TY - JOUR AB - We study the production rate of ionizing photons of a sample of 588 Hα emitters (HAEs) and 160 Lyman-α emitters (LAEs) at z = 2.2 in the COSMOS field in order to assess the implied emissivity from galaxies, based on their ultraviolet (UV) luminosity. By exploring the rest-frame Lyman Continuum (LyC) with GALEX/NUV data, we find fesc < 2.8 (6.4) per cent through median (mean) stacking. By combining the Hα luminosity density with intergalactic medium emissivity measurements from absorption studies, we find a globally averaged 〈fesc〉 of 5.9+14.5−4.2 per cent at z = 2.2 if we assume HAEs are the only source of ionizing photons. We find similarly low values of the global 〈fesc〉 at z ≈ 3–5, also ruling out a high 〈fesc〉 at z < 5. These low escape fractions allow us to measure ξion, the number of produced ionizing photons per unit UV luminosity, and investigate how this depends on galaxy properties. We find a typical ξion ≈ 1024.77 ± 0.04 Hz erg−1 for HAEs and ξion ≈ 1025.14 ± 0.09 Hz erg−1 for LAEs. LAEs and low-mass HAEs at z = 2.2 show similar values of ξion as typically assumed in the reionization era, while the typical HAE is three times less ionizing. Due to an increasing ξion with increasing EW(Hα), ξion likely increases with redshift. This evolution alone is fully in line with the observed evolution of ξion between z ≈ 2 and 5, indicating a typical value of ξion ≈ 1025.4 Hz erg−1 in the reionization era. AU - Matthee, Jorryt J AU - Sobral, David AU - Best, Philip AU - Khostovan, Ali Ahmad AU - Oteo, Iván AU - Bouwens, Rychard AU - Röttgering, Huub ID - 11564 IS - 3 JF - Monthly Notices of the Royal Astronomical Society KW - Space and Planetary Science KW - Astronomy and Astrophysics KW - galaxies: evolution KW - galaxies: high-redshift KW - cosmology: observations KW - dark ages KW - reionization KW - first stars SN - 0035-8711 TI - The production and escape of Lyman-Continuum radiation from star-forming galaxies at z ∼ 2 and their redshift evolution VL - 465 ER - TY - JOUR AB - Recently, the C III] and C IV emission lines have been observed in galaxies in the early Universe (z > 5), providing new ways to measure their redshift and study their stellar populations and active galactic nuclei (AGN). We explore the first blind C II], C III] and C IV survey (z ∼ 0.68, 1.05, 1.53, respectively) presented in Stroe et al. (2017). We derive luminosity functions (LF) and study properties of C II], C III] and C IV line emitters through comparisons to the LFs of H α and Ly α emitters, UV selected star-forming (SF) galaxies and quasars at similar redshifts. The C II] LF at z ∼ 0.68 is equally well described by a Schechter or a power-law LF, characteristic of a mixture of SF and AGN activity. The C III] LF (z ∼ 1.05) is consistent to a scaled down version of the Schechter H α and Ly α LF at their redshift, indicating a SF origin. In stark contrast, the C IV LF at z ∼ 1.53 is well fit by a power-law, quasar-like LF. We find that the brightest UV sources (MUV < −22) will universally have C III] and C IV emission. However, on average, C III] and C IV are not as abundant as H α or Ly α emitters at the same redshift, with cosmic average ratios of ∼0.02–0.06 to H α and ∼0.01–0.1 to intrinsic Ly α. We predict that the C III] and C IV lines can only be truly competitive in confirming high-redshift candidates when the hosts are intrinsically bright and the effective Ly α escape fraction is below 1 per cent. While C III] and C IV were proposed as good tracers of young, relatively low-metallicity galaxies typical of the early Universe, we find that, at least at z ∼ 1.5, C IV is exclusively hosted by AGN/quasars, especially at large line equivalent widths. AU - Stroe, Andra AU - Sobral, David AU - Matthee, Jorryt J AU - Calhau, João AU - Oteo, Ivan ID - 11567 IS - 3 JF - Monthly Notices of the Royal Astronomical Society KW - Space and Planetary Science KW - Astronomy and Astrophysics KW - galaxies: active KW - galaxies: high redshift KW - galaxies: luminosity function KW - mass function KW - quasars: emission lines KW - star formation KW - cosmology: observations SN - 0035-8711 TI - A 1.4 deg2 blind survey for C II], C III] and C IV at z ∼ 0.7–1.5 – II. Luminosity functions and cosmic average line ratios VL - 471 ER - TY - JOUR AB - We use the hydrodynamical EAGLE simulation to study the magnitude and origin of the scatter in the stellar mass–halo mass relation for central galaxies. We separate cause and effect by correlating stellar masses in the baryonic simulation with halo properties in a matched dark matter only (DMO) simulation. The scatter in stellar mass increases with redshift and decreases with halo mass. At z = 0.1, it declines from 0.25 dex at M200, DMO ≈ 1011 M⊙ to 0.12 dex at M200, DMO ≈ 1013 M⊙, but the trend is weak above 1012 M⊙. For M200, DMO < 1012.5 M⊙ up to 0.04 dex of the scatter is due to scatter in the halo concentration. At fixed halo mass, a larger stellar mass corresponds to a more concentrated halo. This is likely because higher concentrations imply earlier formation times and hence more time for accretion and star formation, and/or because feedback is less efficient in haloes with higher binding energies. The maximum circular velocity, Vmax, DMO, and binding energy are therefore more fundamental properties than halo mass, meaning that they are more accurate predictors of stellar mass, and we provide fitting formulae for their relations with stellar mass. However, concentration alone cannot explain the total scatter in the Mstar−M200,DMO relation, and it does not explain the scatter in Mstar–Vmax, DMO. Halo spin, sphericity, triaxiality, substructure and environment are also not responsible for the remaining scatter, which thus could be due to more complex halo properties or non-linear/stochastic baryonic effects. AU - Matthee, Jorryt J AU - Schaye, Joop AU - Crain, Robert A. AU - Schaller, Matthieu AU - Bower, Richard AU - Theuns, Tom ID - 11565 IS - 2 JF - Monthly Notices of the Royal Astronomical Society KW - Space and Planetary Science KW - Astronomy and Astrophysics KW - galaxies: evolution KW - galaxies: formation KW - galaxies: haloes KW - cosmology: theory SN - 0035-8711 TI - The origin of scatter in the stellar mass–halo mass relation of central galaxies in the EAGLE simulation VL - 465 ER - TY - JOUR AB - We present a sample of ∼1000 emission-line galaxies at z = 0.4–4.7 from the ∼0.7deg2 High-z Emission-Line Survey in the Boötes field identified with a suite of six narrow-band filters at ≈0.4–2.1 μm. These galaxies have been selected on their Ly α (73), [O II] (285), H β/[O III] (387) or H α (362) emission line, and have been classified with optical to near-infrared colours. A subsample of 98 sources have reliable redshifts from multiple narrow-band (e.g. [O II]–H α) detections and/or spectroscopy. In this survey paper, we present the observations, selection and catalogues of emitters. We measure number densities of Ly α, [O II], H β/[O III] and H α and confirm strong luminosity evolution in star-forming galaxies from z ∼ 0.4 to ∼5, in agreement with previous results. To demonstrate the usefulness of dual-line emitters, we use the sample of dual [O II]–H α emitters to measure the observed [O II]/H α ratio at z = 1.47. The observed [O II]/H α ratio increases significantly from 0.40 ± 0.01 at z = 0.1 to 0.52 ± 0.05 at z = 1.47, which we attribute to either decreasing dust attenuation with redshift, or due to a bias in the (typically) fibre measurements in the local Universe that only measure the central kpc regions. At the bright end, we find that both the H α and Ly α number densities at z ≈ 2.2 deviate significantly from a Schechter form, following a power law. We show that this is driven entirely by an increasing X-ray/active galactic nucleus fraction with line luminosity, which reaches ≈100 per cent at line luminosities L ≳ 3 × 1044 erg s−1. AU - Matthee, Jorryt J AU - Sobral, David AU - Best, Philip AU - Smail, Ian AU - Bian, Fuyan AU - Darvish, Behnam AU - Röttgering, Huub AU - Fan, Xiaohui ID - 11561 IS - 1 JF - Monthly Notices of the Royal Astronomical Society KW - Space and Planetary Science KW - Astronomy and Astrophysics galaxies KW - active KW - galaxies KW - evolution KW - galaxies KW - high-redshift KW - galaxies KW - luminosity function KW - mass function KW - galaxies: star formation SN - 0035-8711 TI - Boötes-HiZELS: An optical to near-infrared survey of emission-line galaxies at z = 0.4–4.7 VL - 471 ER - TY - JOUR AB - We present spectroscopic follow-up of candidate luminous Ly α emitters (LAEs) at z = 5.7–6.6 in the SA22 field with VLT/X-SHOOTER. We confirm two new luminous LAEs at z = 5.676 (SR6) and z = 6.532 (VR7), and also present HST follow-up of both sources. These sources have luminosities LLy α ≈ 3 × 1043 erg s−1, very high rest-frame equivalent widths of EW0 ≳ 200 Å and narrow Ly α lines (200–340 km s−1). VR7 is the most UV-luminous LAE at z > 6.5, with M1500 = −22.5, even brighter in the UV than CR7. Besides Ly α, we do not detect any other rest-frame UV lines in the spectra of SR6 and VR7, and argue that rest-frame UV lines are easier to observe in bright galaxies with low Ly α equivalent widths. We confirm that Ly α line widths increase with Ly α luminosity at z = 5.7, while there are indications that Ly α lines of faint LAEs become broader at z = 6.6, potentially due to reionization. We find a large spread of up to 3 dex in UV luminosity for >L⋆ LAEs, but find that the Ly α luminosity of the brightest LAEs is strongly related to UV luminosity at z = 6.6. Under basic assumptions, we find that several LAEs at z ≈ 6–7 have Ly α escape fractions ≳ 100  per cent, indicating bursty star formation histories, alternative Ly α production mechanisms, or dust attenuating Ly α emission differently than UV emission. Finally, we present a method to compute ξion, the production efficiency of ionizing photons, and find that LAEs at z ≈ 6–7 have high values of log10(ξion/Hz erg−1) ≈ 25.51 ± 0.09 that may alleviate the need for high Lyman-Continuum escape fractions required for reionization. AU - Matthee, Jorryt J AU - Sobral, David AU - Darvish, Behnam AU - Santos, Sérgio AU - Mobasher, Bahram AU - Paulino-Afonso, Ana AU - Röttgering, Huub AU - Alegre, Lara ID - 11572 IS - 1 JF - Monthly Notices of the Royal Astronomical Society KW - Space and Planetary Science KW - Astronomy and Astrophysics KW - galaxies: evolution – galaxies: high-redshift KW - dark ages KW - reionization KW - first stars KW - cosmology: observations SN - 0035-8711 TI - Spectroscopic properties of luminous Ly α emitters at z ≈ 6–7 and comparison to the Lyman-break population VL - 472 ER - TY - JOUR AB - We present dynamical measurements from the KMOS (K-band multi-object spectrograph) Deep Survey (KDS), which comprises 77 typical star-forming galaxies at z ≃ 3.5 in the mass range 9.0 < log (M⋆/M⊙) < 10.5. These measurements constrain the internal dynamics, the intrinsic velocity dispersions (σint) and rotation velocities (VC) of galaxies in the high-redshift Universe. The mean velocity dispersion of the galaxies in our sample is σint=70.8+3.3−3.1kms−1⁠, revealing that the increasing average σint with increasing redshift, reported for z ≲ 2, continues out to z ≃ 3.5. Only 36 ± 8 per cent of our galaxies are rotation-dominated (VC/σint > 1), with the sample average VC/σint value much smaller than at lower redshift. After carefully selecting comparable star-forming samples at multiple epochs, we find that the rotation-dominated fraction evolves with redshift with a z−0.2 dependence. The rotation-dominated KDS galaxies show no clear offset from the local rotation velocity–stellar mass (i.e. VC–M⋆) relation, although a smaller fraction of the galaxies are on the relation due to the increase in the dispersion-dominated fraction. These observations are consistent with a simple equilibrium model picture, in which random motions are boosted in high-redshift galaxies by a combination of the increasing gas fractions, accretion efficiency, specific star formation rate and stellar feedback and which may provide significant pressure support against gravity on the galactic disc scale. AU - Turner, O. J. AU - Cirasuolo, M. AU - Harrison, C. M. AU - McLure, R. J. AU - Dunlop, J. S. AU - Swinbank, A. M. AU - Johnson, H. L. AU - Sobral, D. AU - Matthee, Jorryt J AU - Sharples, R. M. ID - 11573 IS - 2 JF - Monthly Notices of the Royal Astronomical Society KW - Space and Planetary Science KW - Astronomy and Astrophysics KW - galaxies: evolution KW - galaxies: high-redshift KW - galaxies: kinematics and dynamics SN - 0035-8711 TI - The KMOS Deep Survey (KDS) – I. Dynamical measurements of typical star-forming galaxies at z ≃ 3.5 VL - 471 ER - TY - GEN AB - Our understanding of stars through asteroseismic data analysis is limited by our ability to take advantage of the huge amount of observed stars provided by space missions such as CoRoT, Kepler , K2, and soon TESS and PLATO. Global seismic pipelines provide global stellar parameters such as mass and radius using the mean seismic parameters, as well as the effective temperature. These pipelines are commonly used automatically on thousands of stars observed by K2 for 3 months (and soon TESS for at least ∼ 1 month). However, pipelines are not immune from misidentifying noise peaks and stellar oscillations. Therefore, new validation techniques are required to assess the quality of these results. We present a new metric called FliPer (Flicker in Power), which takes into account the average variability at all measured time scales. The proper calibration of FliPer enables us to obtain good estimations of global stellar parameters such as surface gravity that are robust against the influence of noise peaks and hence are an excellent way to find faults in asteroseismic pipelines. AU - Bugnet, Lisa Annabelle AU - Garcia, R. A. AU - Davies, G. R. AU - Mathur, S. AU - Corsaro, E. ID - 11633 KW - asteroseismology - methods KW - data analysis - stars KW - oscillations T2 - arXiv TI - FliPer: Checking the reliability of global seismic parameters from automatic pipelines ER - TY - CONF AB - Diffusions and related random walk procedures are of central importance in many areas of machine learning, data analysis, and applied mathematics. Because they spread mass agnostically at each step in an iterative manner, they can sometimes spread mass “too aggressively,” thereby failing to find the “right” clusters. We introduce a novel Capacity Releasing Diffusion (CRD) Process, which is both faster and stays more local than the classical spectral diffusion process. As an application, we use our CRD Process to develop an improved local algorithm for graph clustering. Our local graph clustering method can find local clusters in a model of clustering where one begins the CRD Process in a cluster whose vertices are connected better internally than externally by an O(log2n) factor, where n is the number of nodes in the cluster. Thus, our CRD Process is the first local graph clustering algorithm that is not subject to the well-known quadratic Cheeger barrier. Our result requires a certain smoothness condition, which we expect to be an artifact of our analysis. Our empirical evaluation demonstrates improved results, in particular for realistic social graphs where there are moderately good—but not very good—clusters. AU - Wang, Di AU - Fountoulakis, Kimon AU - Henzinger, Monika H AU - Mahoney, Michael W. AU - Rao , Satish ID - 11651 T2 - Proceedings of the 34th International Conference on Machine Learning TI - Capacity releasing diffusion for speed and locality VL - 70 ER - TY - JOUR AB - We study the problem of maintaining a breadth-first spanning tree (BFS tree) in partially dynamic distributed networks modeling a sequence of either failures or additions of communication links (but not both). We present deterministic (1+ϵ)-approximation algorithms whose amortized time (over some number of link changes) is sublinear in D, the maximum diameter of the network. Our technique also leads to a deterministic (1+ϵ)-approximate incremental algorithm for single-source shortest paths in the sequential (usual RAM) model. Prior to our work, the state of the art was the classic exact algorithm of Even and Shiloach (1981), which is optimal under some assumptions (Roditty and Zwick 2011; Henzinger et al. 2015). Our result is the first to show that, in the incremental setting, this bound can be beaten in certain cases if some approximation is allowed. AU - Henzinger, Monika H AU - Krinninger, Sebastian AU - Nanongkai, Danupon ID - 11665 IS - 4 JF - ACM Transactions on Algorithms SN - 1549-6325 TI - Sublinear-time maintenance of breadth-first spanning trees in partially dynamic networks VL - 13 ER - TY - JOUR AB - We study the problem of maximizing a monotone submodular function with viability constraints. This problem originates from computational biology, where we are given a phylogenetic tree over a set of species and a directed graph, the so-called food web, encoding viability constraints between these species. These food webs usually have constant depth. The goal is to select a subset of k species that satisfies the viability constraints and has maximal phylogenetic diversity. As this problem is known to be