@article{392, abstract = {We used femtosecond optical pump-probe spectroscopy to study the photoinduced change in reflectivity of thin films of the electron-doped cuprate La2-xCexCuO4 (LCCO) with dopings of x=0.08 (underdoped) and x=0.11 (optimally doped). Above Tc, we observe fluence-dependent relaxation rates that begin at a temperature similar to the one where transport measurements first show signatures of antiferromagnetic correlations. Upon suppressing superconductivity with a magnetic field, it is found that the fluence and temperature dependence of relaxation rates are consistent with bimolecular recombination of electrons and holes across a gap (2ΔAF) originating from antiferromagnetic correlations which comprise the pseudogap in electron-doped cuprates. This can be used to learn about coupling between electrons and high-energy (ω>2ΔAF) excitations in these compounds and set limits on the time scales on which antiferromagnetic correlations are static.}, author = {Vishik, Inna and Mahmood, Fahad and Alpichshev, Zhanybek and Gedik, Nuh and Higgins, Joshu and Greene, Richard}, journal = {Physical Review B}, number = {11}, publisher = {American Physical Society}, title = {{Ultrafast dynamics in the presence of antiferromagnetic correlations in electron doped cuprate La2 xCexCuO4±δ}}, doi = {10.1103/PhysRevB.95.115125}, volume = {95}, year = {2017}, } @article{443, abstract = {Pancreatic cancer has a five-year survival rate of ~8%, with characteristic molecular heterogeneity and restricted treatment options. Targeting metabolism has emerged as a potentially effective therapeutic strategy for cancers such as pancreatic cancer, which are driven by genetic alterations that are not tractable drug targets. Although somatic mitochondrial genome (mtDNA) mutations have been observed in various tumors types, understanding of metabolic genotype-phenotype relationships is limited.}, author = {Hardie, Rae and Van Dam, Ellen and Cowley, Mark and Han, Ting and Balaban, Seher and Pajic, Marina and Pinese, Mark and Iconomou, Mary and Shearer, Robert and Mckenna, Jessie and Miller, David and Waddell, Nicola and Pearson, John and Grimmond, Sean and Sazanov, Leonid A and Biankin, Andrew and Villas Boas, Silas and Hoy, Andrew and Turner, Nigel and Saunders, Darren}, journal = {Cancer & Metabolism}, number = {2}, publisher = {BioMed Central}, title = {{Mitochondrial mutations and metabolic adaptation in pancreatic cancer}}, doi = {10.1186/s40170-017-0164-1}, volume = {5}, year = {2017}, } @inbook{444, abstract = {Complex I (NADH:ubiquinone oxidoreductase) plays a central role in cellular energy generation, contributing to the proton motive force used to produce ATP. It couples the transfer of two electrons between NADH and quinone to translocation of four protons across the membrane. It is the largest protein assembly of bacterial and mitochondrial respiratory chains, composed, in mammals, of up to 45 subunits with a total molecular weight of ∼1 MDa. Bacterial enzyme is about half the size, providing the important “minimal” model of complex I. The l-shaped complex consists of a hydrophilic arm, where electron transfer occurs, and a membrane arm, where proton translocation takes place. Previously, we have solved the crystal structures of the hydrophilic domain of complex I from Thermus thermophilus and of the membrane domain from Escherichia coli, followed by the atomic structure of intact, entire complex I from T. thermophilus. Recently, we have solved by cryo-EM a first complete atomic structure of mammalian (ovine) mitochondrial complex I. Core subunits are well conserved from the bacterial version, whilst supernumerary subunits form an interlinked, stabilizing shell around the core. Subunits containing additional cofactors, including Zn ion, NADPH and phosphopantetheine, probably have regulatory roles. Dysfunction of mitochondrial complex I is implicated in many human neurodegenerative diseases. The structure of mammalian enzyme provides many insights into complex I mechanism, assembly, maturation and dysfunction, allowing detailed molecular analysis of disease-causing mutations.