrated Mott insulator Na2IrO3. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.96.235141 chicago: Alpichshev, Zhanybek, Edbert Sie, Fahad Mahmood, Gang Cao, and Nuh Gedik. “Origin of the Exciton Mass in the Frustrated Mott Insulator Na2IrO3.” Physical Review B. American Physical Society, 2017. https://doi.org/10.1103/PhysRevB.96.235141. ieee: Z. Alpichshev, E. Sie, F. Mahmood, G. Cao, and N. Gedik, “Origin of the exciton mass in the frustrated Mott insulator Na2IrO3,” Physical Review B, vol. 96, no. 23. American Physical Society, 2017. ista: Alpichshev Z, Sie E, Mahmood F, Cao G, Gedik N. 2017. Origin of the exciton mass in the frustrated Mott insulator Na2IrO3. Physical Review B. 96(23). mla: Alpichshev, Zhanybek, et al. “Origin of the Exciton Mass in the Frustrated Mott Insulator Na2IrO3.” Physical Review B, vol. 96, no. 23, American Physical Society, 2017, doi:10.1103/PhysRevB.96.235141. short: Z. Alpichshev, E. Sie, F. Mahmood, G. Cao, N. Gedik, Physical Review B 96 (2017). date_created: 2018-12-11T11:46:13Z date_published: 2017-12-26T00:00:00Z date_updated: 2021-01-12T07:53:16Z day: '26' doi: 10.1103/PhysRevB.96.235141 extern: '1' intvolume: ' 96' issue: '23' language: - iso: eng main_file_link: - open_access: '1' url: http://dspace.mit.edu/handle/1721.1/114259 month: '12' oa: 1 oa_version: None publication: Physical Review B publication_status: published publisher: American Physical Society publist_id: '7436' status: public title: Origin of the exciton mass in the frustrated Mott insulator Na2IrO3 type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 96 year: '2017' ... --- _id: '392' abstract: - lang: eng text: We used femtosecond optical pump-probe spectroscopy to study the photoinduced change in reflectivity of thin films of the electron-doped cuprate La2-xCexCuO4 (LCCO) with dopings of x=0.08 (underdoped) and x=0.11 (optimally doped). Above Tc, we observe fluence-dependent relaxation rates that begin at a temperature similar to the one where transport measurements first show signatures of antiferromagnetic correlations. Upon suppressing superconductivity with a magnetic field, it is found that the fluence and temperature dependence of relaxation rates are consistent with bimolecular recombination of electrons and holes across a gap (2ΔAF) originating from antiferromagnetic correlations which comprise the pseudogap in electron-doped cuprates. This can be used to learn about coupling between electrons and high-energy (ω>2ΔAF) excitations in these compounds and set limits on the time scales on which antiferromagnetic correlations are static. acknowledgement: Optical pump-probe work was supported by the Gordon and Betty Moore Foundation's EPiQS initiative through Grant No. GBMF4540. Materials growth and characterization was supported by AFOSR FA95501410332 and NSF DMR1410665. author: - first_name: Inna full_name: Vishik, Inna last_name: Vishik - first_name: Fahad full_name: Mahmood, Fahad last_name: Mahmood - first_name: Zhanybek full_name: Alpichshev, Zhanybek id: 45E67A2A-F248-11E8-B48F-1D18A9856A87 last_name: Alpichshev orcid: 0000-0002-7183-5203 - first_name: Nuh full_name: Gedik, Nuh last_name: Gedik - first_name: Joshu full_name: Higgins, Joshu last_name: Higgins - first_name: Richard full_name: Greene, Richard last_name: Greene citation: ama: Vishik I, Mahmood F, Alpichshev Z, Gedik N, Higgins J, Greene R. Ultrafast dynamics in the presence of antiferromagnetic correlations in electron doped cuprate La2 xCexCuO4±δ. Physical Review B. 2017;95(11). doi:10.1103/PhysRevB.95.115125 apa: Vishik, I., Mahmood, F., Alpichshev, Z., Gedik, N., Higgins, J., & Greene, R. (2017). Ultrafast dynamics in the presence of antiferromagnetic correlations in electron doped cuprate La2 xCexCuO4±δ. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.95.115125 chicago: Vishik, Inna, Fahad Mahmood, Zhanybek Alpichshev, Nuh Gedik, Joshu Higgins, and Richard Greene. “Ultrafast Dynamics in the Presence of Antiferromagnetic Correlations in Electron Doped Cuprate La2 XCexCuO4±δ.” Physical Review B. American Physical Society, 2017. https://doi.org/10.1103/PhysRevB.95.115125. ieee: I. Vishik, F. Mahmood, Z. Alpichshev, N. Gedik, J. Higgins, and R. Greene, “Ultrafast dynamics in the presence of antiferromagnetic correlations in electron doped cuprate La2 xCexCuO4±δ,” Physical Review B, vol. 95, no. 11. American Physical Society, 2017. ista: Vishik I, Mahmood F, Alpichshev Z, Gedik N, Higgins J, Greene R. 2017. Ultrafast dynamics in the presence of antiferromagnetic correlations in electron doped cuprate La2 xCexCuO4±δ. Physical Review B. 95(11). mla: Vishik, Inna, et al. “Ultrafast Dynamics in the Presence of Antiferromagnetic Correlations in Electron Doped Cuprate La2 XCexCuO4±δ.” Physical Review B, vol. 95, no. 11, American Physical Society, 2017, doi:10.1103/PhysRevB.95.115125. short: I. Vishik, F. Mahmood, Z. Alpichshev, N. Gedik, J. Higgins, R. Greene, Physical Review B 95 (2017). date_created: 2018-12-11T11:46:13Z date_published: 2017-03-13T00:00:00Z date_updated: 2021-01-12T07:53:12Z day: '13' doi: 10.1103/PhysRevB.95.115125 extern: '1' intvolume: ' 95' issue: '11' language: - iso: eng main_file_link: - open_access: '1' url: http://dspace.mit.edu/handle/1721.1/109835 month: '03' oa: 1 oa_version: None publication: Physical Review B publication_status: published publisher: American Physical Society publist_id: '7437' status: public title: Ultrafast dynamics in the presence of antiferromagnetic correlations in electron doped cuprate La2 xCexCuO4±δ type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 95 year: '2017' ... --- _id: '443' abstract: - lang: eng text: Pancreatic cancer has a five-year survival rate of ~8%, with characteristic molecular heterogeneity and restricted treatment options. Targeting metabolism has emerged as a potentially effective therapeutic strategy for cancers such as pancreatic cancer, which are driven by genetic alterations that are not tractable drug targets. Although somatic mitochondrial genome (mtDNA) mutations have been observed in various tumors types, understanding of metabolic genotype-phenotype relationships is limited. author: - first_name: Rae full_name: Hardie, Rae last_name: Hardie - first_name: Ellen full_name: Van Dam, Ellen last_name: Van Dam - first_name: Mark full_name: Cowley, Mark last_name: Cowley - first_name: Ting full_name: Han, Ting last_name: Han - first_name: Seher full_name: Balaban, Seher last_name: Balaban - first_name: Marina full_name: Pajic, Marina last_name: Pajic - first_name: Mark full_name: Pinese, Mark last_name: Pinese - first_name: Mary full_name: Iconomou, Mary last_name: Iconomou - first_name: Robert full_name: Shearer, Robert last_name: Shearer - first_name: Jessie full_name: Mckenna, Jessie last_name: Mckenna - first_name: David full_name: Miller, David last_name: Miller - first_name: Nicola full_name: Waddell, Nicola last_name: Waddell - first_name: John full_name: Pearson, John last_name: Pearson - first_name: Sean full_name: Grimmond, Sean last_name: Grimmond - first_name: Leonid A full_name: Sazanov, Leonid A id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 - first_name: Andrew full_name: Biankin, Andrew last_name: Biankin - first_name: Silas full_name: Villas Boas, Silas last_name: Villas Boas - first_name: Andrew full_name: Hoy, Andrew last_name: Hoy - first_name: Nigel full_name: Turner, Nigel last_name: Turner - first_name: Darren full_name: Saunders, Darren last_name: Saunders citation: ama: Hardie R, Van Dam E, Cowley M, et al. Mitochondrial mutations and metabolic adaptation in pancreatic cancer. Cancer & Metabolism. 2017;5(2). doi:10.1186/s40170-017-0164-1 apa: Hardie, R., Van Dam, E., Cowley, M., Han, T., Balaban, S., Pajic, M., … Saunders, D. (2017). Mitochondrial mutations and metabolic adaptation in pancreatic cancer. Cancer & Metabolism. BioMed Central. https://doi.org/10.1186/s40170-017-0164-1 chicago: Hardie, Rae, Ellen Van Dam, Mark Cowley, Ting Han, Seher Balaban, Marina Pajic, Mark Pinese, et al. “Mitochondrial Mutations and Metabolic Adaptation in Pancreatic Cancer.” Cancer & Metabolism. BioMed Central, 2017. https://doi.org/10.1186/s40170-017-0164-1. ieee: R. Hardie et al., “Mitochondrial mutations and metabolic adaptation in pancreatic cancer,” Cancer & Metabolism, vol. 5, no. 2. BioMed Central, 2017. ista: Hardie R, Van Dam E, Cowley M, Han T, Balaban S, Pajic M, Pinese M, Iconomou M, Shearer R, Mckenna J, Miller D, Waddell N, Pearson J, Grimmond S, Sazanov LA, Biankin A, Villas Boas S, Hoy A, Turner N, Saunders D. 2017. Mitochondrial mutations and metabolic adaptation in pancreatic cancer. Cancer & Metabolism. 5(2). mla: Hardie, Rae, et al. “Mitochondrial Mutations and Metabolic Adaptation in Pancreatic Cancer.” Cancer & Metabolism, vol. 5, no. 2, BioMed Central, 2017, doi:10.1186/s40170-017-0164-1. short: R. Hardie, E. Van Dam, M. Cowley, T. Han, S. Balaban, M. Pajic, M. Pinese, M. Iconomou, R. Shearer, J. Mckenna, D. Miller, N. Waddell, J. Pearson, S. Grimmond, L.A. Sazanov, A. Biankin, S. Villas Boas, A. Hoy, N. Turner, D. Saunders, Cancer & Metabolism 5 (2017). date_created: 2018-12-11T11:46:30Z date_published: 2017-01-30T00:00:00Z date_updated: 2021-01-12T07:56:55Z day: '30' ddc: - '570' doi: 10.1186/s40170-017-0164-1 extern: '1' file: - access_level: open_access checksum: 337a65786875f64a1fe9fc0ac24767dc content_type: application/pdf creator: dernst date_created: 2019-01-22T08:17:56Z date_updated: 2020-07-14T12:46:29Z file_id: '5868' file_name: 2017_Cancer_Hardie.pdf file_size: 1609174 relation: main_file file_date_updated: 2020-07-14T12:46:29Z has_accepted_license: '1' intvolume: ' 5' issue: '2' language: - iso: eng month: '01' oa: 1 oa_version: Published Version publication: Cancer & Metabolism publication_status: published publisher: BioMed Central publist_id: '7380' quality_controlled: '1' status: public title: Mitochondrial mutations and metabolic adaptation in pancreatic cancer tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2017' ... --- _id: '444' abstract: - lang: eng text: Complex I (NADH:ubiquinone oxidoreductase) plays a central role in cellular energy generation, contributing to the proton motive force used to produce ATP. It couples the transfer of two electrons between NADH and quinone to translocation of four protons across the membrane. It is the largest protein assembly of bacterial and mitochondrial respiratory chains, composed, in mammals, of up to 45 subunits with a total molecular weight of ∼1 MDa. Bacterial enzyme is about half the size, providing the important “minimal” model of complex I. The l-shaped complex consists of a hydrophilic arm, where electron transfer occurs, and a membrane arm, where proton translocation takes place. Previously, we have solved the crystal structures of the