NP-hard, we investigate approximation algorithms. We present the first constant factor approximation algorithm if the depth is constant. Its approximation ratio is (1−1e√). This algorithm not only applies to phylogenetic trees with viability constraints but for arbitrary monotone submodular set functions with viability constraints. Second, we show that there is no (1−1/e+ϵ)-approximation algorithm for our problem setting (even for additive functions) and that there is no approximation algorithm for a slight extension of this setting. AU - Dvořák, Wolfgang AU - Henzinger, Monika H AU - Williamson, David P. ID - 11676 IS - 1 JF - Algorithmica KW - Approximation algorithms KW - Submodular functions KW - Phylogenetic diversity KW - Viability constraints SN - 0178-4617 TI - Maximizing a submodular function with viability constraints VL - 77 ER - TY - CONF AB - We study space complexity and time-space trade-offs with a focus not on peak memory usage but on overall memory consumption throughout the computation. Such a cumulative space measure was introduced for the computational model of parallel black pebbling by [Alwen and Serbinenko ’15] as a tool for obtaining results in cryptography. We consider instead the non- deterministic black-white pebble game and prove optimal cumulative space lower bounds and trade-offs, where in order to minimize pebbling time the space has to remain large during a significant fraction of the pebbling. We also initiate the study of cumulative space in proof complexity, an area where other space complexity measures have been extensively studied during the last 10–15 years. Using and extending the connection between proof complexity and pebble games in [Ben-Sasson and Nordström ’08, ’11] we obtain several strong cumulative space results for (even parallel versions of) the resolution proof system, and outline some possible future directions of study of this, in our opinion, natural and interesting space measure. AU - Alwen, Joel F AU - De Rezende, Susanna AU - Nordstrom, Jakob AU - Vinyals, Marc ED - Papadimitriou, Christos ID - 1175 SN - 18688969 TI - Cumulative space in black-white pebbling and resolution VL - 67 ER - TY - CONF AB - A dynamic graph algorithm is a data structure that supports operations on dynamically changing graphs. AU - Henzinger, Monika H ID - 11772 SN - 0302-9743 T2 - 44th International Conference on Current Trends in Theory and Practice of Computer Science TI - The state of the art in dynamic graph algorithms VL - 10706 ER - TY - CONF AB - In recent years it has become popular to study dynamic problems in a sensitivity setting: Instead of allowing for an arbitrary sequence of updates, the sensitivity model only allows to apply batch updates of small size to the original input data. The sensitivity model is particularly appealing since recent strong conditional lower bounds ruled out fast algorithms for many dynamic problems, such as shortest paths, reachability, or subgraph connectivity. In this paper we prove conditional lower bounds for these and additional problems in a sensitivity setting. For example, we show that under the Boolean Matrix Multiplication (BMM) conjecture combinatorial algorithms cannot compute the (4/3-\varepsilon)-approximate diameter of an undirected unweighted dense graph with truly subcubic preprocessing time and truly subquadratic update/query time. This result is surprising since in the static setting it is not clear whether a reduction from BMM to diameter is possible. We further show under the BMM conjecture that many problems, such as reachability or approximate shortest paths, cannot be solved faster than by recomputation from scratch even after only one or two edge insertions. We extend our reduction from BMM to Diameter to give a reduction from All Pairs Shortest Paths to Diameter under one deletion in weighted graphs. This is intriguing, as in the static setting it is a big open problem whether Diameter is as hard as APSP. We further get a nearly tight lower bound for shortest paths after two edge deletions based on the APSP conjecture. We give more lower bounds under the Strong Exponential Time Hypothesis. Many of our lower bounds also hold for static oracle data structures where no sensitivity is required. Finally, we give the first algorithm for the (1+\varepsilon)-approximate radius, diameter, and eccentricity problems in directed or undirected unweighted graphs in case of single edges failures. The algorithm has a truly subcubic running time for graphs with a truly subquadratic number of edges; it is tight w.r.t. the conditional lower bounds we obtain. AU - Henzinger, Monika H AU - Lincoln, Andrea AU - Neumann, Stefan AU - Vassilevska Williams, Virginia ID - 11829 SN - 1868-8969 T2 - 8th Innovations in Theoretical Computer Science Conference TI - Conditional hardness for sensitivity problems VL - 67 ER - TY - CONF AB - We introduce a new algorithmic framework for designing dynamic graph algorithms in minor-free graphs, by exploiting the structure of such graphs and a tool called vertex sparsification, which is a way to compress large graphs into small ones that well preserve relevant properties among a subset of vertices and has previously mainly been used in the design of approximation algorithms. Using this framework, we obtain a Monte Carlo randomized fully dynamic algorithm for (1 + epsilon)-approximating the energy of electrical flows in n-vertex planar graphs with tilde{O}(r epsilon^{-2}) worst-case update time and tilde{O}((r + n / sqrt{r}) epsilon^{-2}) worst-case query time, for any r larger than some constant. For r=n^{2/3}, this gives tilde{O}(n^{2/3} epsilon^{-2}) update time and tilde{O}(n^{2/3} epsilon^{-2}) query time. We also extend this algorithm to work for minor-free graphs with similar approximation and running time guarantees. Furthermore, we illustrate our framework on the all-pairs max flow and shortest path problems by giving corresponding dynamic algorithms in minor-free graphs with both sublinear update and query times. To the best of our knowledge, our results are the first to systematically establish such a connection between dynamic graph algorithms and vertex sparsification. We also present both upper bound and lower bound for maintaining the energy of electrical flows in the incremental subgraph model, where updates consist of only vertex activations, which might be of independent interest. AU - Goranci, Gramoz AU - Henzinger, Monika H AU - Peng, Pan ID - 11833 SN - 1868-8969 T2 - 25th Annual European Symposium on Algorithms TI - The power of vertex sparsifiers in dynamic graph algorithms VL - 87 ER - TY - CONF AB - In this paper, we study the problem of opening centers to cluster a set of clients in a metric space so as to minimize the sum of the costs of the centers and of the cluster radii, in a dynamic environment where clients arrive and depart, and the solution must be updated efficiently while remaining competitive with respect to the current optimal solution. We call this dynamic sum-of-radii clustering problem. We present a data structure that maintains a solution whose cost is within a constant factor of the cost of an optimal solution in metric spaces with bounded doubling dimension and whose worst-case update time is logarithmic in the parameters of the problem. AU - Henzinger, Monika H AU - Leniowski, Dariusz AU - Mathieu, Claire ID - 11832 SN - 1868-8969 T2 - 25th Annual European Symposium on Algorithms TI - Dynamic clustering to minimize the sum of radii VL - 87 ER - TY - CONF AB - We consider the problem of maintaining an approximately maximum (fractional) matching and an approximately minimum vertex cover in a dynamic graph. Starting with the seminal paper by Onak and Rubinfeld [STOC 2010], this problem has received significant attention in recent years. There remains, however, a polynomial gap between the best known worst case update time and the best known amortised update time for this problem, even after allowing for randomisation. Specifically, Bernstein and Stein [ICALP 2015, SODA 2016] have the best known worst case update time. They present a deterministic data structure with approximation ratio (3/2 + ∊) and worst case update time O(m1/4/ ∊2), where m is the number of edges in the graph. In recent past, Gupta and Peng [FOCS 2013] gave a deterministic data structure with approximation ratio (1+ ∊) and worst case update time No known randomised data structure beats the worst case update times of these two results. In contrast, the paper by Onak and Rubinfeld [STOC 2010] gave a randomised data structure with approximation ratio O(1) and amortised update time O(log2 n), where n is the number of nodes in the graph. This was later improved by Baswana, Gupta and Sen [FOCS 2011] and Solomon [FOCS 2016], leading to a randomised date structure with approximation ratio 2 and amortised update time O(1). We bridge the polynomial gap between the worst case and amortised update times for this problem, without using any randomisation. We present a deterministic data structure with approximation ratio (2 + ∊) and worst case update time O(log3 n), for all sufficiently small constants ∊. AU - Bhattacharya, Sayan AU - Henzinger, Monika H AU - Nanongkai, Danupon ID - 11874 T2 - 28th Annual ACM-SIAM Symposium on Discrete Algorithms TI - Fully dynamic approximate maximum matching and minimum vertex cover in o(log3 n) worst case update time ER - TY - CONF AB - We study the problem of computing a minimum cut in a simple, undirected graph and give a deterministic O(m log2 n log log2 n) time algorithm. This improves both on the best previously known deterministic running time of O(m log12 n) (Kawarabayashi and Thorup [12]) and the best previously known randomized running time of O(mlog3n) (Karger [11]) for this problem, though Karger's algorithm can be further applied to weighted graphs. Our approach is using the Kawarabayashi and Tho- rup graph compression technique, which repeatedly finds low-conductance cuts. To find these cuts they use a diffusion-based local algorithm. We use instead a flow- based local algorithm and suitably adjust their framework to work with our flow-based subroutine. Both flow and diffusion based methods have a long history of being applied to finding low conductance cuts. Diffusion algorithms have several variants that are naturally local while it is more complicated to make flow methods local. Some prior work has proven nice properties for local flow based algorithms with respect to improving or cleaning up low conductance cuts. Our flow subroutine, however, is the first that is both local and produces low conductance cuts. Thus, it may be of independent interest. AU - Henzinger, Monika H AU - Rao, Satish AU - Wang, Di ID - 11873 T2 - 28th Annual ACM-SIAM Symposium on Discrete Algorithms TI - Local flow partitioning for faster edge connectivity ER - TY - CONF AB - Graph Sparsification aims at compressing large graphs into smaller ones while (approximately) preserving important characteristics of the input graph. In this work we study Vertex Sparsifiers, i.e., sparsifiers whose goal is to reduce the number of vertices. Given a weighted graph G=(V,E), and a terminal set K with |K|=k, a quality-q vertex cut sparsifier of G is a graph H with K contained in V_H that preserves the value of minimum cuts separating any bipartition of K, up to a factor of q. We show that planar graphs with all the k terminals lying on the same face admit quality-1 vertex cut sparsifier of size O(k^2) that are also planar. Our result extends to vertex flow and distance sparsifiers. It improves the previous best known bound of O(k^2 2^(2k)) for cut and flow sparsifiers by an exponential factor, and matches an Omega(k^2) lower-bound for this class of graphs. We also study vertex reachability sparsifiers for directed graphs. Given a digraph G=(V,E) and a terminal set K, a vertex reachability sparsifier of G is a digraph H=(V_H,E_H), K contained in V_H that preserves all reachability information among terminal pairs. We introduce the notion of reachability-preserving minors, i.e., we require H to be a minor of G. Among others, for general planar digraphs, we construct reachability-preserving minors of size O(k^2 log^2 k). We complement our upper-bound by showing that there exists an infinite family of acyclic planar digraphs such that any reachability-preserving minor must have Omega(k^2) vertices. AU - Goranci, Gramoz AU - Henzinger, Monika H AU - Peng, Pan ID - 11831 SN - 1868-8969 T2 - 25th Annual European Symposium on Algorithms TI - Improved guarantees for vertex sparsification in planar graphs VL - 87 ER - TY - JOUR AB - Online social networks allow the collection of large amounts of data about the influence between users connected by a friendship-like relationship. When distributing items among agents forming a social network, this information allows us to exploit network externalities that each agent receives from his neighbors that get the same item. In this paper we consider Friends-of-Friends (2-hop) network externalities, i.e., externalities that not only depend on the neighbors that get the same item but also on neighbors of neighbors. For these externalities we study a setting where multiple different items are assigned to unit-demand agents. Specifically, we study the problem of welfare maximization under different types of externality functions. Let n be the number of agents and m be the number of items. Our contributions are the following: (1) We show that welfare maximization is APX-hard; we show that even for step functions with 2-hop (and also with 1-hop) externalities it is NP-hard to approximate social welfare better than (1−1/e). (2) On the positive side we present (i) an 𝑂(𝑛√)-approximation algorithm for general concave externality functions, (ii) an O(log m)-approximation algorithm for linear externality functions, and (iii) a 518(1−1/𝑒)-approximation algorithm for 2-hop step function externalities. We also improve the result from [7] for 1-hop step function externalities by giving a 12(1−1/𝑒)-approximation algorithm. AU - Bhattacharya, Sayan AU - Dvořák, Wolfgang AU - Henzinger, Monika H AU - Starnberger, Martin ID - 11903 IS - 4 JF - Theory of Computing Systems SN - 1432-4350 TI - Welfare maximization with friends-of-friends network externalities VL - 61 ER - TY - JOUR AB - Variation in genotypes may be responsible for differences in dispersal rates, directional biases, and growth rates of individuals. These traits may favor certain genotypes and enhance their spatiotemporal spreading into areas occupied by the less advantageous genotypes. We study how these factors influence the speed of spreading in the case of two competing genotypes under the assumption that spatial variation of the total population is small compared to the spatial variation of the frequencies of the genotypes in the population. In that case, the dynamics of the frequency of one of the genotypes is approximately described by a generalized Fisher–Kolmogorov–Petrovskii–Piskunov (F–KPP) equation. This generalized F–KPP equation with (nonlinear) frequency-dependent diffusion and advection terms admits traveling wave solutions that characterize the invasion of the dominant genotype. Our existence results generalize the classical theory for traveling waves for the F–KPP with constant coefficients. Moreover, in the particular case of the quadratic (monostable) nonlinear growth–decay rate in the generalized F–KPP we study in detail the influence of the variance in diffusion and mean displacement rates of the two genotypes on the minimal wave propagation speed. AU - Kollár, Richard AU - Novak, Sebastian ID - 1191 IS - 3 JF - Bulletin of Mathematical Biology TI - Existence of traveling waves for the generalized F–KPP equation VL - 79 ER - TY - JOUR AB - Flow chemistry involves the use of channels or tubing to conduct a reaction in a continuous stream rather than in a flask. Flow equipment provides chemists with unique control over reaction parameters enhancing reactivity or in some cases enabling new reactions. This relatively young technology has received a remarkable amount of attention in the past decade with many reports on what can be done in flow. Until recently, however, the question, “Should we do this in flow?” has merely been an afterthought. This review introduces readers to the basic principles and fundamentals of flow chemistry and critically discusses recent flow chemistry accounts. AU - Plutschack, Matthew B. AU - Pieber, Bartholomäus AU - Gilmore, Kerry AU - Seeberger, Peter H. ID - 11961 IS - 18 JF - Chemical Reviews SN - 0009-2665 TI - The Hitchhiker’s Guide to flow chemistry VL - 117 ER - TY - JOUR AB - The way organic multistep synthesis is performed is changing due to the adoption of flow chemical techniques, which has enabled the development of improved methods to make complex molecules. The modular nature of the technique provides not only access to target molecules via linear flow approaches but also for the targeting of structural cores with single systems. This perspective article summarizes the state of the art of continuous multistep synthesis and discusses the main challenges and opportunities in this area. AU - Pieber, Bartholomäus AU - Gilmore, Kerry AU - Seeberger, Peter H. ID - 11976 IS - 3-4 JF - Journal of Flow Chemistry SN - 2062-249X TI - Integrated flow processing - challenges in continuous multistep synthesis VL - 7 ER - TY - JOUR AB - Systems such as fluid flows in channels and pipes or the complex Ginzburg–Landau system, defined over periodic domains, exhibit both continuous symmetries, translational and rotational, as well as discrete symmetries under spatial reflections or complex conjugation. The simplest, and very common symmetry of this type is the equivariance of the defining equations under the orthogonal group O(2). We formulate a novel symmetry reduction scheme for such systems by combining the method of slices with invariant polynomial methods, and show how it works by applying it to the Kuramoto–Sivashinsky system in one spatial dimension. As an example, we track a relative periodic orbit through a sequence of bifurcations to the onset of chaos. Within the symmetry-reduced state space we are able to compute and visualize the unstable manifolds of relative periodic orbits, their torus bifurcations, a transition to chaos via torus breakdown, and heteroclinic connections between various relative periodic orbits. It would be very hard to carry through such analysis in the full state space, without a symmetry reduction such as the one we present here. AU - Budanur, Nazmi B AU - Cvitanović, Predrag ID - 1211 IS - 3-4 JF - Journal of Statistical Physics TI - Unstable manifolds of relative periodic orbits in the symmetry reduced state space of the Kuramoto–Sivashinsky system VL - 167 ER - TY - JOUR AB - The Leidenfrost effect occurs when an object near a hot surface vaporizes rapidly enough to lift itself up and hover. Although well understood for liquids and stiff sublimable solids, nothing is known about the effect with materials whose stiffness lies between these extremes. Here we introduce a new phenomenon that occurs with vaporizable soft solids - the elastic Leidenfrost effect. By dropping hydrogel spheres onto hot surfaces we find that, rather than hovering, they energetically bounce several times their diameter for minutes at a time. With high-speed video during a single impact, we uncover high-frequency microscopic gap dynamics at the sphere/substrate interface. We show how these otherwise-hidden agitations constitute work cycles that harvest mechanical energy from the vapour and sustain the bouncing. Our findings suggest a new strategy for injecting mechanical energy into a widely used class of soft materials, with potential relevance to fields such as active matter, soft robotics and microfluidics. AU - Waitukaitis, Scott R AU - Zuiderwijk, Antal AU - Souslov, Anton AU - Coulais, Corentin AU - Van Hecke, Martin ID - 123 IS - 11 JF - Nature Physics TI - Coupling the Leidenfrost effect and elastic deformations to power sustained bouncing VL - 13 ER - TY - CONF AB - We consider the problems of maintaining approximate maximum matching and minimum vertex cover in a dynamic graph. Starting with the seminal work of Onak and Rubinfeld [STOC 2010], this problem has received significant attention in recent years. Very recently, extending the framework of Baswana, Gupta and Sen [FOCS 2011], Solomon [FOCS 2016] gave a randomized 2-approximation dynamic algorithm for this problem that has amortized update time of O(1) with high probability. We consider the natural open question of derandomizing this result. We present a new deterministic fully dynamic algorithm that maintains a O(1)-approximate minimum vertex cover and maximum fractional matching, with an amortized update time of O(1). Previously, the best deterministic algorithm for this problem was due to Bhattacharya, Henzinger and Italiano [SODA 2015]; it had an approximation ratio of (2+ϵ) and an amortized update time of O(logn/ϵ2). Our result can be generalized to give a fully dynamic O(f3)-approximation algorithm with O(f2) amortized update time for the hypergraph vertex cover and fractional matching problems, where every hyperedge has at most f vertices. AU - Bhattacharya, Sayan AU - Chakrabarty, Deeparnab AU - Henzinger, Monika H ID - 12571 SN - 0302-9743 T2 - 19th International Conference on Integer Programming and Combinatorial Optimization TI - Deterministic fully dynamic approximate vertex cover and fractional matching in O(1) amortized update time VL - 10328 ER - TY - JOUR AB - A drawing of a graph G is radial if the vertices of G are placed on concentric circles C 1 , . . . , C k with common center c , and edges are drawn radially : every edge intersects every circle centered at c at most once. G is radial planar if it has a radial embedding, that is, a crossing-free radial drawing. If the vertices of G are ordered or partitioned into ordered levels (as they are for leveled graphs), we require that the assignment of vertices to circles corresponds to the given ordering or leveling. We show that a graph G is radial planar if G has a radial drawing in which every two edges cross an even number of times; the radial embedding has the same leveling as the radial drawing. In other words, we establish the weak variant of the Hanani-Tutte theorem for radial planarity. This generalizes a result by Pach and Toth. AU - Fulek, Radoslav AU - Pelsmajer, Michael AU - Schaefer, Marcus ID - 1113 IS - 1 JF - Journal of Graph Algorithms and Applications TI - Hanani-Tutte for radial planarity VL - 21 ER - TY - JOUR AB - We show that a twisted variant of Linnik’s conjecture on sums of Kloosterman sums leads to an optimal covering exponent for S3. AU - Browning, Timothy D AU - Kumaraswamy, Vinay AU - Steiner, Rapael ID - 169 JF - International Mathematics Research Notices TI - Twisted Linnik implies optimal covering exponent for S3 ER - TY - JOUR AB - We study strong approximation for some algebraic varieties over ℚ which are defined using norm forms. This allows us to confirm a special case of a conjecture due to Harpaz and Wittenberg. AU - Browning, Timothy D AU - Schindler, Damaris ID - 172 JF - International Mathematics Research Notices TI - Strong approximation and a conjecture of Harpaz and Wittenberg ER - TY - JOUR AB - Three-dimensional topological insulators are bulk insulators with Z 2 topological electronic order that gives rise to conducting light-like surface states. These surface electrons are exceptionally resistant to localization by non-magnetic disorder, and have been adopted as the basis for a wide range of proposals to achieve new quasiparticle species and device functionality. Recent studies have yielded a surprise by showing that in spite of resisting localization, topological insulator surface electrons can be reshaped by defects into distinctive resonance states. Here we use numerical simulations and scanning tunnelling microscopy data to show that these resonance states have significance well beyond the localized regime usually associated with impurity bands. At native densities in the model Bi2X3 (X=Bi, Te) compounds, defect resonance states are predicted to generate a new quantum basis for an emergent electron gas that supports diffusive electrical transport. AU - Xu, Yishuai AU - Chiu, Janet AU - Miao, Lin AU - He, Haowei AU - Alpichshev, Zhanybek AU - Kapitulnik, Aharon AU - Biswas, Rudro AU - Wray, Lewis ID - 391 JF - Nature Communications TI - Disorder enabled band structure engineering of a topological insulator surface VL - 8 ER - TY - JOUR AB - We use a three-pulse ultrafast optical spectroscopy to study the relaxation processes in a frustrated Mott insulator Na2IrO3. By being able to independently produce the out-of-equilibrium bound states (excitons) of doublons and holons with the first pulse and suppress the underlying antiferromagnetic order with the second one, we were able to elucidate the relaxation mechanism of quasiparticles in this system. By observing the difference in the exciton dynamics in the magnetically ordered and disordered phases we found that the mass of this quasiparticle is mostly determined by its interaction with the surrounding spins. AU - Alpichshev, Zhanybek AU - Sie, Edbert AU - Mahmood, Fahad AU - Cao, Gang AU - Gedik, Nuh ID - 393 IS - 23 JF - Physical Review B TI - Origin of the exciton mass in the frustrated Mott insulator Na2IrO3 VL - 96 ER - TY - JOUR AB - We used femtosecond optical pump-probe spectroscopy to study the photoinduced change in reflectivity of thin films of the electron-doped cuprate La2-xCexCuO4 (LCCO) with dopings of x=0.08 (underdoped) and x=0.11 (optimally doped). Above Tc, we observe fluence-dependent relaxation rates that begin at a temperature similar to the one where transport measurements first show signatures of antiferromagnetic correlations. Upon suppressing superconductivity with a magnetic field, it is found that the fluence and temperature dependence of relaxation rates are consistent with bimolecular recombination of electrons and holes across a gap (2ΔAF) originating from antiferromagnetic correlations which comprise the pseudogap in electron-doped cuprates. This can be used to learn about coupling between electrons and high-energy (ω>2ΔAF) excitations in these compounds and set limits on the time scales on which antiferromagnetic correlations are static. AU - Vishik, Inna AU - Mahmood, Fahad AU - Alpichshev, Zhanybek AU - Gedik, Nuh AU - Higgins, Joshu AU - Greene, Richard ID - 392 IS - 11 JF - Physical Review B TI - Ultrafast dynamics in the presence of antiferromagnetic correlations in electron doped cuprate La2 xCexCuO4±δ VL - 95 ER - TY - JOUR AB - Pancreatic cancer has a five-year survival rate of ~8%, with characteristic molecular heterogeneity and restricted treatment options. Targeting metabolism has emerged as a potentially effective therapeutic strategy for cancers such as pancreatic cancer, which are driven by genetic alterations that are not tractable drug targets. Although somatic mitochondrial genome (mtDNA) mutations have been observed in various tumors types, understanding of metabolic genotype-phenotype relationships is limited. AU - Hardie, Rae AU - Van Dam, Ellen AU - Cowley, Mark AU - Han, Ting AU - Balaban, Seher AU - Pajic, Marina AU - Pinese, Mark AU - Iconomou, Mary AU - Shearer, Robert AU - Mckenna, Jessie AU - Miller, David AU - Waddell, Nicola AU - Pearson, John AU - Grimmond, Sean AU - Sazanov, Leonid A AU - Biankin, Andrew AU - Villas Boas, Silas AU - Hoy, Andrew AU - Turner, Nigel AU - Saunders, Darren ID - 443 IS - 2 JF - Cancer & Metabolism TI - Mitochondrial mutations and metabolic adaptation in pancreatic cancer VL - 5 ER - TY - CHAP AB - Complex I (NADH:ubiquinone oxidoreductase) plays a central role in cellular energy generation, contributing to the proton motive force used to produce ATP. It couples the transfer of two electrons between NADH and quinone to translocation of four protons across the membrane. It is the largest protein assembly of bacterial and mitochondrial respiratory chains, composed, in mammals, of up to 45 subunits with a total molecular weight of ∼1 MDa. Bacterial enzyme is about half the size, providing the important “minimal” model of complex I. The l-shaped complex consists of a hydrophilic arm, where electron transfer occurs, and a membrane arm, where proton translocation takes place. Previously, we have solved the crystal structures of the hydrophilic domain of complex I from Thermus thermophilus and of the membrane domain from Escherichia coli, followed by the atomic structure of intact, entire complex I from T. thermophilus. Recently, we have solved by cryo-EM a first complete atomic structure of mammalian (ovine) mitochondrial complex I. Core subunits are well conserved from the bacterial version, whilst supernumerary subunits form an interlinked, stabilizing shell around the core. Subunits containing additional cofactors, including Zn ion, NADPH and phosphopantetheine, probably have regulatory roles. Dysfunction of mitochondrial complex I is implicated in many human neurodegenerative diseases. The structure of mammalian enzyme provides many insights into complex I mechanism, assembly, maturation and dysfunction, allowing detailed molecular analysis of disease-causing mutations. AU - Sazanov, Leonid A ED - Wikström, Mårten ID - 444 SN - 978-1-78262-865-1 T2 - Mechanisms of primary energy transduction in biology TI - Structure of respiratory complex I: “Minimal” bacterial and “de luxe” mammalian versions ER - TY - JOUR AB - The Loschmidt echo, defined as the overlap between quantum wave function evolved with different Hamiltonians, quantifies the sensitivity of quantum dynamics to perturbations and is often used as a probe of quantum chaos. In this work we consider the behavior of the Loschmidt echo in the many-body localized phase, which is characterized by emergent local integrals of motion and provides a generic example of nonergodic dynamics. We demonstrate that the fluctuations of the Loschmidt echo decay as a power law in time in the many-body localized phase, in contrast to the exponential decay in few-body ergodic systems. We consider the spin-echo generalization of the Loschmidt echo and argue that the corresponding correlation function saturates to a finite value in localized systems. Slow, power-law decay of fluctuations of such spin-echo-type overlap is related to the operator spreading and is present only in the many-body localized phase, but not in a noninteracting Anderson insulator. While most of the previously considered probes of dephasing dynamics could be understood by approximating physical spin operators with local integrals of motion, the Loschmidt echo and its generalizations crucially depend on the full expansion of the physical operators via local integrals of motion operators, as well as operators which flip local integrals of motion. Hence these probes allow one to get insights into the relation between physical operators and local integrals of motion and access the operator spreading in the many-body localized phase. AU - Maksym Serbyn AU - Abanin, Dimitry A ID - 445 IS - 1 JF - Physical Review B - Condensed Matter and Materials Physics TI - Loschmidt echo in many body localized phases VL - 96 ER - TY - JOUR AB - Spinning tops and yo-yos have long fascinated cultures around the world with their unexpected, graceful motions that seemingly elude gravity. Yet, due to the exceeding difficulty of creating stably spinning objects of asymmetric shape in a manual trial-and-error process, there has been little departure from rotationally symmetric designs. With modern 3D printing technologies, however, we can manufacture shapes of almost unbounded complexity at the press of a button, shifting this design complexity toward computation. In this article, we describe an algorithm to generate designs for spinning objects by optimizing their mass distribution: as input, the user provides a solid 3D model and a desired axis of rotation. Our approach then modifies the interior mass distribution such that the principal directions of the moment of inertia align with the target rotation frame. To create voids inside the model, we represent its volume with an adaptive multiresolution voxelization and optimize the discrete voxel fill values using a continuous, nonlinear formulation. We further optimize for rotational stability by maximizing the dominant principal moment. Our method is well-suited for a variety of 3D printed models, ranging from characters to abstract shapes. We demonstrate tops and yo-yos that spin surprisingly stably despite their asymmetric appearance. AU - Bächer, Moritz AU - Bickel, Bernd AU - Whiting, Emily AU - Sorkine Hornung, Olga ID - 452 IS - 8 JF - Communications of the ACM TI - Spin it: Optimizing moment of inertia for spinnable objects VL - 60 ER - TY - JOUR AB - Most kinesin motors move in only one direction along microtubules. Members of the kinesin-5 subfamily were initially described as unidirectional plus-end-directed motors and shown to produce piconewton forces. However, some fungal kinesin-5 motors are bidirectional. The force production of a bidirectional kinesin-5 has not yet been measured. Therefore, it remains unknown whether the mechanism of the unconventional minus-end-directed motility differs fundamentally from that of plus-end-directed stepping. Using force spectroscopy, we have measured here the forces that ensembles of purified budding yeast kinesin-5 Cin8 produce in microtubule gliding assays in both plus- and minus-end direction. Correlation analysis of pause forces demonstrated that individual Cin8 molecules produce additive forces in both directions of movement. In ensembles, Cin8 motors were able to produce single-motor forces up to a magnitude of ∼1.5 pN. Hence, these properties appear to be conserved within the kinesin-5 subfamily. Force production was largely independent of the directionality of movement, indicating similarities between the motility mechanisms for both directions. These results provide constraints for the development of models for the bidirectional motility mechanism of fission yeast kinesin-5 and provide insight into the function of this mitotic motor. AU - Fallesen, Todd AU - Roostalu, Johanna AU - Düllberg, Christian F AU - Pruessner, Gunnar AU - Surrey, Thomas ID - 453 IS - 9 JF - Biophysical Journal TI - Ensembles of bidirectional kinesin Cin8 produce additive forces in both