@article{11961, abstract = {Flow chemistry involves the use of channels or tubing to conduct a reaction in a continuous stream rather than in a flask. Flow equipment provides chemists with unique control over reaction parameters enhancing reactivity or in some cases enabling new reactions. This relatively young technology has received a remarkable amount of attention in the past decade with many reports on what can be done in flow. Until recently, however, the question, “Should we do this in flow?” has merely been an afterthought. This review introduces readers to the basic principles and fundamentals of flow chemistry and critically discusses recent flow chemistry accounts.}, author = {Plutschack, Matthew B. and Pieber, Bartholomäus and Gilmore, Kerry and Seeberger, Peter H.}, issn = {1520-6890}, journal = {Chemical Reviews}, number = {18}, pages = {11796--11893}, publisher = {American Chemical Society}, title = {{The Hitchhiker’s Guide to flow chemistry}}, doi = {10.1021/acs.chemrev.7b00183}, volume = {117}, year = {2017}, } @article{11976, abstract = {The way organic multistep synthesis is performed is changing due to the adoption of flow chemical techniques, which has enabled the development of improved methods to make complex molecules. The modular nature of the technique provides not only access to target molecules via linear flow approaches but also for the targeting of structural cores with single systems. This perspective article summarizes the state of the art of continuous multistep synthesis and discusses the main challenges and opportunities in this area.}, author = {Pieber, Bartholomäus and Gilmore, Kerry and Seeberger, Peter H.}, issn = {2063-0212}, journal = {Journal of Flow Chemistry}, number = {3-4}, pages = {129--136}, publisher = {AKJournals}, title = {{Integrated flow processing - challenges in continuous multistep synthesis}}, doi = {10.1556/1846.2017.00016}, volume = {7}, year = {2017}, } @article{1211, abstract = {Systems such as fluid flows in channels and pipes or the complex Ginzburg–Landau system, defined over periodic domains, exhibit both continuous symmetries, translational and rotational, as well as discrete symmetries under spatial reflections or complex conjugation. The simplest, and very common symmetry of this type is the equivariance of the defining equations under the orthogonal group O(2). We formulate a novel symmetry reduction scheme for such systems by combining the method of slices with invariant polynomial methods, and show how it works by applying it to the Kuramoto–Sivashinsky system in one spatial dimension. As an example, we track a relative periodic orbit through a sequence of bifurcations to the onset of chaos. Within the symmetry-reduced state space we are able to compute and visualize the unstable manifolds of relative periodic orbits, their torus bifurcations, a transition to chaos via torus breakdown, and heteroclinic connections between various relative periodic orbits. It would be very hard to carry through such analysis in the full state space, without a symmetry reduction such as the one we present here.}, author = {Budanur, Nazmi B and Cvitanović, Predrag}, journal = {Journal of Statistical Physics}, number = {3-4}, pages = {636--655}, publisher = {Springer}, title = {{Unstable manifolds of relative periodic orbits in the symmetry reduced state space of the Kuramoto–Sivashinsky system}}, doi = {10.1007/s10955-016-1672-z}, volume = {167}, year = {2017}, } @article{123, abstract = {The Leidenfrost effect occurs when an object near a hot surface vaporizes rapidly enough to lift itself up and hover. Although well understood for liquids and stiff sublimable solids, nothing is known about the effect with materials whose stiffness lies between these extremes. Here we introduce a new phenomenon that occurs with vaporizable soft solids - the elastic Leidenfrost effect. By dropping hydrogel spheres onto hot surfaces we find that, rather than hovering, they energetically bounce several times their diameter for minutes at a time. With high-speed video during a single impact, we uncover high-frequency microscopic gap dynamics at the sphere/substrate interface. We show how these otherwise-hidden agitations constitute work cycles that harvest mechanical energy from the vapour and sustain the bouncing. Our findings suggest a new strategy for injecting mechanical energy into a widely used class of soft materials, with potential relevance to fields such as active matter, soft robotics and microfluidics.}, author = {Waitukaitis, Scott R and Zuiderwijk, Antal and Souslov, Anton and Coulais, Corentin and Van Hecke, Martin}, journal = {Nature Physics}, number = {11}, pages = {1095 -- 1099}, publisher = {Nature Publishing Group}, title = {{Coupling the Leidenfrost effect and elastic deformations to power sustained bouncing}}, doi = {10.1038/nphys4194}, volume = {13}, year = {2017}, } @inproceedings{12571, abstract = {We consider the problems of maintaining approximate maximum matching and minimum vertex cover in a dynamic graph. Starting with the seminal work of Onak and Rubinfeld [STOC 2010], this problem has received significant attention in recent years. Very recently, extending the framework of Baswana, Gupta and Sen [FOCS 2011], Solomon [FOCS 2016] gave a randomized 2-approximation dynamic algorithm for this problem that has amortized update time of O(1) with high probability. We consider the natural open question of derandomizing this result. We present a new deterministic fully dynamic algorithm that maintains a O(1)-approximate minimum vertex cover and maximum fractional matching, with an amortized update time of O(1). Previously, the best deterministic algorithm for this problem was due to Bhattacharya, Henzinger and Italiano [SODA 2015]; it had an approximation ratio of (2+ϵ) and an amortized update time of O(logn/ϵ2). Our result can be generalized to give a fully dynamic O(f3)-approximation algorithm with O(f2) amortized update time for the hypergraph vertex cover and fractional matching problems, where every hyperedge has at most f vertices.}, author = {Bhattacharya, Sayan and Chakrabarty, Deeparnab and Henzinger, Monika H}, booktitle = {19th International Conference on Integer Programming and Combinatorial Optimization}, isbn = {9783319592497}, issn = {0302-9743}, location = {Waterloo, ON, Canada}, pages = {86--98}, publisher = {Springer Nature}, title = {{Deterministic fully dynamic approximate vertex cover and fractional matching in O(1) amortized update time}}, doi = {10.1007/978-3-319-59250-3_8}, volume = {10328}, year = {2017}, }