}, author = {Sazanov, Leonid A}, booktitle = {Mechanisms of primary energy transduction in biology }, editor = {Wikström, Mårten}, isbn = {978-1-78262-865-1}, pages = {25 -- 59}, publisher = {Royal Society of Chemistry}, title = {{Structure of respiratory complex I: “Minimal” bacterial and “de luxe” mammalian versions}}, doi = {10.1039/9781788010405-00025}, year = {2017}, } @article{445, abstract = {The Loschmidt echo, defined as the overlap between quantum wave function evolved with different Hamiltonians, quantifies the sensitivity of quantum dynamics to perturbations and is often used as a probe of quantum chaos. In this work we consider the behavior of the Loschmidt echo in the many-body localized phase, which is characterized by emergent local integrals of motion and provides a generic example of nonergodic dynamics. We demonstrate that the fluctuations of the Loschmidt echo decay as a power law in time in the many-body localized phase, in contrast to the exponential decay in few-body ergodic systems. We consider the spin-echo generalization of the Loschmidt echo and argue that the corresponding correlation function saturates to a finite value in localized systems. Slow, power-law decay of fluctuations of such spin-echo-type overlap is related to the operator spreading and is present only in the many-body localized phase, but not in a noninteracting Anderson insulator. While most of the previously considered probes of dephasing dynamics could be understood by approximating physical spin operators with local integrals of motion, the Loschmidt echo and its generalizations crucially depend on the full expansion of the physical operators via local integrals of motion operators, as well as operators which flip local integrals of motion. Hence these probes allow one to get insights into the relation between physical operators and local integrals of motion and access the operator spreading in the many-body localized phase.}, author = {Maksym Serbyn and Abanin, Dimitry A}, journal = {Physical Review B - Condensed Matter and Materials Physics}, number = {1}, publisher = {American Physical Society}, title = {{Loschmidt echo in many body localized phases}}, doi = {10.1103/PhysRevB.96.014202}, volume = {96}, year = {2017}, } @article{452, abstract = {Spinning tops and yo-yos have long fascinated cultures around the world with their unexpected, graceful motions that seemingly elude gravity. Yet, due to the exceeding difficulty of creating stably spinning objects of asymmetric shape in a manual trial-and-error process, there has been little departure from rotationally symmetric designs. With modern 3D printing technologies, however, we can manufacture shapes of almost unbounded complexity at the press of a button, shifting this design complexity toward computation. In this article, we describe an algorithm to generate designs for spinning objects by optimizing their mass distribution: as input, the user provides a solid 3D model and a desired axis of rotation. Our approach then modifies the interior mass distribution such that the principal directions of the moment of inertia align with the target rotation frame. To create voids inside the model, we represent its volume with an adaptive multiresolution voxelization and optimize the discrete voxel fill values using a continuous, nonlinear formulation. We further optimize for rotational stability by maximizing the dominant principal moment. Our method is well-suited for a variety of 3D printed models, ranging from characters to abstract shapes. We demonstrate tops and yo-yos that spin surprisingly stably despite their asymmetric appearance.}, author = {Bächer, Moritz and Bickel, Bernd and Whiting, Emily and Sorkine Hornung, Olga}, journal = {Communications of the ACM}, number = {8}, pages = {92 -- 99}, publisher = {ACM}, title = {{Spin it: Optimizing moment of inertia for spinnable objects}}, doi = {10.1145/3068766}, volume = {60}, year = {2017}, } @article{453, abstract = {Most kinesin motors move in only one direction along microtubules. Members of the kinesin-5 subfamily were initially described as unidirectional plus-end-directed motors and shown to produce piconewton forces. However, some fungal kinesin-5 motors are bidirectional. The force production of a bidirectional kinesin-5 has not yet been measured. Therefore, it remains unknown whether the mechanism of the unconventional minus-end-directed motility differs fundamentally from that of plus-end-directed stepping. Using force spectroscopy, we have measured here the forces that ensembles of purified budding yeast kinesin-5 Cin8 produce in microtubule gliding assays in both plus- and minus-end direction. Correlation analysis of pause forces demonstrated that individual Cin8 molecules produce additive forces in both directions of movement. In ensembles, Cin8 motors were able to produce single-motor forces up to a magnitude of ∼1.5 pN. Hence, these properties appear to be conserved within the kinesin-5 subfamily. Force production was largely independent of the directionality of movement, indicating similarities between the motility mechanisms for both directions. These results provide constraints for the development of models for the bidirectional motility mechanism of fission yeast kinesin-5 and provide insight into the function of this mitotic motor.