directions of movement VL - 113 ER - TY - JOUR AB - The computation of the winning set for parity objectives and for Streett objectives in graphs as well as in game graphs are central problems in computer-aided verification, with application to the verification of closed systems with strong fairness conditions, the verification of open systems, checking interface compatibility, well-formedness of specifications, and the synthesis of reactive systems. We show how to compute the winning set on n vertices for (1) parity-3 (aka one-pair Streett) objectives in game graphs in time O(n5/2) and for (2) k-pair Streett objectives in graphs in time O(n2+nklogn). For both problems this gives faster algorithms for dense graphs and represents the first improvement in asymptotic running time in 15 years. AU - Chatterjee, Krishnendu AU - Henzinger, Monika H AU - Loitzenbauer, Veronika ID - 464 IS - 3 JF - Logical Methods in Computer Science SN - 1860-5974 TI - Improved algorithms for parity and Streett objectives VL - 13 ER - TY - JOUR AB - This paper presents a method for simulating water surface waves as a displacement field on a 2D domain. Our method relies on Lagrangian particles that carry packets of water wave energy; each packet carries information about an entire group of wave trains, as opposed to only a single wave crest. Our approach is unconditionally stable and can simulate high resolution geometric details. This approach also presents a straightforward interface for artistic control, because it is essentially a particle system with intuitive parameters like wavelength and amplitude. Our implementation parallelizes well and runs in real time for moderately challenging scenarios. AU - Jeschke, Stefan AU - Wojtan, Christopher J ID - 470 IS - 4 JF - ACM Transactions on Graphics SN - 07300301 TI - Water wave packets VL - 36 ER - TY - JOUR AB - We present a new algorithm for the statistical model checking of Markov chains with respect to unbounded temporal properties, including full linear temporal logic. The main idea is that we monitor each simulation run on the fly, in order to detect quickly if a bottom strongly connected component is entered with high probability, in which case the simulation run can be terminated early. As a result, our simulation runs are often much shorter than required by termination bounds that are computed a priori for a desired level of confidence on a large state space. In comparison to previous algorithms for statistical model checking our method is not only faster in many cases but also requires less information about the system, namely, only the minimum transition probability that occurs in the Markov chain. In addition, our method can be generalised to unbounded quantitative properties such as mean-payoff bounds. AU - Daca, Przemyslaw AU - Henzinger, Thomas A AU - Kretinsky, Jan AU - Petrov, Tatjana ID - 471 IS - 2 JF - ACM Transactions on Computational Logic (TOCL) SN - 15293785 TI - Faster statistical model checking for unbounded temporal properties VL - 18 ER - TY - JOUR AB - α-Synuclein is a presynaptic protein the function of which has yet to be identified, but its neuronal content increases in patients of synucleinopa-thies including Parkinson’s disease. Chronic overexpression of α-synuclein reportedly expresses various phenotypes of synaptic dysfunction, but the primary target of its toxicity has not been determined. To investigate this, we acutely loaded human recombinant α-synuclein or its pathological mutants in their monomeric forms into the calyces of Held presynaptic terminals in slices from auditorily mature and immature rats of either sex. Membrane capacitance measurements revealed significant and specific inhibitory effects of WT monomeric α-synuclein on vesicle endocytosis throughout development. However, the α-synuclein A53T mutant affected vesicle endocytosis only at immature calyces, where as the A30P mutant had no effect throughout. The endocytic impairment by WTα-synuclein was rescued by intraterminal coloading of the microtubule (MT) polymerization blocker nocodazole. Furthermore, it was reversibly rescued by presynaptically loaded photostatin-1, a pho-toswitcheable inhibitor of MT polymerization, inalight-wavelength-dependent manner. Incontrast, endocyticinhibition by the A53T mutant at immature calyces was not rescued by nocodazole. Functionally, presynaptically loaded WT α-synuclein had no effect on basal synaptic transmission evoked at a low frequency, but significantly attenuated exocytosis and impaired the fidelity of neurotransmission during prolonged high-frequency stimulation. We conclude that monomeric WTα-synuclein primarily inhibits vesicle endocytosis via MT overassembly, thereby impairing high-frequency neurotransmission. AU - Eguchi, Kohgaku AU - Taoufiq, Zachari AU - Thorn Seshold, Oliver AU - Trauner, Dirk AU - Hasegawa, Masato AU - Takahashi, Tomoyuki ID - 472 IS - 25 JF - European Journal of Neuroscience SN - 02706474 TI - Wild-type monomeric α-synuclein can impair vesicle endocytosis and synaptic fidelity via tubulin polymerization at the calyx of held VL - 37 ER - TY - JOUR AB - We introduce planar matchings on directed pseudo-line arrangements, which yield a planar set of pseudo-line segments such that only matching-partners are adjacent. By translating the planar matching problem into a corresponding stable roommates problem we show that such matchings always exist. Using our new framework, we establish, for the first time, a complete, rigorous definition of weighted straight skeletons, which are based on a so-called wavefront propagation process. We present a generalized and unified approach to treat structural changes in the wavefront that focuses on the restoration of weak planarity by finding planar matchings. AU - Biedl, Therese AU - Huber, Stefan AU - Palfrader, Peter ID - 481 IS - 3-4 JF - International Journal of Computational Geometry and Applications TI - Planar matchings for weighted straight skeletons VL - 26 ER - TY - JOUR AB - We consider the dynamics of a large quantum system of N identical bosons in 3D interacting via a two-body potential of the form N3β-1w(Nβ(x - y)). For fixed 0 = β < 1/3 and large N, we obtain a norm approximation to the many-body evolution in the Nparticle Hilbert space. The leading order behaviour of the dynamics is determined by Hartree theory while the second order is given by Bogoliubov theory. AU - Nam, Phan AU - Napiórkowski, Marcin M ID - 484 IS - 3 JF - Advances in Theoretical and Mathematical Physics SN - 10950761 TI - Bogoliubov correction to the mean-field dynamics of interacting bosons VL - 21 ER - TY - JOUR AB - We prove the universality for the eigenvalue gap statistics in the bulk of the spectrum for band matrices, in the regime where the band width is comparable with the dimension of the matrix, W ~ N. All previous results concerning universality of non-Gaussian random matrices are for mean-field models. By relying on a new mean-field reduction technique, we deduce universality from quantum unique ergodicity for band matrices. AU - Bourgade, Paul AU - Erdös, László AU - Yau, Horng AU - Yin, Jun ID - 483 IS - 3 JF - Advances in Theoretical and Mathematical Physics SN - 10950761 TI - Universality for a class of random band matrices VL - 21 ER - TY - CONF AB - In this paper we study network architecture for unlicensed cellular networking for outdoor coverage in TV white spaces. The main technology proposed for TV white spaces is 802.11af, a Wi-Fi variant adapted for TV frequencies. However, 802.11af is originally designed for improved indoor propagation. We show that long links, typical for outdoor use, exacerbate known Wi-Fi issues, such as hidden and exposed terminal, and significantly reduce its efficiency. Instead, we propose CellFi, an alternative architecture based on LTE. LTE is designed for long-range coverage and throughput efficiency, but it is also designed to operate in tightly controlled and centrally managed networks. CellFi overcomes these problems by designing an LTE-compatible spectrum database component, mandatory for TV white space networking, and introducing an interference management component for distributed coordination. CellFi interference management is compatible with existing LTE mechanisms, requires no explicit communication between base stations, and is more efficient than CSMA for long links. We evaluate our design through extensive real world evaluation on of-the-shelf LTE equipment and simulations. We show that, compared to 802.11af, it increases coverage by 40% and reduces median flow completion times by 2.3x. AU - Baig, Ghufran AU - Radunovic, Bozidar AU - Alistarh, Dan-Adrian AU - Balkwill, Matthew AU - Karagiannis, Thomas AU - Qiu, Lili ID - 487 SN - 978-145035422-6 T2 - Proceedings of the 2017 13th International Conference on emerging Networking EXperiments and Technologies TI - Towards unlicensed cellular networks in TV white spaces ER - TY - JOUR AB - Orientation in space is represented in specialized brain circuits. Persistent head direction signals are transmitted from anterior thalamus to the presubiculum, but the identity of the presubicular target neurons, their connectivity and function in local microcircuits are unknown. Here, we examine how thalamic afferents recruit presubicular principal neurons and Martinotti interneurons, and the ensuing synaptic interactions between these cells. Pyramidal neuron activation of Martinotti cells in superficial layers is strongly facilitating such that high-frequency head directional stimulation efficiently unmutes synaptic excitation. Martinotti-cell feedback plays a dual role: precisely timed spikes may not inhibit the firing of in-tune head direction cells, while exerting lateral inhibition. Autonomous attractor dynamics emerge from a modelled network implementing wiring motifs and timing sensitive synaptic interactions in the pyramidal - Martinotti-cell feedback loop. This inhibitory microcircuit is therefore tuned to refine and maintain head direction information in the presubiculum. AU - Simonnet, Jean AU - Nassar, Mérie AU - Stella, Federico AU - Cohen, Ivan AU - Mathon, Bertrand AU - Boccara, Charlotte AU - Miles, Richard AU - Fricker, Desdemona ID - 514 JF - Nature Communications SN - 20411723 TI - Activity dependent feedback inhibition may maintain head direction signals in mouse presubiculum VL - 8 ER - TY - JOUR AB - The oxidative phosphorylation electron transport chain (OXPHOS-ETC) of the inner mitochondrial membrane is composed of five large protein complexes, named CI-CV. These complexes convert energy from the food we eat into ATP, a small molecule used to power a multitude of essential reactions throughout the cell. OXPHOS-ETC complexes are organized into supercomplexes (SCs) of defined stoichiometry: CI forms a supercomplex with CIII2 and CIV (SC I+III2+IV, known as the respirasome), as well as with CIII2 alone (SC I+III2). CIII2 forms a supercomplex with CIV (SC III2+IV) and CV forms dimers (CV2). Recent cryo-EM studies have revealed the structures of SC I+III2+IV and SC I+III2. Furthermore, recent work has shed light on the assembly and function of the SCs. Here we review and compare these recent studies and discuss how they have advanced our understanding of mitochondrial electron transport. AU - Letts, James A AU - Sazanov, Leonid A ID - 515 IS - 10 JF - Nature Structural and Molecular Biology SN - 15459993 TI - Clarifying the supercomplex: The higher-order organization of the mitochondrial electron transport chain VL - 24 ER - TY - JOUR AB - We present an experimental setup that creates a shear flow with zero mean advection velocity achieved by counterbalancing the nonzero streamwise pressure gradient by moving boundaries, which generates plane Couette-Poiseuille flow. We obtain experimental results in the transitional regime for this flow. Using flow visualization, we characterize the subcritical transition to turbulence in Couette-Poiseuille flow and show the existence of turbulent spots generated by a permanent perturbation. Due to the zero mean advection velocity of the base profile, these turbulent structures are nearly stationary. We distinguish two regions of the turbulent spot: the active turbulent core, which is characterized by waviness of the streaks similar to traveling waves, and the surrounding region, which includes in addition the weak undisturbed streaks and oblique waves at the laminar-turbulent interface. We also study the dependence of the size of these two regions on Reynolds number. Finally, we show that the traveling waves move in the downstream (Poiseuille) direction. AU - Klotz, Lukasz AU - Lemoult, Grégoire M AU - Frontczak, Idalia AU - Tuckerman, Laurette AU - Wesfreid, José ID - 513 IS - 4 JF - Physical Review Fluids TI - Couette-Poiseuille flow experiment with zero mean advection velocity: Subcritical transition to turbulence VL - 2 ER - TY - JOUR AB - Cyanobacteria are mostly engineered to be sustainable cell-factories by genetic manipulations alone. Here, by modulating the concentration of allosteric effectors, we focus on increasing product formation without further burdening the cells with increased expression of enzymes. Resorting to a novel 96-well microplate cultivation system for cyanobacteria, and using lactate-producing strains of Synechocystis PCC6803 expressing different l-lactate dehydrogenases (LDH), we titrated the effect of 2,5-anhydro-mannitol supplementation. The latter acts in cells as a nonmetabolizable analogue of fructose 1,6-bisphosphate, a known allosteric regulator of one of the tested LDHs. In this strain (SAA023), we achieved over 2-fold increase of lactate productivity. Furthermore, we observed that as carbon is increasingly deviated during growth toward product formation, there is an increased fixation rate in the population of spontaneous mutants harboring an impaired production pathway. This is a challenge in the development of green cell factories, which may be countered by the incorporation in biotechnological processes of strategies such as the one pioneered here. AU - Du, Wei AU - Angermayr, Andreas AU - Jongbloets, Joeri AU - Molenaar, Douwe AU - Bachmann, Herwig AU - Hellingwerf, Klaas AU - Branco Dos Santos, Filipe ID - 520 IS - 3 JF - ACS Synthetic Biology SN - 21615063 TI - Nonhierarchical flux regulation exposes the fitness burden associated with lactate production in Synechocystis sp. PCC6803 VL - 6 ER - TY - JOUR AB - Let X and Y be proper metric spaces. We show that a coarsely n-to-1 map f:X→Y induces an n-to-1 map of Higson coronas. This viewpoint turns out to be successful in showing that the classical dimension raising theorems hold in large scale; that is, if f:X→Y is a coarsely n-to-1 map between proper metric spaces X and Y then asdim(Y)≤asdim(X)+n−1. Furthermore we introduce coarsely open coarsely n-to-1 maps, which include the natural quotient maps via a finite group action, and prove that they preserve the asymptotic dimension. AU - Austin, Kyle AU - Virk, Ziga ID - 521 JF - Topology and its Applications SN - 01668641 TI - Higson compactification and dimension raising VL - 215 ER - TY - JOUR AB - The Casparian strip is an important barrier regulating water and nutrient uptake into root tissues. New research reveals two peptide signals and their co-receptors play critical roles patterning and maintaining barrier integrity. AU - Daniel von Wangenheim AU - Goh, Tatsuaki AU - Dietrich, Daniela AU - Bennett, Malcolm J ID - 525 IS - 5 JF - Current Biology TI - Plant biology: Building barriers… in roots VL - 27 ER - TY - JOUR AB - The pituitary adenylyl cyclase-activating polypeptide (PACAP) and its G protein-coupled receptors, PAC1, VPAC1 and VPAC2 form a system involved in a variety of biological processes. Although some sympathetic stimulatory effects of this system have been reported, its central cardiovascular regulatory properties are poorly characterized. VPAC1 receptors are expressed in the nucleus ambiguus (nAmb), a key center controlling cardiac parasympathetic tone. In this study, we report that selective VPAC1 activation in rhodamine-labeled cardiac vagal preganglionic neurons of the rat nAmb produces inositol 1,4,5-trisphosphate receptor-mediated Ca2+ mobilization, membrane depolarization and activation of P/Q-type Ca2+ channels. In vivo, this pathway converges onto transient reduction in heart rate of conscious rats. Therefore we demonstrate a VPAC1-dependent mechanism in the central parasympathetic regulation of the heart rate, adding to the complexity of PACAP-mediated cardiovascular modulation. AU - Gherghina, Florin L AU - Tica, Andrei A AU - Elena Deliu AU - Abood, Mary E AU - Brailoiu, G. Christina AU - Brǎiloiu, Eugen ID - 529 JF - Brain Research TI - Effects of VPAC1 activation in nucleus ambiguus neurons VL - 1657 ER - TY - JOUR AB - We investigate the complexity of finding an embedded non-orientable surface of Euler genus g in a triangulated 3-manifold. This problem occurs both as a natural question in low-dimensional topology, and as a first non-trivial instance of embeddability of complexes into 3-manifolds. We prove that the problem is NP-hard, thus adding to the relatively few hardness results that are currently known in 3-manifold topology. In addition, we show that the problem