hydrophilic domain of complex I from Thermus thermophilus and of the membrane domain from Escherichia coli, followed by the atomic structure of intact, entire complex I from T. thermophilus. Recently, we have solved by cryo-EM a first complete atomic structure of mammalian (ovine) mitochondrial complex I. Core subunits are well conserved from the bacterial version, whilst supernumerary subunits form an interlinked, stabilizing shell around the core. Subunits containing additional cofactors, including Zn ion, NADPH and phosphopantetheine, probably have regulatory roles. Dysfunction of mitochondrial complex I is implicated in many human neurodegenerative diseases. The structure of mammalian enzyme provides many insights into complex I mechanism, assembly, maturation and dysfunction, allowing detailed molecular analysis of disease-causing mutations. author: - first_name: Leonid A full_name: Sazanov, Leonid A id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 citation: ama: 'Sazanov LA. Structure of respiratory complex I: “Minimal” bacterial and “de luxe” mammalian versions. In: Wikström M, ed. Mechanisms of Primary Energy Transduction in Biology . Mechanisms of Primary Energy Transduction in Biology . Royal Society of Chemistry; 2017:25-59. doi:10.1039/9781788010405-00025' apa: 'Sazanov, L. A. (2017). Structure of respiratory complex I: “Minimal” bacterial and “de luxe” mammalian versions. In M. Wikström (Ed.), Mechanisms of primary energy transduction in biology (pp. 25–59). Royal Society of Chemistry. https://doi.org/10.1039/9781788010405-00025' chicago: 'Sazanov, Leonid A. “Structure of Respiratory Complex I: ‘Minimal’ Bacterial and ‘de Luxe’ Mammalian Versions.” In Mechanisms of Primary Energy Transduction in Biology , edited by Mårten Wikström, 25–59. Mechanisms of Primary Energy Transduction in Biology . Royal Society of Chemistry, 2017. https://doi.org/10.1039/9781788010405-00025.' ieee: 'L. A. Sazanov, “Structure of respiratory complex I: ‘Minimal’ bacterial and ‘de luxe’ mammalian versions,” in Mechanisms of primary energy transduction in biology , M. Wikström, Ed. Royal Society of Chemistry, 2017, pp. 25–59.' ista: 'Sazanov LA. 2017.Structure of respiratory complex I: “Minimal” bacterial and “de luxe” mammalian versions. In: Mechanisms of primary energy transduction in biology . , 25–59.' mla: 'Sazanov, Leonid A. “Structure of Respiratory Complex I: ‘Minimal’ Bacterial and ‘de Luxe’ Mammalian Versions.” Mechanisms of Primary Energy Transduction in Biology , edited by Mårten Wikström, Royal Society of Chemistry, 2017, pp. 25–59, doi:10.1039/9781788010405-00025.' short: L.A. Sazanov, in:, M. Wikström (Ed.), Mechanisms of Primary Energy Transduction in Biology , Royal Society of Chemistry, 2017, pp. 25–59. date_created: 2018-12-11T11:46:30Z date_published: 2017-11-29T00:00:00Z date_updated: 2021-01-12T07:56:59Z day: '29' department: - _id: LeSa doi: 10.1039/9781788010405-00025 editor: - first_name: Mårten full_name: Wikström, Mårten last_name: Wikström language: - iso: eng month: '11' oa_version: None page: 25 - 59 publication: 'Mechanisms of primary energy transduction in biology ' publication_identifier: isbn: - 978-1-78262-865-1 publication_status: published publisher: Royal Society of Chemistry publist_id: '7379' quality_controlled: '1' series_title: 'Mechanisms of Primary Energy Transduction in Biology ' status: public title: 'Structure of respiratory complex I: “Minimal” bacterial and “de luxe” mammalian versions' type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2017' ... --- _id: '445' abstract: - lang: eng text: The Loschmidt echo, defined as the overlap between quantum wave function evolved with different Hamiltonians, quantifies the sensitivity of quantum dynamics to perturbations and is often used as a probe of quantum chaos. In this work we consider the behavior of the Loschmidt echo in the many-body localized phase, which is characterized by emergent local integrals of motion and provides a generic example of nonergodic dynamics. We demonstrate that the fluctuations of the Loschmidt echo decay as a power law in time in the many-body localized phase, in contrast to the exponential decay in few-body ergodic systems. We consider the spin-echo generalization of the Loschmidt echo and argue that the corresponding correlation function saturates to a finite value in localized systems. Slow, power-law decay of fluctuations of such spin-echo-type overlap is related to the operator spreading and is present only in the many-body localized phase, but not in a noninteracting Anderson insulator. While most of the previously considered probes of dephasing dynamics could be understood by approximating physical spin operators with local integrals of motion, the Loschmidt echo and its generalizations crucially depend on the full expansion of the physical operators via local integrals of motion operators, as well as operators which flip local integrals of motion. Hence these probes allow one to get insights into the relation between physical operators and local integrals of motion and access the operator spreading in the many-body localized phase. acknowledgement: |- This research was supported in part by the National Science Foundation under Grant No. NSF PHY11-25915. M.S. was supported by Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant No. GBMF4307. D.A. also acknowledges support by Swiss National Science Foundation. author: - first_name: Maksym full_name: Maksym Serbyn id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 - first_name: Dimitry full_name: Abanin, Dimitry A last_name: Abanin citation: ama: Serbyn M, Abanin D. Loschmidt echo in many body localized phases. Physical Review B - Condensed Matter and Materials Physics. 2017;96(1). doi:10.1103/PhysRevB.96.014202 apa: Serbyn, M., & Abanin, D. (2017). Loschmidt echo in many body localized phases. Physical Review B - Condensed Matter and Materials Physics. American Physical Society. https://doi.org/10.1103/PhysRevB.96.014202 chicago: Serbyn, Maksym, and Dimitry Abanin. “Loschmidt Echo in Many Body Localized Phases.” Physical Review B - Condensed Matter and Materials Physics. American Physical Society, 2017. https://doi.org/10.1103/PhysRevB.96.014202. ieee: M. Serbyn and D. Abanin, “Loschmidt echo in many body localized phases,” Physical Review B - Condensed Matter and Materials Physics, vol. 96, no. 1. American Physical Society, 2017. ista: Serbyn M, Abanin D. 2017. Loschmidt echo in many body localized phases. Physical Review B - Condensed Matter and Materials Physics. 96(1). mla: Serbyn, Maksym, and Dimitry Abanin. “Loschmidt Echo in Many Body Localized Phases.” Physical Review B - Condensed Matter and Materials Physics, vol. 96, no. 1, American Physical Society, 2017, doi:10.1103/PhysRevB.96.014202. short: M. Serbyn, D. Abanin, Physical Review B - Condensed Matter and Materials Physics 96 (2017). date_created: 2018-12-11T11:46:31Z date_published: 2017-07-12T00:00:00Z date_updated: 2021-01-12T07:57:03Z day: '12' doi: 10.1103/PhysRevB.96.014202 extern: 1 intvolume: ' 96' issue: '1' main_file_link: - open_access: '1' url: https://arxiv.org/abs/1701.07772 month: '07' oa: 1 publication: Physical Review B - Condensed Matter and Materials Physics publication_status: published publisher: American Physical Society publist_id: '7378' quality_controlled: 0 status: public title: Loschmidt echo in many body localized phases type: journal_article volume: 96 year: '2017' ... --- _id: '452' abstract: - lang: eng text: 'Spinning tops and yo-yos have long fascinated cultures around the world with their unexpected, graceful motions that seemingly elude gravity. Yet, due to the exceeding difficulty of creating stably spinning objects of asymmetric shape in a manual trial-and-error process, there has been little departure from rotationally symmetric designs. With modern 3D printing technologies, however, we can manufacture shapes of almost unbounded complexity at the press of a button, shifting this design complexity toward computation. In this article, we describe an algorithm to generate designs for spinning objects by optimizing their mass distribution: as input, the user provides a solid 3D model and a desired axis of rotation. Our approach then modifies the interior mass distribution such that the principal directions of the moment of inertia align with the target rotation frame. To create voids inside the model, we represent its volume with an adaptive multiresolution voxelization and optimize the discrete voxel fill values using a continuous, nonlinear formulation. We further optimize for rotational stability by maximizing the dominant principal moment. Our method is well-suited for a variety of 3D printed models, ranging from characters to abstract shapes. We demonstrate tops and yo-yos that spin surprisingly stably despite their asymmetric appearance.' acknowledgement: "This project was supported in part by the ERC Starting Grant iModel (StG-2012-306877). Emily Whiting was supported by the ETH Zurich/Marie Curie COFUND Postdoctoral Fellowship. \r\nFirst and foremost, we would like to thank our editor Steve Marschner for his invaluable feedback. We were fortunate to get further help from Maurizio Nitti for model design, Romain Prévost for Make-It-Stand comparisons, Alexander Sorkine-Hornung, Kaan Yücer, and Changil Kim for video and photo assistance, Ronnie Gänsli for metal casting, Alec Jacobson for the posed Elephant and Armadillo models, and Romain Prévost and Amit Bermano for print preparation. Model sources include: Woven Ring: generated by “Sculpture Generator 1” by Carlo H. Séquin, UC Berkeley; Elephant: De Espona model library, courtesy of Robert Sumner; T-Rex: TurboSquid; Armadillo: Stanford Computer Graphics Laboratory; and Utah Teapot: Martin Newell, University of Utah. " article_processing_charge: No author: - first_name: Moritz full_name: Bächer, Moritz last_name: Bächer - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Emily full_name: Whiting, Emily last_name: Whiting - first_name: Olga full_name: Sorkine Hornung, Olga last_name: Sorkine Hornung citation: ama: 'Bächer M, Bickel B, Whiting E, Sorkine Hornung O. Spin it: Optimizing moment of inertia for spinnable objects. Communications of the ACM. 2017;60(8):92-99. doi:10.1145/3068766' apa: 'Bächer, M., Bickel, B., Whiting, E., & Sorkine Hornung, O. (2017). Spin it: Optimizing moment of inertia for spinnable objects. Communications of the ACM. ACM. https://doi.org/10.1145/3068766' chicago: 'Bächer, Moritz, Bernd Bickel, Emily Whiting, and Olga Sorkine Hornung. “Spin It: Optimizing Moment of Inertia for Spinnable Objects.” Communications of the ACM. ACM, 2017. https://doi.org/10.1145/3068766.' ieee: 'M. Bächer, B. Bickel, E. Whiting, and O. Sorkine Hornung, “Spin it: Optimizing moment