lies in NP when the Euler genus g is odd, and we give an explicit algorithm in this case. AU - Burton, Benjamin AU - De Mesmay, Arnaud N AU - Wagner, Uli ID - 534 IS - 4 JF - Discrete & Computational Geometry SN - 01795376 TI - Finding non-orientable surfaces in 3-Manifolds VL - 58 ER - TY - JOUR AB - Optogenetik und Photopharmakologie ermöglichen präzise räumliche und zeitliche Kontrolle von Proteinwechselwirkung und -funktion in Zellen und Tieren. Optogenetische Methoden, die auf grünes Licht ansprechen und zum Trennen von Proteinkomplexen geeignet sind, sind nichtweitläufig verfügbar, würden jedoch mehrfarbige Experimente zur Beantwortung von biologischen Fragestellungen ermöglichen. Hier demonstrieren wir die Verwendung von Cobalamin(Vitamin B12)-bindenden Domänen von bakteriellen CarH-Transkriptionsfaktoren zur Grünlicht-induzierten Dissoziation von Rezeptoren. Fusioniert mit dem Fibroblasten-W achstumsfaktor-Rezeptor 1 führten diese im Dunkeln in kultivierten Zellen zu Signalaktivität durch Oligomerisierung, welche durch Beleuchten umgehend aufgehoben wurde. In Zebrafischembryonen, die einen derartigen Rezeptor exprimieren, ermöglichte grünes Licht die Kontrolle über abnormale Signalaktivität während der Embryonalentwicklung. AU - Kainrath, Stephanie AU - Stadler, Manuela AU - Gschaider-Reichhart, Eva AU - Distel, Martin AU - Janovjak, Harald L ID - 538 IS - 16 JF - Angewandte Chemie TI - Grünlicht-induzierte Rezeptorinaktivierung durch Cobalamin-bindende Domänen VL - 129 ER - TY - JOUR AB - RNA-dependent RNA polymerases (RdRps) play a key role in the life cycle of RNA viruses and impact their immunobiology. The arenavirus lymphocytic choriomeningitis virus (LCMV) strain Clone 13 provides a benchmark model for studying chronic infection. A major genetic determinant for its ability to persist maps to a single amino acid exchange in the viral L protein, which exhibits RdRp activity, yet its functional consequences remain elusive. To unravel the L protein interactions with the host proteome, we engineered infectious L protein-tagged LCMV virions by reverse genetics. A subsequent mass-spectrometric analysis of L protein pulldowns from infected human cells revealed a comprehensive network of interacting host proteins. The obtained LCMV L protein interactome was bioinformatically integrated with known host protein interactors of RdRps from other RNA viruses, emphasizing interconnected modules of human proteins. Functional characterization of selected interactors highlighted proviral (DDX3X) as well as antiviral (NKRF, TRIM21) host factors. To corroborate these findings, we infected Trim21-/-mice with LCMV and found impaired virus control in chronic infection. These results provide insights into the complex interactions of the arenavirus LCMV and other viral RdRps with the host proteome and contribute to a better molecular understanding of how chronic viruses interact with their host. AU - Khamina, Kseniya AU - Lercher, Alexander AU - Caldera, Michael AU - Schliehe, Christopher AU - Vilagos, Bojan AU - Sahin, Mehmet AU - Kosack, Lindsay AU - Bhattacharya, Anannya AU - Májek, Peter AU - Stukalov, Alexey AU - Sacco, Roberto AU - James, Leo AU - Pinschewer, Daniel AU - Bennett, Keiryn AU - Menche, Jörg AU - Bergthaler, Andreas ID - 540 IS - 12 JF - PLoS Pathogens SN - 15537366 TI - Characterization of host proteins interacting with the lymphocytic choriomeningitis virus L protein VL - 13 ER - TY - JOUR AB - We consider Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) objectives. There exist two different views: (i) the expectation semantics, where the goal is to optimize the expected mean-payoff objective, and (ii) the satisfaction semantics, where the goal is to maximize the probability of runs such that the mean-payoff value stays above a given vector. We consider optimization with respect to both objectives at once, thus unifying the existing semantics. Precisely, the goal is to optimize the expectation while ensuring the satisfaction constraint. Our problem captures the notion of optimization with respect to strategies that are risk-averse (i.e., ensure certain probabilistic guarantee). Our main results are as follows: First, we present algorithms for the decision problems which are always polynomial in the size of the MDP. We also show that an approximation of the Pareto-curve can be computed in time polynomial in the size of the MDP, and the approximation factor, but exponential in the number of dimensions. Second, we present a complete characterization of the strategy complexity (in terms of memory bounds and randomization) required to solve our problem. AU - Chatterjee, Krishnendu AU - Křetínská, Zuzana AU - Kretinsky, Jan ID - 466 IS - 2 JF - Logical Methods in Computer Science SN - 18605974 TI - Unifying two views on multiple mean-payoff objectives in Markov decision processes VL - 13 ER - TY - JOUR AB - Recently there has been a significant effort to handle quantitative properties in formal verification and synthesis. While weighted automata over finite and infinite words provide a natural and flexible framework to express quantitative properties, perhaps surprisingly, some basic system properties such as average response time cannot be expressed using weighted automata or in any other known decidable formalism. In this work, we introduce nested weighted automata as a natural extension of weighted automata, which makes it possible to express important quantitative properties such as average response time. In nested weighted automata, a master automaton spins off and collects results from weighted slave automata, each of which computes a quantity along a finite portion of an infinite word. Nested weighted automata can be viewed as the quantitative analogue of monitor automata, which are used in runtime verification. We establish an almost-complete decidability picture for the basic decision problems about nested weighted automata and illustrate their applicability in several domains. In particular, nested weighted automata can be used to decide average response time properties. AU - Chatterjee, Krishnendu AU - Henzinger, Thomas A AU - Otop, Jan ID - 467 IS - 4 JF - ACM Transactions on Computational Logic (TOCL) SN - 15293785 TI - Nested weighted automata VL - 18 ER - TY - JOUR AB - The edit distance between two words w 1 , w 2 is the minimal number of word operations (letter insertions, deletions, and substitutions) necessary to transform w 1 to w 2 . The edit distance generalizes to languages L 1 , L 2 , where the edit distance from L 1 to L 2 is the minimal number k such that for every word from L 1 there exists a word in L 2 with edit distance at most k . We study the edit distance computation problem between pushdown automata and their subclasses. The problem of computing edit distance to a pushdown automaton is undecidable, and in practice, the interesting question is to compute the edit distance from a pushdown automaton (the implementation, a standard model for programs with recursion) to a regular language (the specification). In this work, we present a complete picture of decidability and complexity for the following problems: (1) deciding whether, for a given threshold k , the edit distance from a pushdown automaton to a finite automaton is at most k , and (2) deciding whether the edit distance from a pushdown automaton to a finite automaton is finite. AU - Chatterjee, Krishnendu AU - Henzinger, Thomas A AU - Ibsen-Jensen, Rasmus AU - Otop, Jan ID - 465 IS - 3 JF - Logical Methods in Computer Science SN - 18605974 TI - Edit distance for pushdown automata VL - 13 ER - TY - JOUR AB - The fixation probability is the probability that a new mutant introduced in a homogeneous population eventually takes over the entire population. The fixation probability is a fundamental quantity of natural selection, and known to depend on the population structure. Amplifiers of natural selection are population structures which increase the fixation probability of advantageous mutants, as compared to the baseline case of well-mixed populations. In this work we focus on symmetric population structures represented as undirected graphs. In the regime of undirected graphs, the strongest amplifier known has been the Star graph, and the existence of undirected graphs with stronger amplification properties has remained open for over a decade. In this work we present the Comet and Comet-swarm families of undirected graphs. We show that for a range of fitness values of the mutants, the Comet and Cometswarm graphs have fixation probability strictly larger than the fixation probability of the Star graph, for fixed population size and at the limit of large populations, respectively. AU - Pavlogiannis, Andreas AU - Tkadlec, Josef AU - Chatterjee, Krishnendu AU - Nowak, Martin ID - 512 IS - 1 JF - Scientific Reports SN - 20452322 TI - Amplification on undirected population structures: Comets beat stars VL - 7 ER - TY - JOUR AB - A fundamental algorithmic problem at the heart of static analysis is Dyck reachability. The input is a graph where the edges are labeled with different types of opening and closing parentheses, and the reachability information is computed via paths whose parentheses are properly matched. We present new results for Dyck reachability problems with applications to alias analysis and data-dependence analysis. Our main contributions, that include improved upper bounds as well as lower bounds that establish optimality guarantees, are as follows: First, we consider Dyck reachability on bidirected graphs, which is the standard way of performing field-sensitive points-to analysis. Given a bidirected graph with n nodes and m edges, we present: (i) an algorithm with worst-case running time O(m + n · α(n)), where α(n) is the inverse Ackermann function, improving the previously known O(n2) time bound; (ii) a matching lower bound that shows that our algorithm is optimal wrt to worst-case complexity; and (iii) an optimal average-case upper bound of O(m) time, improving the previously known O(m · logn) bound. Second, we consider the problem of context-sensitive data-dependence analysis, where the task is to obtain analysis summaries of library code in the presence of callbacks. Our algorithm preprocesses libraries in almost linear time, after which the contribution of the library in the complexity of the client analysis is only linear, and only wrt the number of call sites. Third, we prove that combinatorial algorithms for Dyck reachability on general graphs with truly sub-cubic bounds cannot be obtained without obtaining sub-cubic combinatorial algorithms for Boolean Matrix Multiplication, which is a long-standing open problem. Thus we establish that the existing combinatorial algorithms for Dyck reachability are (conditionally) optimal for general graphs. We also show that the same hardness holds for graphs of constant treewidth. Finally, we provide a prototype implementation of our algorithms for both alias analysis and data-dependence analysis. Our experimental evaluation demonstrates that the new algorithms significantly outperform all existing methods on the two problems, over real-world benchmarks. AU - Chatterjee, Krishnendu AU - Choudhary, Bhavya AU - Pavlogiannis, Andreas ID - 10416 IS - POPL JF - Proceedings of the ACM on Programming Languages TI - Optimal Dyck reachability for data-dependence and Alias analysis VL - 2 ER - TY - GEN AB - A fundamental algorithmic problem at the heart of static analysis is Dyck reachability. The input is a graphwhere the edges are labeled with different types of opening and closing parentheses, and the reachabilityinformation is computed via paths whose parentheses are properly matched. We present new results for Dyckreachability problems with applications to alias analysis and data-dependence analysis. Our main contributions,that include improved upper bounds as well as lower bounds that establish optimality guarantees, are asfollows:First, we consider Dyck reachability on bidirected graphs, which is the standard way of performing field-sensitive points-to analysis. Given a bidirected graph withnnodes andmedges, we present: (i) an algorithmwith worst-case running timeO(m+n·α(n)), whereα(n)is the inverse Ackermann function, improving thepreviously knownO(n2)time bound; (ii) a matching lower bound that shows that our algorithm is optimalwrt to worst-case complexity; and (iii) an optimal average-case upper bound ofO(m)time, improving thepreviously knownO(m·logn)bound.Second, we consider the problem of context-sensitive data-dependence analysis, where the task is to obtainanalysis summaries of library code in the presence of callbacks. Our algorithm preprocesses libraries in almostlinear time, after which the contribution of the library in the complexity of the client analysis is only linear,and only wrt the number of call sites.Third, we prove that combinatorial algorithms for Dyck reachability on general graphs with truly sub-cubic bounds cannot be obtained without obtaining sub-cubic combinatorial algorithms for Boolean MatrixMultiplication, which is a long-standing open problem. Thus we establish that the existing combinatorialalgorithms for Dyck reachability are (conditionally) optimal for general graphs. We also show that the samehardness holds for graphs of constant treewidth.Finally, we provide a prototype implementation of our algorithms for both alias analysis and data-dependenceanalysis. Our experimental evaluation demonstrates that the new algorithms significantly outperform allexisting methods on the two problems, over real-world benchmarks. AU - Chatterjee, Krishnendu AU - Choudhary, Bhavya AU - Pavlogiannis, Andreas ID - 5455 SN - 2664-1690 TI - Optimal Dyck reachability for data-dependence and alias analysis ER - TY - GEN AB - In this report the implementation of the institutional data repository IST DataRep at IST Austria will be covered: Starting with the research phase when requirements for a repository were established, the procedure of choosing a repository-software and its customization based on the results of user-testings will be discussed. Followed by reflections on the marketing strategies in regard of impact, and at the end sharing some experiences of one year operating IST DataRep. AU - Barbara Petritsch ID - 5450 TI - Implementing the institutional data repository IST DataRep ER - TY - JOUR AB - We present a new dynamic partial-order reduction method for stateless model checking of concurrent programs. A common approach for exploring program behaviors relies on enumerating the traces of the program, without storing the visited states (aka stateless exploration). As the number of distinct traces grows exponentially, dynamic partial-order reduction (DPOR) techniques have been successfully used to partition the space of traces into equivalence classes (Mazurkiewicz partitioning), with the goal of exploring only few representative traces from each class. We introduce a new equivalence on traces under sequential consistency semantics, which we call the observation equivalence. Two traces are observationally equivalent if every read event observes the same write event in both traces. While the traditional Mazurkiewicz equivalence is control-centric, our new definition is data-centric. We show that our observation equivalence is coarser than the Mazurkiewicz equivalence, and in many cases even exponentially coarser. We devise a DPOR exploration of the trace space, called data-centric DPOR, based on the observation equivalence. AU - Chalupa, Marek AU - Chatterjee, Krishnendu AU - Pavlogiannis, Andreas AU - Sinha, Nishant AU - Vaidya, Kapil ID - 10417 IS - POPL JF - Proceedings of the ACM on Programming Languages TI - Data-centric dynamic partial order reduction VL - 2 ER - TY - GEN AB - We present a new dynamic partial-order reduction method for stateless model checking of concurrent programs. A common approach for exploring program behaviors relies on enumerating the traces of the program, without storing the visited states (aka stateless exploration). As the number of distinct traces grows exponentially, dynamic partial-order reduction (DPOR) techniques have been successfully used to partition the space of traces into equivalence classes (Mazurkiewicz partitioning), with the goal of exploring only few representative traces from each class. We introduce a new equivalence on traces under sequential consistency semantics, which we call the observation equivalence. Two traces are observationally equivalent if every read event observes the same write event in both traces. While the traditional Mazurkiewicz equivalence is control-centric, our new definition is data-centric. We show that our observation equivalence is coarser than the Mazurkiewicz equivalence, and in many cases even exponentially coarser. We devise a DPOR exploration of the trace space, called data-centric DPOR, based on the observation equivalence. 1. For acyclic architectures, our algorithm is guaranteed to explore exactly one representative trace from each observation class, while spending polynomial time per class. Hence, our algorithm is optimal wrt the observation equivalence, and in several cases explores exponentially fewer traces than any enumerative method based on the Mazurkiewicz equivalence. 