of inertia for spinnable objects,” Communications of the ACM, vol. 60, no. 8. ACM, pp. 92–99, 2017.' ista: 'Bächer M, Bickel B, Whiting E, Sorkine Hornung O. 2017. Spin it: Optimizing moment of inertia for spinnable objects. Communications of the ACM. 60(8), 92–99.' mla: 'Bächer, Moritz, et al. “Spin It: Optimizing Moment of Inertia for Spinnable Objects.” Communications of the ACM, vol. 60, no. 8, ACM, 2017, pp. 92–99, doi:10.1145/3068766.' short: M. Bächer, B. Bickel, E. Whiting, O. Sorkine Hornung, Communications of the ACM 60 (2017) 92–99. date_created: 2018-12-11T11:46:33Z date_published: 2017-08-01T00:00:00Z date_updated: 2022-03-18T12:55:28Z day: '01' doi: 10.1145/3068766 extern: '1' intvolume: ' 60' issue: '8' language: - iso: eng month: '08' oa_version: None page: 92 - 99 publication: Communications of the ACM publication_status: published publisher: ACM publist_id: '7370' scopus_import: '1' status: public title: 'Spin it: Optimizing moment of inertia for spinnable objects' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 60 year: '2017' ... --- _id: '453' abstract: - lang: eng text: Most kinesin motors move in only one direction along microtubules. Members of the kinesin-5 subfamily were initially described as unidirectional plus-end-directed motors and shown to produce piconewton forces. However, some fungal kinesin-5 motors are bidirectional. The force production of a bidirectional kinesin-5 has not yet been measured. Therefore, it remains unknown whether the mechanism of the unconventional minus-end-directed motility differs fundamentally from that of plus-end-directed stepping. Using force spectroscopy, we have measured here the forces that ensembles of purified budding yeast kinesin-5 Cin8 produce in microtubule gliding assays in both plus- and minus-end direction. Correlation analysis of pause forces demonstrated that individual Cin8 molecules produce additive forces in both directions of movement. In ensembles, Cin8 motors were able to produce single-motor forces up to a magnitude of ∼1.5 pN. Hence, these properties appear to be conserved within the kinesin-5 subfamily. Force production was largely independent of the directionality of movement, indicating similarities between the motility mechanisms for both directions. These results provide constraints for the development of models for the bidirectional motility mechanism of fission yeast kinesin-5 and provide insight into the function of this mitotic motor. acknowledgement: 'The plasmid for full-length kinesin-1 was a gift from G. Holzwarth and J. Macosko with permission from J. Howard. We thank I. Lueke and N. I. Cade for technical assistance. G.P. thanks the Francis Crick Institute, and in particular the Surrey and Salbreux groups, for their hospitality during his sabbatical stay, as well as Imperial College London for making it possible. This work was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001163), the United Kingdom Medical Research Council (FC001163), and the Wellcome Trust (FC001163), and by Imperial College London. J.R. was also supported by a Sir Henry Wellcome Postdoctoral Fellowship (100145/Z/12/Z) and T.S. by the European Research Council (Advanced Grant, project 323042). ' article_processing_charge: No article_type: original author: - first_name: Todd full_name: Fallesen, Todd last_name: Fallesen - first_name: Johanna full_name: Roostalu, Johanna last_name: Roostalu - first_name: Christian F full_name: Düllberg, Christian F id: 459064DC-F248-11E8-B48F-1D18A9856A87 last_name: Düllberg orcid: 0000-0001-6335-9748 - first_name: Gunnar full_name: Pruessner, Gunnar last_name: Pruessner - first_name: Thomas full_name: Surrey, Thomas last_name: Surrey citation: ama: Fallesen T, Roostalu J, Düllberg CF, Pruessner G, Surrey T. Ensembles of bidirectional kinesin Cin8 produce additive forces in both directions of movement. Biophysical Journal. 2017;113(9):2055-2067. doi:10.1016/j.bpj.2017.09.006 apa: Fallesen, T., Roostalu, J., Düllberg, C. F., Pruessner, G., & Surrey, T. (2017). Ensembles of bidirectional kinesin Cin8 produce additive forces in both directions of movement. Biophysical Journal. Biophysical Society. https://doi.org/10.1016/j.bpj.2017.09.006 chicago: Fallesen, Todd, Johanna Roostalu, Christian F Düllberg, Gunnar Pruessner, and Thomas Surrey. “Ensembles of Bidirectional Kinesin Cin8 Produce Additive Forces in Both Directions of Movement.” Biophysical Journal. Biophysical Society, 2017. https://doi.org/10.1016/j.bpj.2017.09.006. ieee: T. Fallesen, J. Roostalu, C. F. Düllberg, G. Pruessner, and T. Surrey, “Ensembles of bidirectional kinesin Cin8 produce additive forces in both directions of movement,” Biophysical Journal, vol. 113, no. 9. Biophysical Society, pp. 2055–2067, 2017. ista: Fallesen T, Roostalu J, Düllberg CF, Pruessner G, Surrey T. 2017. Ensembles of bidirectional kinesin Cin8 produce additive forces in both directions of movement. Biophysical Journal. 