2. For cyclic architectures, we consider an equivalence between traces which is finer than the observation equivalence; but coarser than the Mazurkiewicz equivalence, and in some cases is exponentially coarser. Our data-centric DPOR algorithm remains optimal under this trace equivalence. Finally, we perform a basic experimental comparison between the existing Mazurkiewicz-based DPOR and our data-centric DPOR on a set of academic benchmarks. Our results show a significant reduction in both running time and the number of explored equivalence classes. AU - Chalupa, Marek AU - Chatterjee, Krishnendu AU - Pavlogiannis, Andreas AU - Sinha, Nishant AU - Vaidya, Kapil ID - 5456 SN - 2664-1690 TI - Data-centric dynamic partial order reduction ER - TY - CONF AB - Evolutionary graph theory studies the evolutionary dynamics in a population structure given as a connected graph. Each node of the graph represents an individual of the population, and edges determine how offspring are placed. We consider the classical birth-death Moran process where there are two types of individuals, namely, the residents with fitness 1 and mutants with fitness r. The fitness indicates the reproductive strength. The evolutionary dynamics happens as follows: in the initial step, in a population of all resident individuals a mutant is introduced, and then at each step, an individual is chosen proportional to the fitness of its type to reproduce, and the offspring replaces a neighbor uniformly at random. The process stops when all individuals are either residents or mutants. The probability that all individuals in the end are mutants is called the fixation probability, which is a key factor in the rate of evolution. We consider the problem of approximating the fixation probability. The class of algorithms that is extremely relevant for approximation of the fixation probabilities is the Monte-Carlo simulation of the process. Previous results present a polynomial-time Monte-Carlo algorithm for undirected graphs when r is given in unary. First, we present a simple modification: instead of simulating each step, we discard ineffective steps, where no node changes type (i.e., either residents replace residents, or mutants replace mutants). Using the above simple modification and our result that the number of effective steps is concentrated around the expected number of effective steps, we present faster polynomial-time Monte-Carlo algorithms for undirected graphs. Our algorithms are always at least a factor O(n2/ log n) faster as compared to the previous algorithms, where n is the number of nodes, and is polynomial even if r is given in binary. We also present lower bounds showing that the upper bound on the expected number of effective steps we present is asymptotically tight for undirected graphs. AU - Chatterjee, Krishnendu AU - Ibsen-Jensen, Rasmus AU - Nowak, Martin ID - 551 SN - 978-395977046-0 T2 - Leibniz International Proceedings in Informatics TI - Faster Monte Carlo algorithms for fixation probability of the Moran process on undirected graphs VL - 83 ER - TY - CONF AB - Graph games provide the foundation for modeling and synthesis of reactive processes. Such games are played over graphs where the vertices are controlled by two adversarial players. We consider graph games where the objective of the first player is the conjunction of a qualitative objective (specified as a parity condition) and a quantitative objective (specified as a meanpayoff condition). There are two variants of the problem, namely, the threshold problem where the quantitative goal is to ensure that the mean-payoff value is above a threshold, and the value problem where the quantitative goal is to ensure the optimal mean-payoff value; in both cases ensuring the qualitative parity objective. The previous best-known algorithms for game graphs with n vertices, m edges, parity objectives with d priorities, and maximal absolute reward value W for mean-payoff objectives, are as follows: O(nd+1 . m . w) for the threshold problem, and O(nd+2 · m · W) for the value problem. Our main contributions are faster algorithms, and the running times of our algorithms are as follows: O(nd-1 · m ·W) for the threshold problem, and O(nd · m · W · log(n · W)) for the value problem. For mean-payoff parity objectives with two priorities, our algorithms match the best-known bounds of the algorithms for mean-payoff games (without conjunction with parity objectives). Our results are relevant in synthesis of reactive systems with both functional requirement (given as a qualitative objective) and performance requirement (given as a quantitative objective). AU - Chatterjee, Krishnendu AU - Henzinger, Monika H AU - Svozil, Alexander ID - 552 SN - 978-395977046-0 T2 - Leibniz International Proceedings in Informatics TI - Faster algorithms for mean-payoff parity games VL - 83 ER - TY - CONF AB - We consider two player, zero-sum, finite-state concurrent reachability games, played for an infinite number of rounds, where in every round, each player simultaneously and independently of the other players chooses an action, whereafter the successor state is determined by a probability distribution given by the current state and the chosen actions. Player 1 wins iff a designated goal state is eventually visited. We are interested in the complexity of stationary strategies measured by their patience, which is defined as the inverse of the smallest non-zero probability employed. Our main results are as follows: We show that: (i) the optimal bound on the patience of optimal and -optimal strategies, for both players is doubly exponential; and (ii) even in games with a single non-absorbing state exponential (in the number of actions) patience is necessary. AU - Chatterjee, Krishnendu AU - Hansen, Kristofer AU - Ibsen-Jensen, Rasmus ID - 553 SN - 978-395977046-0 T2 - Leibniz International Proceedings in Informatics TI - Strategy complexity of concurrent safety games VL - 83 ER - TY - JOUR AB - In a recent article (Jentzen et al. 2016 Commun. Math. Sci. 14, 1477–1500 (doi:10.4310/CMS.2016.v14. n6.a1)), it has been established that, for every arbitrarily slow convergence speed and every natural number d ? {4, 5, . . .}, there exist d-dimensional stochastic differential equations with infinitely often differentiable and globally bounded coefficients such that no approximation method based on finitely many observations of the driving Brownian motion can converge in absolute mean to the solution faster than the given speed of convergence. In this paper, we strengthen the above result by proving that this slow convergence phenomenon also arises in two (d = 2) and three (d = 3) space dimensions. AU - Gerencser, Mate AU - Jentzen, Arnulf AU - Salimova, Diyora ID - 560 IS - 2207 JF - Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences SN - 13645021 TI - On stochastic differential equations with arbitrarily slow convergence rates for strong approximation in two space dimensions VL - 473 ER - TY - BOOK AB - This book is a concise and self-contained introduction of recent techniques to prove local spectral universality for large random matrices. Random matrix theory is a fast expanding research area, and this book mainly focuses on the methods that the authors participated in developing over the past few years. Many other interesting topics are not included, and neither are several new developments within the framework of these methods. The authors have chosen instead to present key concepts that they believe are the core of these methods and should be relevant for future applications. They keep technicalities to a minimum to make the book accessible to graduate students. With this in mind, they include in this book the basic notions and tools for high-dimensional analysis, such as large deviation, entropy, Dirichlet form, and the logarithmic Sobolev inequality. AU - Erdös, László AU - Yau, Horng ID - 567 SN - 9-781-4704-3648-3 TI - A Dynamical Approach to Random Matrix Theory VL - 28 ER - TY - JOUR AB - We study robust properties of zero sets of continuous maps f: X → ℝn. Formally, we analyze the family Z< r(f) := (g-1(0): ||g - f|| < r) of all zero sets of all continuous maps g closer to f than r in the max-norm. All of these sets are outside A := (x: |f(x)| ≥ r) and we claim that Z< r(f) is fully determined by A and an element of a certain cohomotopy group which (by a recent result) is computable whenever the dimension of X is at most 2n - 3. By considering all r > 0 simultaneously, the pointed cohomotopy groups form a persistence module-a structure leading to persistence diagrams as in the case of persistent homology or well groups. Eventually, we get a descriptor of persistent robust properties of zero sets that has better descriptive power (Theorem A) and better computability status (Theorem B) than the established well diagrams. Moreover, if we endow every point of each zero set with gradients of the perturbation, the robust description of the zero sets by elements of cohomotopy groups is in some sense the best possible (Theorem C). AU - Franek, Peter AU - Krcál, Marek ID - 568 IS - 2 JF - Homology, Homotopy and Applications SN - 15320073 TI - Persistence of zero sets VL - 19 ER - TY - JOUR AB - Most phenotypes are determined by molecular systems composed of specifically interacting molecules. However, unlike for individual components, little is known about the distributions of mutational effects of molecular systems as a whole. We ask how the distribution of mutational effects of a transcriptional regulatory system differs from the distributions of its components, by first independently, and then simultaneously, mutating a transcription factor and the associated promoter it represses. We find that the system distribution exhibits increased phenotypic variation compared to individual component distributions - an effect arising from intermolecular epistasis between the transcription factor and its DNA-binding site. In large part, this epistasis can be qualitatively attributed to the structure of the transcriptional regulatory system and could therefore be a common feature in prokaryotes. Counter-intuitively, intermolecular epistasis can alleviate the constraints of individual components, thereby increasing phenotypic variation that selection could act on and facilitating adaptive evolution. AU - Lagator, Mato AU - Sarikas, Srdjan AU - Acar, Hande AU - Bollback, Jonathan P AU - Guet, Calin C ID - 570 JF - eLife SN - 2050084X TI - Regulatory network structure determines patterns of intermolecular epistasis VL - 6 ER - TY - JOUR AB - The actomyosin ring generates force to ingress the cytokinetic cleavage furrow in animal cells, yet its filament organization and the mechanism of contractility is not well understood. We quantified actin filament order in human cells using fluorescence polarization microscopy and found that cleavage furrow ingression initiates by contraction of an equatorial actin network with randomly oriented filaments. The network subsequently gradually reoriented actin filaments along the cell equator. This strictly depended on myosin II activity, suggesting local network reorganization by mechanical forces. Cortical laser microsurgery revealed that during cytokinesis progression, mechanical tension increased substantially along the direction of the cell equator, while the network contracted laterally along the pole-to-pole axis without a detectable increase in tension. Our data suggest that an asymmetric increase in cortical tension promotes filament reorientation along the cytokinetic cleavage furrow, which might have implications for diverse other biological processes involving actomyosin rings. AU - Spira, Felix AU - Cuylen Haering, Sara AU - Mehta, Shalin AU - Samwer, Matthias AU - Reversat, Anne AU - Verma, Amitabh AU - Oldenbourg, Rudolf AU - Sixt, Michael K AU - Gerlich, Daniel ID - 569 JF - eLife SN - 2050084X TI - Cytokinesis in vertebrate cells initiates by contraction of an equatorial actomyosin network composed of randomly oriented filaments VL - 6 ER - TY - JOUR AB - Blood platelets are critical for hemostasis and thrombosis and play diverse roles during immune responses. Despite these versatile tasks in mammalian biology, their skills on a cellular level are deemed limited, mainly consisting in rolling, adhesion, and aggregate formation. Here, we identify an unappreciated asset of platelets and show that adherent platelets use adhesion receptors to mechanically probe the adhesive substrate in their local microenvironment. When actomyosin-dependent traction forces overcome substrate resistance, platelets migrate and pile up the adhesive substrate together with any bound particulate material. They use this ability to act as cellular scavengers, scanning the vascular surface for potential invaders and collecting deposited bacteria. Microbe collection by migrating platelets boosts the activity of professional phagocytes, exacerbating inflammatory tissue injury in sepsis. This assigns platelets a central role in innate immune responses and identifies them as potential targets to dampen inflammatory tissue damage in clinical scenarios of severe systemic infection. In addition to their role in thrombosis and hemostasis, platelets can also migrate to sites of infection to help trap bacteria and clear the vascular surface. AU - Gärtner, Florian R AU - Ahmad, Zerkah AU - Rosenberger, Gerhild AU - Fan, Shuxia AU - Nicolai, Leo AU - Busch, Benjamin AU - Yavuz, Gökce AU - Luckner, Manja AU - Ishikawa Ankerhold, Hellen AU - Hennel, Roman AU - Benechet, Alexandre AU - Lorenz, Michael AU - Chandraratne, Sue AU - Schubert, Irene AU - Helmer, Sebastian AU - Striednig, Bianca AU - Stark, Konstantin AU - Janko, Marek AU - Böttcher, Ralph AU - Verschoor, Admar AU - Leon, Catherine AU - Gachet, Christian AU - Gudermann, Thomas AU - Mederos Y Schnitzler, Michael AU - Pincus, Zachary AU - Iannacone, Matteo AU - Haas, Rainer AU - Wanner, Gerhard AU - Lauber, Kirsten AU - Sixt, Michael K AU - Massberg, Steffen ID - 571 IS - 6 JF - Cell Press SN - 00928674 TI - Migrating platelets are mechano scavengers that collect and bundle bacteria VL - 171 ER - TY - JOUR AB - In this review, we summarize the different biosynthesis-related pathways that contribute to the regulation of endogenous auxin in plants. We demonstrate that all known genes involved in auxin biosynthesis also have a role in root formation, from the initiation of a root meristem during embryogenesis to the generation of a functional root system with a primary root, secondary lateral root branches and adventitious roots. Furthermore, the versatile adaptation of root development in response to environmental challenges is mediated by both local and distant control of auxin biosynthesis. In conclusion, auxin homeostasis mediated by spatial and temporal regulation of auxin biosynthesis plays a central role in determining root architecture. AU - Olatunji, Damilola AU - Geelen, Danny AU - Verstraeten, Inge ID - 572 IS - 12 JF - International Journal of Molecular Sciences TI - Control of endogenous auxin levels in plant root development VL - 18 ER - TY - JOUR AB - This paper presents a novel study on the functional gradation of coordinate planes in connection with the thinnest and tunnel-free (i.e., naive) discretization of sphere in the integer space. For each of the 48-symmetric quadraginta octants of naive sphere with integer radius and integer center, we show that the corresponding voxel set forms a bijection with its projected pixel set on a unique coordinate plane, which thereby serves as its functional plane. We use this fundamental property to prove several other theoretical results for naive sphere. First, the quadraginta octants form symmetry groups and subgroups with certain equivalent topological properties. Second, a naive sphere is always unique and consists of fewest voxels. Third, it is efficiently constructible from its functional-plane projection. And finally, a special class of 4-symmetric discrete 3D circles can be constructed on a naive sphere based on back projection from the functional plane. AU - Biswas, Ranita AU - Bhowmick, Partha ID - 5800 IS - 1 JF - Journal of Mathematical Imaging and Vision SN - 09249907 TI - On the functionality and usefulness of Quadraginta octants of naive sphere VL - 59 ER - TY - JOUR AB - We construct a polyhedral surface called a graceful surface, which provides best possible approximation to a given sphere regarding certain criteria. In digital geometry terms, the graceful surface is uniquely characterized by its minimality while guaranteeing the connectivity of certain discrete (polyhedral) curves defined on it. The notion of “gracefulness” was first proposed in Brimkov and Barneva (1999) and shown to be useful for triangular mesh discretization through graceful planes and graceful lines. In this paper we extend the considerations to a nonlinear object such as a sphere. In particular, we investigate the properties of a discrete geodesic path between two voxels and show that discrete 3D circles, circular arcs, and Mobius triangles are all constructible on a graceful sphere, with guaranteed minimum thickness and the desired connectivity in the discrete topological space. AU - Biswas, Ranita AU - Bhowmick, Partha AU - Brimkov, Valentin E. ID - 5799 JF - Discrete Applied Mathematics SN - 0166-218X TI - On the polyhedra of graceful spheres and circular geodesics VL - 216 ER - TY - CONF AB - Space filling circles and spheres have various applications in mathematical imaging and physical modeling. In this paper, we first show how the thinnest (i.e., 2-minimal) model of digital sphere can be augmented to a space filling model by fixing certain “simple voxels” and “filler voxels” associated with it. Based on elementary number-theoretic properties of such voxels, we design an efficient incremental algorithm for generation of these space filling spheres with successively increasing radius. The novelty of the proposed technique is established further through circular space filling on 3D digital plane. As evident from a preliminary set of experimental result, this can particularly be useful for parallel computing of 3D Voronoi diagrams in the digital space. AU - Dwivedi, Shivam AU - Gupta, Aniket AU - Roy, Siddhant AU - Biswas, Ranita AU - Bhowmick, Partha ID - 5801 SN - 0302-9743 T2 - 20th IAPR International Conference TI - Fast and Efficient Incremental Algorithms for Circular and Spherical Propagation in Integer Space VL - 10502 ER - TY - CHAP AB - Different distance metrics produce Voronoi diagrams with different properties. It is a well-known that on the (real) 2D plane or even on any 3D plane, a Voronoi diagram (VD) based on the Euclidean distance metric produces convex Voronoi regions. In this paper, we first show that this metric produces a persistent VD on the 2D digital plane, as it comprises digitally convex Voronoi regions and hence correctly approximates the corresponding VD on the 2D real plane. Next, we show that on a 3D digital plane D, the Euclidean metric spanning over its voxel set does not guarantee a digital VD which is persistent with the real-space VD. As a solution, we introduce a novel concept of functional-plane-convexity, which is ensured by the Euclidean metric spanning over the pedal set of D. Necessary proofs and some visual result have been provided to adjudge the merit and usefulness of the proposed concept. AU - Biswas, Ranita AU - Bhowmick, Partha ID - 5803 SN - 0302-9743 T2 - Combinatorial image analysis TI - Construction of persistent Voronoi diagram on 3D digital plane VL - 10256 ER - TY - CONF AB - This papers introduces a definition of digital primitives based on focal points and weighted distances (with positive weights). The proposed definition is applicable to general dimensions and covers in its gamut various regular curves and surfaces like circles, ellipses, digital spheres and hyperspheres, ellipsoids and k-ellipsoids, Cartesian k-ovals, etc. Several interesting properties are presented for this class of digital primitives such as space partitioning, topological separation, and connectivity properties. To demonstrate further the potential of this new way of defining digital primitives, we propose, as extension, another class of digital conics defined by focus-directrix combination. AU - Andres, Eric AU - Biswas, Ranita AU - Bhowmick, Partha ID - 5802 SN - 0302-9743 T2 - 20th IAPR International Conference TI - Digital primitives defined by weighted focal set VL - 10502 ER - TY - JOUR AB - Bell correlations, indicating nonlocality in composite quantum systems, were until recently only seen in small systems. Here, we demonstrate Bell correlations in squeezed states of 5×105 Rb87 atoms. The correlations are inferred using collective measurements as witnesses and are statistically significant to 124 standard deviations. The states are both generated and characterized using optical-cavity aided measurements. AU - Engelsen, Nils AU - Krishnakumar, Rajiv AU - Hosten, Onur AU - Kasevich, Mark ID - 593 IS - 14 JF - Physical Review Letters TI - Bell correlations in spin-squeezed states of 500 000 atoms VL - 118 ER - TY - JOUR AB - Transcription initiation at the ribosomal RNA promoter requires RNA polymerase (Pol) I and the initiation factors Rrn3 and core factor (CF). Here, we combine X-ray crystallography and cryo-electron microscopy (cryo-EM) to obtain a molecular model for basal Pol I initiation. The three-subunit CF binds upstream promoter DNA, docks to the Pol I-Rrn3 complex, and loads DNA into the expanded active center cleft of the polymerase. DNA unwinding between the Pol I protrusion and clamp domains enables cleft contraction, resulting in an active Pol I conformation and RNA synthesis. Comparison with the Pol II system suggests that promoter specificity relies on a distinct “bendability” and “meltability” of the promoter sequence that enables contacts between initiation factors, DNA, and polymerase. AU - Engel, Christoph AU - Gubbey, Tobias AU - Neyer, Simon AU - Sainsbury, Sarah AU - Oberthuer, Christiane AU - Baejen, Carlo AU - Bernecky, Carrie A AU - Cramer, Patrick ID - 600 IS - 1 JF - Cell SN - 00928674 TI - Structural basis of RNA polymerase I transcription initiation VL - 169 ER - TY - CONF AB - Tunneling of a particle through a potential barrier remains one of the most remarkable quantum phenomena. Owing to advances in laser technology, electric fields comparable to those electrons experience in atoms are readily generated and open opportunities to dynamically investigate the process of electron tunneling through the potential barrier formed by the superposition of both laser and atomic fields. Attosecond-time and angstrom-space resolution of the strong laser-field technique allow to address fundamental questions related to tunneling, which are still open and debated: Which time is spent under the barrier and what momentum is picked up by the particle in the meantime? In this combined experimental and theoretical study we demonstrate that for strong-field ionization the leading quantum mechanical Wigner treatment for the time resolved description of tunneling is valid. We achieve a high sensitivity on the tunneling barrier and unambiguously isolate its effects by performing a differential study of two systems with almost identical tunneling geometry. Moreover, working with a low frequency laser, we essentially limit the non-adiabaticity of the process as a major source of uncertainty. The agreement between experiment and theory implies two substantial corrections with respect to the widely employed quasiclassical treatment: In addition to a non-vanishing longitudinal momentum along the laser field-direction we provide clear evidence for a non-zero tunneling time delay. This addresses also the fundamental question how the transition occurs from the tunnel barrier to free space classical evolution of the ejected electron. AU - Camus, Nicolas AU - Yakaboylu, Enderalp AU - Fechner, Lutz AU - Klaiber, Michael AU - Laux, Martin AU - Mi, Yonghao AU - Hatsagortsyan, Karen AU - Pfeifer, Thomas AU - Keitel, Cristoph AU - Moshammer, Robert ID - 313 IS - 1 SN - 17426588 TI - Experimental evidence for Wigner's tunneling time VL - 999 ER - TY - JOUR AB - The conserved polymerase-Associated factor 1 complex (Paf1C) plays multiple roles in chromatin transcription and genomic regulation. Paf1C comprises the five subunits Paf1, Leo1, Ctr9, Cdc73 and Rtf1, and binds to the RNA polymerase II (Pol II) transcription elongation complex (EC). Here we report the reconstitution of Paf1C from Saccharomyces cerevisiae, and a structural analysis of Paf1C bound to a Pol II EC containing the elongation factor TFIIS. Cryo-electron microscopy and crosslinking data reveal that Paf1C is highly mobile and extends over the outer Pol II surface from the Rpb2 to the Rpb3 subunit. The Paf1-Leo1 heterodimer and Cdc73 form opposite ends of Paf1C, whereas Ctr9 bridges between them. Consistent with the structural observations, the initiation factor TFIIF impairs Paf1C binding to Pol II, whereas the elongation factor TFIIS enhances it. We further show that Paf1C is globally required for normal mRNA transcription in yeast. These results provide a three-dimensional framework for further analysis of Paf1C function in transcription through chromatin. AU - Xu, Youwei AU - Bernecky, Carrie A AU - Lee, Chung AU - Maier, Kerstin AU - Schwalb, Björn AU - Tegunov, Dimitri AU - Plitzko, Jürgen AU - Urlaub, Henning AU - Cramer, Patrick ID - 601 JF - Nature Communications SN - 20411723 TI - Architecture of the RNA polymerase II-Paf1C-TFIIS transcription elongation complex VL - 8 ER - TY - JOUR AB - The first hundred attoseconds of the electron dynamics during strong field tunneling ionization are investigated. We quantify theoretically how the electron’s classical trajectories in the continuum emerge from the tunneling process and test the results with those achieved in parallel from attoclock measurements. An especially high sensitivity on the tunneling barrier is accomplished here by comparing the momentum distributions of two atomic species of slightly deviating atomic potentials (argon and krypton) being ionized under absolutely identical conditions with near-infrared laser pulses (1300 nm). The agreement between experiment and theory provides clear evidence for a nonzero tunneling time delay and a nonvanishing longitudinal momentum of the electron at the “tunnel exit.” AU - Camus, Nicolas AU - Yakaboylu, Enderalp AU - Fechner, Lutz AU - Klaiber, Michael AU - Laux, Martin AU - Mi, Yonghao AU - Hatsagortsyan, Karen Z. AU - Pfeifer, Thomas AU - Keitel, Christoph H. AU - Moshammer, Robert ID - 6013 IS - 2 JF - Physical Review Letters SN - 0031-9007 TI - Experimental evidence for quantum tunneling time VL - 119 ER - TY - JOUR AB - During transcription, RNA polymerase II (Pol II) associates with the conserved elongation factor DSIF. DSIF renders the elongation complex stable and functions during Pol II pausing and RNA processing. We combined cryo-EM and X-ray crystallography to determine the structure of the mammalian Pol II-DSIF elongation complex at a nominal resolution of 3.4. Human DSIF has a modular structure with two domains forming a DNA clamp, two domains forming an RNA clamp, and one domain buttressing the RNA clamp. The clamps maintain the transcription bubble, position upstream DNA, and retain the RNA transcript in the exit tunnel. The mobile C-terminal region of DSIF is located near exiting RNA, where it can recruit factors for RNA processing. The structure provides insight into the roles of DSIF during mRNA synthesis. AU - Bernecky, Carrie A AU - Plitzko, Jürgen AU - Cramer, Patrick ID - 603 IS - 10 JF - Nature Structural and Molecular Biology SN - 15459993 TI - Structure of a transcribing RNA polymerase II-DSIF complex reveals a multidentate DNA-RNA clamp VL - 24 ER - TY - CONF AB - Position based cryptography (PBC), proposed in the seminal work of Chandran, Goyal, Moriarty, and Ostrovsky (SIAM J. Computing, 2014), aims at constructing cryptographic schemes in which the identity of the user is his geographic position. Chandran et al. construct PBC schemes for secure positioning and position-based key agreement in the bounded-storage model (Maurer, J. Cryptology, 1992). Apart from bounded memory, their security proofs need a strong additional restriction on the power of the adversary: he cannot compute joint functions of his inputs. Removing this assumption is left as an open problem. We show that an answer to this question would resolve a long standing open problem in multiparty communication complexity: finding a function that is hard to compute with low communication complexity in the simultaneous message model, but easy to compute in the fully adaptive model. On a more positive side: we also show some implications in the other direction, i.e.: we prove that lower bounds on the communication complexity of certain multiparty problems imply existence of PBC primitives. Using this result we then show two attractive ways to “bypass” our hardness result: the first uses the random oracle model, the second weakens the locality requirement in the bounded-storage model to online computability. The random oracle construction is arguably one of the simplest proposed so far in this area. Our results indicate that constructing improved provably secure protocols for PBC requires a better understanding of multiparty communication complexity. This is yet another example where negative results in one area (in our case: lower bounds in multiparty communication complexity) can be used to construct secure cryptographic schemes. AU - Brody, Joshua AU - Dziembowski, Stefan AU - Faust, Sebastian AU - Pietrzak, Krzysztof Z ED - Kalai, Yael ED - Reyzin, Leonid ID - 605 SN - 978-331970499-9 TI - Position based cryptography and multiparty communication complexity VL - 10677 ER - TY - CHAP AB - In several settings of physics and chemistry one has to deal with molecules interacting with some kind of an external environment, be it a gas, a solution, or a crystal surface. Understanding molecular processes in the presence of such a many-particle bath is inherently challenging, and usually requires large-scale numerical computations. Here, we present an alternative approach to the problem, based on the notion of the angulon quasiparticle. We show that molecules rotating inside superfluid helium nanodroplets and Bose–Einstein condensates form angulons, and therefore can be described by straightforward solutions of a simple microscopic Hamiltonian. Casting the problem in the language of angulons allows us not only to greatly simplify it, but also to gain insights into the origins of the observed phenomena and to make predictions for future experimental studies. AU - Lemeshko, Mikhail AU - Schmidt, Richard ED - Dulieu, Oliver ED - Osterwalder, Andreas ID - 604 SN - 20413181 T2 - Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero TI - Molecular impurities interacting with a many-particle environment: From ultracold gases to helium nanodroplets VL - 11 ER - TY - JOUR AB - Neutrophils or polymorphonuclear cells (PMN) eliminate bacteria via phagocytosis and/or NETosis. Apartfrom these conventional roles, PMN also have immune-regulatory functions. They can transdifferentiateand upregulate MHCII as well as ligands for costimulatory receptors which enables them to behave asantigen presenting cells (APC). The initial step for activating T-cells is the formation of an immunesynapse between T-cells and antigen-presenting cells. However, the immune synapse that develops atthe PMN/T-cell contact zone is as yet hardly investigated due to the non-availability of methods foranalysis of large number of PMN interactions. In order to overcome these obstacles, we introduce herea workflow to analyse the immune synapse of primary human PMN and T-cells using multispectral imag-ing flow cytometry (InFlow microscopy) and super-resolution microscopy. For that purpose, we used CD3and CD66b as the lineage markers for T-cells and PMN, respectively. Thereafter, we applied and criticallydiscussed various ‘‘masks” for identification of T-cell PMN interactions. Using this approach, we foundthat a small fraction of transdifferentiated PMN (CD66b+CD86high) formed stable PMN/T-cell conjugates.Interestingly, while both CD3 and CD66b accumulation in the immune synapse was dependent on thematuration state of the PMN, only CD3 accumulation was greatly enhanced by the presence of superanti-gen. The actin cytoskeleton was weakly rearranged at the PMN side on the immune synapse upon contactwith a T-cell in the presence of superantigen. A more detailed analysis using super-resolution microscopy(structured-illumination microscopy, SIM) confirmed this finding. Together, we present an InFlow micro-scopy based approach for the large scale analysis of PMN/T-cell interactions and – combined with SIM – apossibility for an in-depth analysis of protein translocation at the site of interactions. AU - Balta, Emre AU - Stopp, Julian A AU - Castelletti, Laura AU - Kirchgessner, Henning AU - Samstag, Yvonne AU - Wabnitz, Guido H. ID - 6059 IS - 1 JF - Methods SN - 1046-2023 TI - Qualitative and quantitative analysis of PMN/T-cell interactions by InFlow and super-resolution microscopy VL - 112 ER - TY - CONF AB - Several cryptographic schemes and applications are based on functions that are both reasonably efficient to compute and moderately hard to invert, including client puzzles for Denial-of-Service protection, password protection via salted hashes, or recent proof-of-work blockchain systems. Despite their wide use, a definition of this concept has not yet been distilled and formalized explicitly. Instead, either the applications are proven directly based on the assumptions underlying the function, or some property of the function is proven, but the security of the application is argued only informally. The goal of this work is to provide a (universal) definition that decouples the efforts of designing new moderately hard functions and of building protocols based on them, serving as an interface between the two. On a technical level, beyond the mentioned definitions, we instantiate the model for four different notions of hardness. We extend the work of Alwen and Serbinenko (STOC 2015) by providing a general tool for proving security for the first notion of memory-hard functions that allows for provably secure applications. The tool allows us to recover all of the graph-theoretic techniques developed for proving security under the older, non-composable, notion of security used by Alwen and Serbinenko. As an application of our definition of moderately hard functions, we prove the security of two different schemes for proofs of effort (PoE). We also formalize and instantiate the concept of a non-interactive proof of effort (niPoE), in which the proof is not bound to a particular communication context but rather any bit-string chosen by the prover. AU - Alwen, Joel F AU - Tackmann, Björn ED - Kalai, Yael ED - Reyzin, Leonid ID - 609 SN - 978-331970499-9 TI - Moderately hard functions: Definition, instantiations, and applications VL - 10677 ER - TY - JOUR AB - The fact that the complete graph K5 does not embed in the plane has been generalized in two independent directions. On the one hand, the solution of the classical Heawood problem for graphs on surfaces established that the complete graph Kn embeds in a closed surface M (other than the Klein bottle) if and only if (n−3)(n−4) ≤ 6b1(M), where b1(M) is the first Z2-Betti number of M. On the other hand, van Kampen and Flores proved that the k-skeleton of the n-dimensional simplex (the higher-dimensional analogue of Kn+1) embeds in R2k if and only if n ≤ 2k + 1. Two decades ago, Kühnel conjectured that the k-skeleton of the n-simplex embeds in a compact, (k − 1)-connected 2k-manifold with kth Z2-Betti number bk only if the following generalized Heawood inequality holds: (k+1 n−k−1) ≤ (k+1 2k+1)bk. This is a common generalization of the case of graphs on surfaces as well as the van Kampen–Flores theorem. In the spirit of Kühnel’s conjecture, we prove that if the k-skeleton of the n-simplex embeds in a compact 2k-manifold with kth Z2-Betti number bk, then n ≤ 2bk(k 2k+2)+2k+4. This bound is weaker than the generalized Heawood inequality, but does not require the assumption that M is (k−1)-connected. Our results generalize to maps without q-covered points, in the spirit of Tverberg’s theorem, for q a prime power. Our proof uses a result of Volovikov about maps that satisfy a certain homological triviality condition. AU - Goaoc, Xavier AU - Mabillard, Isaac AU - Paták, Pavel AU - Patakova, Zuzana AU - Tancer, Martin AU - Wagner, Uli ID - 610 IS - 2 JF - Israel Journal of Mathematics TI - On generalized Heawood inequalities for manifolds: A van Kampen–Flores type nonembeddability result VL - 222 ER - TY - JOUR AB - Animals adjust their behavioral priorities according to momentary needs and prior experience. We show that Caenorhabditis elegans changes how it processes sensory information according to the oxygen environment it experienced recently. C. elegans acclimated to 7% O2 are aroused by CO2 and repelled by pheromones that attract animals acclimated to 21% O2. This behavioral plasticity arises from prolonged activity differences in a circuit that continuously signals O2 levels. A sustained change in the activity of O2-sensing neurons reprograms the properties of their postsynaptic partners, the RMG hub interneurons. RMG is gap-junctionally coupled to the ASK and ADL pheromone sensors that respectively drive pheromone attraction and repulsion. Prior O2 experience has opposite effects on the pheromone responsiveness of these neurons. These circuit changes provide a physiological correlate of altered pheromone valence. Our results suggest C. elegans stores a memory of recent O2 experience in the RMG circuit and illustrate how a circuit is flexibly sculpted to guide behavioral decisions in a context-dependent manner. AU - Fenk, Lorenz A. AU - de Bono, Mario ID - 6115 IS - 16 JF - Proceedings of the National Academy of Sciences SN - 0027-8424 TI - Memory of recent oxygen experience switches pheromone valence inCaenorhabditis elegans VL - 114 ER - TY - JOUR AB - Interleukin-17 (IL-17) is a major pro-inflammatory cytokine: it mediates responses to pathogens or tissue damage, and drives autoimmune diseases. Little is known about its role in the nervous system. Here we show that IL-17 has neuromodulator-like properties in Caenorhabditis elegans. IL-17 can act directly on neurons to alter their response properties and contribution to behaviour. Using unbiased genetic screens, we delineate an IL-17 signalling pathway and show that it acts in the RMG hub interneurons. Disrupting IL-17 signalling reduces RMG responsiveness to input from oxygen sensors, and renders sustained escape from 21% oxygen transient and contingent on additional stimuli. Over-activating IL-17 receptors abnormally heightens responses to 21% oxygen in RMG neurons and whole animals. IL-17 deficiency can be bypassed by optogenetic stimulation of RMG. Inducing IL-17 expression in adults can rescue mutant defects within 6 h. These findings reveal a non-immunological role of IL-17 modulating circuit function and behaviour. AU - Chen, Changchun AU - Itakura, Eisuke AU - Nelson, Geoffrey M. AU - Sheng, Ming AU - Laurent, Patrick AU - Fenk, Lorenz A. AU - Butcher, Rebecca A. AU - Hegde, Ramanujan S. AU - de Bono, Mario ID - 6117 IS - 7639 JF - Nature SN - 0028-0836 TI - IL-17 is a neuromodulator of Caenorhabditis elegans sensory responses VL - 542 ER - TY - JOUR AB - Small RNAs (sRNAs) regulate genes in plants and animals. Here, we show that population-wide differences in color patterns in snapdragon flowers are caused by an inverted duplication that generates sRNAs. The complexity and size of the transcripts indicate that the duplication represents an intermediate on the pathway to microRNA evolution. The sRNAs repress a pigment biosynthesis gene, creating a yellow highlight at the site of pollinator entry. The inverted duplication exhibits steep clines in allele frequency in a natural hybrid zone, showing that the allele is under selection. Thus, regulatory interactions of evolutionarily recent sRNAs can be acted upon by selection and contribute to the evolution of phenotypic diversity. AU - Bradley, Desmond AU - Xu, Ping AU - Mohorianu, Irina AU - Whibley, Annabel AU - Field, David AU - Tavares, Hugo AU - Couchman, Matthew AU - Copsey, Lucy AU - Carpenter, Rosemary AU - Li, Miaomiao AU - Li, Qun AU - Xue, Yongbiao AU - Dalmay, Tamas AU - Coen, Enrico ID - 611 IS - 6365 JF - Science SN - 00368075 TI - Evolution of flower color pattern through selection on regulatory small RNAs VL - 358 ER - TY - JOUR AU - Oda, Shigekazu AU - Toyoshima, Yu AU - de Bono, Mario ID - 6113 IS - 23 JF - Proceedings of the National Academy of Sciences SN - 0027-8424 TI - Modulation of sensory information processing by a neuroglobin in Caenorhabditis elegans VL - 114 ER - TY - JOUR AB - Bacteria in groups vary individually, and interact with other bacteria and the environment to produce population-level patterns of gene expression. Investigating such behavior in detail requires measuring and controlling populations at the single-cell level alongside precisely specified interactions and environmental characteristics. Here we present an automated, programmable platform that combines image-based gene expression and growth measurements with on-line optogenetic expression control for hundreds of individual Escherichia coli cells over days, in a dynamically adjustable environment. This integrated platform broadly enables experiments that bridge individual and population behaviors. We demonstrate: (i) population structuring by independent closed-loop control of gene expression in many individual cells, (ii) cell-cell variation control during antibiotic perturbation, (iii) hybrid bio-digital circuits in single cells, and freely specifiable digital communication between individual bacteria. These examples showcase the potential for real-time integration of theoretical models with measurement and control of many individual cells to investigate and engineer microbial population behavior. AU - Chait, Remy P AU - Ruess, Jakob AU - Bergmiller, Tobias AU - Tkacik, Gasper AU - Guet, Calin C ID - 613 IS - 1 JF - Nature Communications SN - 20411723 TI - Shaping bacterial population behavior through computer interfaced control of individual cells VL - 8 ER - TY - JOUR AB - We show that the Dyson Brownian Motion exhibits local universality after a very short time assuming that local rigidity and level repulsion of the eigenvalues hold. These conditions are verified, hence bulk spectral universality is proven, for a large class of Wigner-like matrices, including deformed Wigner ensembles and ensembles with non-stochastic variance matrices whose limiting densities differ from Wigner's semicircle law. AU - Erdös, László AU - Schnelli, Kevin ID - 615 IS - 4 JF - Annales de l'institut Henri Poincare (B) Probability and Statistics SN - 02460203 TI - Universality for random matrix flows with time dependent density VL - 53 ER - TY - JOUR AB - Background: Increasing temperatures are predicted to strongly impact host-parasite interactions, but empirical tests are rare. Host species that are naturally exposed to a broad temperature spectrum offer the possibility to investigate the effects of elevated temperatures on hosts and parasites. Using three-spined sticklebacks, Gasterosteus aculeatus L., and tapeworms, Schistocephalus solidus (Müller, 1776), originating from a cold and a warm water site of a volcanic lake, we subjected sympatric and allopatric host-parasite combinations to cold and warm conditions in a fully crossed design. We predicted that warm temperatures would promote the development of the parasites, while the hosts might benefit from cooler temperatures. We further expected adaptations to the local temperature and mutual adaptations of local host-parasite pairs. Results: Overall, S. solidus parasites grew faster at warm temperatures and stickleback hosts at cold temperatures. On a finer scale, we observed that parasites were able to exploit their hosts more efficiently at the parasite’s temperature of origin. In contrast, host tolerance towards parasite infection was higher when sticklebacks were infected with parasites at the parasite’s ‘foreign’ temperature. Cold-origin sticklebacks tended to grow faster and parasite infection induced a stronger immune response. Conclusions: Our results suggest that increasing environmental temperatures promote the parasite rather than the host and that host tolerance is dependent on the interaction between parasite infection and temperature. Sticklebacks might use tolerance mechanisms towards parasite infection in combination with their high plasticity towards temperature changes to cope with increasing parasite infection pressures and rising temperatures. AU - Franke, Frederik AU - Armitage, Sophie AU - Kutzer, Megan AU - Kurtz, Joachim AU - Scharsack, Jörn ID - 618 IS - 252 JF - Parasites & Vectors SN - 17563305 TI - Environmental temperature variation influences fitness trade-offs in a fish-tapeworm association VL - 10 ER - TY - CHAP AB - Genetic factors might be largely responsible for the development of autism spectrum disorder (ASD) that alone or in combination with specific environmental risk factors trigger the pathology. Multiple mutations identified in ASD patients that impair synaptic function in the central nervous system are well studied in animal models. How these mutations might interact with other risk factors is not fully understood though. Additionally, how systems outside of the brain are altered in the context of ASD is an emerging area of research. Extracerebral influences on the physiology could begin in utero and contribute to changes in the brain and in the development of other body systems and further lead to epigenetic changes. Therefore, multiple recent studies have aimed at elucidating the role of gene-environment interactions in ASD. Here we provide an overview on the extracerebral systems that might play an important associative role in ASD and review evidence regarding the potential roles of inflammation, trace metals, metabolism, genetic susceptibility, enteric nervous system function and the microbiota of the gastrointestinal (GI) tract on the development of endophenotypes in animal models of ASD. By influencing environmental conditions, it might be possible to reduce or limit the severity of ASD pathology. AU - Hill Yardin, Elisa AU - Mckeown, Sonja AU - Novarino, Gaia AU - Grabrucker, Andreas ED - Schmeisser, Michael ED - Boekers, Tobias ID - 623 SN - 03015556 T2 - Translational Anatomy and Cell Biology of Autism Spectrum Disorder TI - Extracerebral dysfunction in animal models of autism spectrum disorder VL - 224 ER - TY - JOUR AB - Our focus here is on the infinitesimal model. In this model, one or several quantitative traits are described as the sum of a genetic and a non-genetic component, the first being distributed within families as a normal random variable centred at the average of the parental genetic components, and with a variance independent of the parental traits. Thus, the variance that segregates within families is not perturbed by selection, and can be predicted from the variance components. This does not necessarily imply that the trait distribution across the whole population should be Gaussian, and indeed selection or population structure may have a substantial effect on the overall trait distribution. One of our main aims is to identify some general conditions on the allelic effects for the infinitesimal model to be accurate. We first review the long history of the infinitesimal model in quantitative genetics. Then we formulate the model at the phenotypic level in terms of individual trait values and relationships between individuals, but including different evolutionary processes: genetic drift, recombination, selection, mutation, population structure, …. We give a range of examples of its application to evolutionary questions related to stabilising selection, assortative mating, effective population size and response to selection, habitat preference and speciation. We provide a mathematical justification of the model as the limit as the number M of underlying loci tends to infinity of a model with Mendelian inheritance, mutation and environmental noise, when the genetic component of the trait is purely additive. We also show how the model generalises to include epistatic effects. We prove in particular that, within each family, the genetic components of the individual trait values in the current generation are indeed normally distributed with a variance independent of ancestral traits, up to an error of order 1∕M. Simulations suggest that in some cases the convergence may be as fast as 1∕M. AU - Barton, Nicholas H AU - Etheridge, Alison AU - Véber, Amandine ID - 626 JF - Theoretical Population Biology SN - 00405809 TI - The infinitesimal model: Definition derivation and implications VL - 118 ER - TY - CHAP AB - In the analysis of reactive systems a quantitative objective assigns a real value to every trace of the system. The value decision problem for a quantitative objective requires a trace whose value is at least a given threshold, and the exact value decision problem requires a trace whose value is exactly the threshold. We compare the computational complexity of the value and exact value decision problems for classical quantitative objectives, such as sum, discounted sum, energy, and mean-payoff for two standard models of reactive systems, namely, graphs and graph games. AU - Chatterjee, Krishnendu AU - Doyen, Laurent AU - Henzinger, Thomas A ED - Aceto, Luca ED - Bacci, Giorgio ED - Ingólfsdóttir, Anna ED - Legay, Axel ED - Mardare, Radu ID - 625 SN - 0302-9743 T2 - Models, Algorithms, Logics and Tools TI - The cost of exactness in quantitative reachability VL - 10460 ER - TY - JOUR AB - Bacteria adapt to adverse environmental conditions by altering gene expression patterns. Recently, a novel stress adaptation mechanism has been described that allows Escherichia coli to alter gene expression at the post-transcriptional level. The key player in this regulatory pathway is the endoribonuclease MazF, the toxin component of the toxin-antitoxin module mazEF that is triggered by various stressful conditions. In general, MazF degrades the majority of transcripts by cleaving at ACA sites, which results in the retardation of bacterial growth. Furthermore, MazF can process a small subset of mRNAs and render them leaderless by removing their ribosome binding site. MazF concomitantly modifies ribosomes, making them selective for the translation of leaderless mRNAs. In this study, we employed fluorescent reporter-systems to investigate mazEF expression during stressful conditions, and to infer consequences of the mRNA processing mediated by MazF on gene expression at the single-cell level. Our results suggest that mazEF transcription is maintained at low levels in single cells encountering adverse conditions, such as antibiotic stress or amino acid starvation. Moreover, using the grcA mRNA as a model for MazF-mediated mRNA processing, we found that MazF activation promotes heterogeneity in the grcA reporter expression, resulting in a subpopulation of cells with increased levels of GrcA reporter protein. AU - Nikolic, Nela AU - Didara, Zrinka AU - Moll, Isabella ID - 624 IS - 9 JF - PeerJ SN - 21678359 TI - MazF activation promotes translational heterogeneity of the grcA mRNA in Escherichia coli populations VL - 2017 ER -