113(9), 2055–2067. mla: Fallesen, Todd, et al. “Ensembles of Bidirectional Kinesin Cin8 Produce Additive Forces in Both Directions of Movement.” Biophysical Journal, vol. 113, no. 9, Biophysical Society, 2017, pp. 2055–67, doi:10.1016/j.bpj.2017.09.006. short: T. Fallesen, J. Roostalu, C.F. Düllberg, G. Pruessner, T. Surrey, Biophysical Journal 113 (2017) 2055–2067. date_created: 2018-12-11T11:46:33Z date_published: 2017-11-07T00:00:00Z date_updated: 2021-01-12T07:59:28Z day: '07' ddc: - '570' department: - _id: MaLo doi: 10.1016/j.bpj.2017.09.006 file: - access_level: open_access checksum: 99a2474088e20ac74b1882c4fbbb45b1 content_type: application/pdf creator: system date_created: 2018-12-12T10:14:03Z date_updated: 2020-07-14T12:46:31Z file_id: '5052' file_name: IST-2018-965-v1+1_2017_Duellberg_Ensembles_of.pdf file_size: 977192 relation: main_file file_date_updated: 2020-07-14T12:46:31Z has_accepted_license: '1' intvolume: ' 113' issue: '9' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 2055 - 2067 publication: Biophysical Journal publication_status: published publisher: Biophysical Society publist_id: '7369' pubrep_id: '965' quality_controlled: '1' status: public title: Ensembles of bidirectional kinesin Cin8 produce additive forces in both directions of movement tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 113 year: '2017' ... --- _id: '464' abstract: - lang: eng text: The computation of the winning set for parity objectives and for Streett objectives in graphs as well as in game graphs are central problems in computer-aided verification, with application to the verification of closed systems with strong fairness conditions, the verification of open systems, checking interface compatibility, well-formedness of specifications, and the synthesis of reactive systems. We show how to compute the winning set on n vertices for (1) parity-3 (aka one-pair Streett) objectives in game graphs in time O(n5/2) and for (2) k-pair Streett objectives in graphs in time O(n2+nklogn). For both problems this gives faster algorithms for dense graphs and represents the first improvement in asymptotic running time in 15 years. article_number: '26' article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Veronika full_name: Loitzenbauer, Veronika last_name: Loitzenbauer citation: ama: Chatterjee K, Henzinger MH, Loitzenbauer V. Improved algorithms for parity and Streett objectives. Logical Methods in Computer Science. 2017;13(3). doi:10.23638/LMCS-13(3:26)2017 apa: Chatterjee, K., Henzinger, M. H., & Loitzenbauer, V. (2017). Improved algorithms for parity and Streett objectives. Logical Methods in Computer Science. International Federation of Computational Logic. https://doi.org/10.23638/LMCS-13(3:26)2017 chicago: Chatterjee, Krishnendu, Monika H Henzinger, and Veronika Loitzenbauer. “Improved Algorithms for Parity and Streett Objectives.” Logical Methods in Computer Science. International Federation of Computational Logic, 2017. https://doi.org/10.23638/LMCS-13(3:26)2017. ieee: K. Chatterjee, M. H. Henzinger, and V. Loitzenbauer, “Improved algorithms for parity and Streett objectives,” Logical Methods in Computer Science, vol. 13, no. 3. International Federation of Computational Logic, 2017. ista: Chatterjee K, Henzinger MH, Loitzenbauer V. 2017. Improved algorithms for parity and Streett objectives. Logical Methods in Computer Science. 13(3), 26. mla: Chatterjee, Krishnendu, et al. “Improved Algorithms for Parity and Streett Objectives.” Logical Methods in Computer Science, vol. 13, no. 3, 26, International Federation of Computational Logic, 2017, doi:10.23638/LMCS-13(3:26)2017. short: K. Chatterjee, M.H. Henzinger, V. Loitzenbauer, Logical Methods in Computer Science 13 (2017). date_created: 2018-12-11T11:46:37Z date_published: 2017-09-26T00:00:00Z date_updated: 2023-02-23T10:08:55Z day: '26' ddc: - '004' department: - _id: KrCh doi: 10.23638/LMCS-13(3:26)2017 ec_funded: 1 external_id: arxiv: - '1410.0833' file: - access_level: open_access checksum: 12d469ae69b80361333d7dead965cf5d content_type: application/pdf creator: system date_created: 2018-12-12T10:13:27Z date_updated: 2020-07-14T12:46:32Z file_id: '5010' file_name: IST-2018-956-v1+1_2017_Chatterjee_Improved_algorithms.pdf file_size: 582940 relation: main_file file_date_updated: 2020-07-14T12:46:32Z has_accepted_license: '1' intvolume: ' 13' issue: '3' language: - iso: eng license: https://creativecommons.org/licenses/by-nd/4.0/ month: '09' oa: 1 oa_version: Published Version project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' publication: Logical Methods in Computer Science publication_identifier: issn: - 1860-5974 publication_status: published publisher: International Federation of Computational Logic publist_id: '7357' pubrep_id: '956' quality_controlled: '1' related_material: record: - id: '1661' relation: earlier_version status: public scopus_import: '1' status: public title: Improved algorithms for parity and Streett objectives tmp: image: /image/cc_by_nd.png legal_code_url: https://creativecommons.org/licenses/by-nd/4.0/legalcode name: Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) short: CC BY-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13 year: '2017' ... --- _id: '470' abstract: - lang: eng text: This paper presents a method for simulating water surface waves as a displacement field on a 2D domain. Our method relies on Lagrangian particles that carry packets of water wave energy; each packet carries information about an entire group of wave trains, as opposed to only a single wave crest. Our approach is unconditionally stable and can simulate high resolution geometric details. This approach also presents a straightforward interface for artistic control, because it is essentially a particle system with intuitive parameters like wavelength and amplitude. Our implementation parallelizes well and runs in real time for moderately challenging scenarios. acknowledged_ssus: - _id: ScienComp article_number: '103' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Stefan full_name: Jeschke, Stefan id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Jeschke S, Wojtan C. Water wave packets. ACM Transactions on Graphics. 2017;36(4). doi:10.1145/3072959.3073678 apa: Jeschke, S., & Wojtan, C. (2017). Water wave packets. ACM Transactions on Graphics. ACM. https://doi.org/10.1145/3072959.3073678 chicago: Jeschke, Stefan, and Chris Wojtan. “Water Wave Packets.” ACM Transactions on Graphics. ACM, 2017. https://doi.org/10.1145/3072959.3073678. ieee: S. Jeschke and C. Wojtan, “Water wave packets,” ACM Transactions on Graphics, vol. 36, no. 4. ACM, 2017. ista: Jeschke S, Wojtan C. 2017. Water wave packets. ACM Transactions on Graphics. 36(4), 103. mla: Jeschke, Stefan, and Chris Wojtan. “Water Wave Packets.” ACM Transactions on Graphics, vol. 36, no. 4, 103, ACM, 2017, doi:10.1145/3072959.3073678. short: S. Jeschke, C. Wojtan, ACM Transactions on Graphics 36 (2017). date_created: 2018-12-11T11:46:39Z date_published: 2017-07-01T00:00:00Z date_updated: 2023-02-23T12:20:26Z day: '01' ddc: - '006' department: - _id: ChWo doi: 10.1145/3072959.3073678 ec_funded: 1 file: - access_level: open_access checksum: 82a3b2bfeee4ddef16ecc21675d1a48a content_type: application/pdf creator: wojtan date_created: 2020-01-24T09:32:35Z date_updated: 2020-07-14T12:46:34Z file_id: '7359' file_name: wavepackets_final.pdf file_size: 13131683 relation: main_file file_date_updated: 2020-07-14T12:46:34Z has_accepted_license: '1' intvolume: ' 36' issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Published Version project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication: ACM Transactions on Graphics publication_identifier: issn: - '07300301' publication_status: published publisher: ACM publist_id: '7350' quality_controlled: '1' scopus_import: 1 status: public title: Water wave packets type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 36 year: '2017' ... --- _id: '471' abstract: - lang: eng text: 'We present a new algorithm for the statistical model checking of Markov chains with respect to unbounded temporal properties, including full linear temporal logic. The main idea is that we monitor each simulation run on the fly, in order to detect quickly if a bottom strongly connected component is entered with high probability, in which case the simulation run can be terminated early. As a result, our simulation runs are often much shorter than required by termination bounds that are computed a priori for a desired level of confidence on a large state space. In comparison to previous algorithms for statistical model checking our method is not only faster in many cases but also requires less information about the system, namely, only the minimum transition probability that occurs in the Markov chain. In addition, our method can be generalised to unbounded quantitative properties such as mean-payoff bounds. ' article_number: '12' author: - first_name: Przemyslaw full_name: Daca, Przemyslaw id: 49351290-F248-11E8-B48F-1D18A9856A87 last_name: Daca - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Jan full_name: Kretinsky, Jan id: 44CEF464-F248-11E8-B48F-1D18A9856A87 last_name: Kretinsky orcid: 0000-0002-8122-2881 - first_name: Tatjana full_name: Petrov, Tatjana id: 3D5811FC-F248-11E8-B48F-1D18A9856A87 last_name: Petrov orcid: 0000-0002-9041-0905 citation: ama: Daca P, Henzinger TA, Kretinsky J, Petrov T. Faster statistical model checking for unbounded temporal properties. ACM Transactions on Computational Logic (TOCL). 2017;18(2). doi:10.1145/3060139 apa: Daca, P., Henzinger, T. A., Kretinsky, J., & Petrov, T. (2017). Faster statistical model checking for unbounded temporal properties. ACM Transactions on Computational Logic (TOCL). ACM. https://doi.org/10.1145/3060139 chicago: Daca, Przemyslaw, Thomas A Henzinger, Jan Kretinsky, and Tatjana Petrov. “Faster Statistical Model Checking for Unbounded Temporal Properties.” ACM Transactions on Computational Logic (TOCL). ACM, 2017. https://doi.org/10.1145/3060139. ieee: P. Daca, T. A. Henzinger, J. Kretinsky, and T. Petrov, “Faster statistical model checking for unbounded temporal properties,” ACM Transactions on Computational Logic (TOCL), vol. 18, no. 2. ACM, 2017. ista: Daca P, Henzinger TA, Kretinsky J, Petrov T. 2017. Faster statistical model checking for unbounded temporal properties. ACM Transactions on Computational Logic (TOCL). 18(2), 12. mla: Daca, Przemyslaw, et al. “Faster Statistical Model Checking for Unbounded Temporal Properties.” ACM Transactions on Computational Logic (TOCL), vol. 18, no. 2, 12, ACM, 2017, doi:10.1145/3060139. short: P. Daca, T.A. Henzinger, J. Kretinsky, T. Petrov, ACM Transactions on Computational Logic (TOCL) 18 (2017). date_created: 2018-12-11T11:46:39Z date_published: 2017-05-01T00:00:00Z date_updated: 2023-02-21T16:48:11Z day: '01' department: - _id: ToHe doi: 10.1145/3060139 ec_funded: 1 intvolume: ' 18' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1504.05739 month: '05' oa: 1 oa_version: Submitted Version project: - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling - _id: 25F5A88A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Moderne Concurrency Paradigms - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: ACM Transactions on Computational Logic (TOCL) publication_identifier: issn: - '15293785' publication_status: published publisher: ACM publist_id: '7349' quality_controlled: '1' related_material: record: - id: '1234' relation: earlier_version status: public scopus_import: 1 status: public title: Faster statistical model checking for unbounded temporal properties type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 18 year: '2017' ... --- _id: '472' abstract: - lang: eng text: α-Synuclein is a presynaptic protein the function of which has yet to be identified, but its neuronal content increases in patients of synucleinopa-thies including Parkinson’s disease. Chronic overexpression of α-synuclein reportedly expresses various phenotypes of synaptic dysfunction, but the primary target of its toxicity has not been determined. To investigate this, we acutely loaded human recombinant α-synuclein or its pathological mutants in their monomeric forms into the calyces of Held presynaptic terminals in slices from auditorily mature and immature rats of either sex. Membrane capacitance measurements revealed significant and specific inhibitory effects of WT monomeric α-synuclein on vesicle endocytosis throughout development. However, the α-synuclein A53T mutant affected vesicle endocytosis only at immature calyces, where as the A30P mutant had no effect throughout. The endocytic impairment by WTα-synuclein was rescued by intraterminal coloading of the microtubule (MT) polymerization blocker nocodazole. Furthermore, it was reversibly rescued by presynaptically loaded photostatin-1, a pho-toswitcheable inhibitor of MT polymerization, inalight-wavelength-dependent manner. Incontrast, endocyticinhibition by the A53T mutant at immature calyces was not rescued by nocodazole. Functionally, presynaptically loaded WT α-synuclein had no effect on basal synaptic transmission evoked at a low frequency, but significantly attenuated exocytosis and impaired the fidelity of neurotransmission during prolonged high-frequency stimulation. We conclude that monomeric WTα-synuclein primarily inhibits vesicle endocytosis via MT overassembly, thereby impairing high-frequency neurotransmission. author: - first_name: Kohgaku full_name: Eguchi, Kohgaku id: 2B7846DC-F248-11E8-B48F-1D18A9856A87 last_name: Eguchi orcid: 0000-0002-6170-2546 - first_name: Zachari full_name: Taoufiq, Zachari last_name: Taoufiq - first_name: Oliver full_name: Thorn Seshold, Oliver last_name: Thorn Seshold - first_name: Dirk full_name: Trauner, Dirk last_name: Trauner - first_name: Masato full_name: Hasegawa, Masato last_name: Hasegawa - first_name: Tomoyuki full_name: Takahashi, Tomoyuki last_name: Takahashi citation: ama: Eguchi K, Taoufiq Z, Thorn Seshold O, Trauner D, Hasegawa M, Takahashi T. Wild-type monomeric α-synuclein can impair vesicle endocytosis and synaptic fidelity via tubulin polymerization at the calyx of held. European Journal of Neuroscience. 2017;37(25):6043-6052. doi:10.1523/JNEUROSCI.0179-17.2017 apa: Eguchi, K., Taoufiq, Z., Thorn Seshold, O., Trauner, D., Hasegawa, M., & Takahashi, T. (2017). Wild-type monomeric α-synuclein can impair vesicle endocytosis and synaptic fidelity via tubulin polymerization at the calyx of held. European Journal of Neuroscience. Wiley-Blackwell. https://doi.org/10.1523/JNEUROSCI.0179-17.2017 chicago: Eguchi, Kohgaku, Zachari Taoufiq, Oliver Thorn Seshold, Dirk Trauner, Masato Hasegawa, and Tomoyuki Takahashi. “Wild-Type Monomeric α-Synuclein Can Impair Vesicle Endocytosis and Synaptic Fidelity via Tubulin Polymerization at the Calyx of Held.” European Journal of Neuroscience. Wiley-Blackwell, 2017. https://doi.org/10.1523/JNEUROSCI.0179-17.2017. ieee: K. Eguchi, Z. Taoufiq, O. Thorn Seshold, D. Trauner, M. Hasegawa, and T. Takahashi, “Wild-type monomeric α-synuclein can impair vesicle endocytosis and synaptic fidelity via tubulin polymerization at the calyx of held,” European Journal of Neuroscience, vol. 37, no. 25. Wiley-Blackwell, pp. 6043–6052, 2017. ista: Eguchi K, Taoufiq Z, Thorn Seshold O, Trauner D, Hasegawa M, Takahashi T. 2017. Wild-type monomeric α-synuclein can impair vesicle endocytosis and synaptic fidelity via tubulin polymerization at the calyx of held. European Journal of Neuroscience. 37(25), 6043–6052. mla: Eguchi, Kohgaku, et al. “Wild-Type Monomeric α-Synuclein Can Impair Vesicle Endocytosis and Synaptic Fidelity via Tubulin Polymerization at the Calyx of Held.” European Journal of Neuroscience, vol. 37, no. 25, Wiley-Blackwell, 2017, pp. 6043–52, doi:10.1523/JNEUROSCI.0179-17.2017. short: K. Eguchi, Z. Taoufiq, O. Thorn Seshold, D. Trauner, M. Hasegawa, T. Takahashi, European Journal of Neuroscience 37 (2017) 6043–6052. date_created: 2018-12-11T11:46:40Z date_published: 2017-06-21T00:00:00Z date_updated: 2021-01-12T08:00:51Z day: '21' doi: 10.1523/JNEUROSCI.0179-17.2017 extern: '1' intvolume: ' 37' issue: '25' language: - iso: eng month: '06' oa_version: None page: 6043 - 6052 publication: European Journal of Neuroscience publication_identifier: issn: - '02706474' publication_status: published publisher: Wiley-Blackwell publist_id: '7348' quality_controlled: '1' status: public title: Wild-type monomeric α-synuclein can impair vesicle endocytosis and synaptic fidelity via tubulin polymerization at the calyx of held type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 37 year: '2017' ...