}, author = {Fallesen, Todd and Roostalu, Johanna and Düllberg, Christian F and Pruessner, Gunnar and Surrey, Thomas}, journal = {Biophysical Journal}, number = {9}, pages = {2055 -- 2067}, publisher = {Biophysical Society}, title = {{Ensembles of bidirectional kinesin Cin8 produce additive forces in both directions of movement}}, doi = {10.1016/j.bpj.2017.09.006}, volume = {113}, year = {2017}, } @article{464, abstract = {The computation of the winning set for parity objectives and for Streett objectives in graphs as well as in game graphs are central problems in computer-aided verification, with application to the verification of closed systems with strong fairness conditions, the verification of open systems, checking interface compatibility, well-formedness of specifications, and the synthesis of reactive systems. We show how to compute the winning set on n vertices for (1) parity-3 (aka one-pair Streett) objectives in game graphs in time O(n5/2) and for (2) k-pair Streett objectives in graphs in time O(n2+nklogn). For both problems this gives faster algorithms for dense graphs and represents the first improvement in asymptotic running time in 15 years.}, author = {Chatterjee, Krishnendu and Henzinger, Monika H and Loitzenbauer, Veronika}, issn = {1860-5974}, journal = {Logical Methods in Computer Science}, number = {3}, publisher = {International Federation of Computational Logic}, title = {{Improved algorithms for parity and Streett objectives}}, doi = {10.23638/LMCS-13(3:26)2017}, volume = {13}, year = {2017}, } @article{470, abstract = {This paper presents a method for simulating water surface waves as a displacement field on a 2D domain. Our method relies on Lagrangian particles that carry packets of water wave energy; each packet carries information about an entire group of wave trains, as opposed to only a single wave crest. Our approach is unconditionally stable and can simulate high resolution geometric details. This approach also presents a straightforward interface for artistic control, because it is essentially a particle system with intuitive parameters like wavelength and amplitude. Our implementation parallelizes well and runs in real time for moderately challenging scenarios.}, author = {Jeschke, Stefan and Wojtan, Christopher J}, issn = {07300301}, journal = {ACM Transactions on Graphics}, number = {4}, publisher = {ACM}, title = {{Water wave packets}}, doi = {10.1145/3072959.3073678}, volume = {36}, year = {2017}, } @article{471, abstract = {We present a new algorithm for the statistical model checking of Markov chains with respect to unbounded temporal properties, including full linear temporal logic. The main idea is that we monitor each simulation run on the fly, in order to detect quickly if a bottom strongly connected component is entered with high probability, in which case the simulation run can be terminated early. As a result, our simulation runs are often much shorter than required by termination bounds that are computed a priori for a desired level of confidence on a large state space. In comparison to previous algorithms for statistical model checking our method is not only faster in many cases but also requires less information about the system, namely, only the minimum transition probability that occurs in the Markov chain. In addition, our method can be generalised to unbounded quantitative properties such as mean-payoff bounds. }, author = {Daca, Przemyslaw and Henzinger, Thomas A and Kretinsky, Jan and Petrov, Tatjana}, issn = {15293785}, journal = {ACM Transactions on Computational Logic (TOCL)}, number = {2}, publisher = {ACM}, title = {{Faster statistical model checking for unbounded temporal properties}}, doi = {10.1145/3060139}, volume = {18}, year = {2017}, } @article{472, abstract = {α-Synuclein is a presynaptic protein the function of which has yet to be identified, but its neuronal content increases in patients of synucleinopa-thies including Parkinson’s disease. Chronic overexpression of α-synuclein reportedly expresses various phenotypes of synaptic dysfunction, but the primary target of its toxicity has not been determined. To investigate this, we acutely loaded human recombinant α-synuclein or its pathological mutants in their monomeric forms into the calyces of Held presynaptic terminals in slices from auditorily mature and immature rats of either sex. Membrane capacitance measurements revealed significant and specific inhibitory effects of WT monomeric α-synuclein on vesicle endocytosis throughout development. However, the α-synuclein A53T mutant affected vesicle endocytosis only at immature calyces, where as the A30P mutant had no effect throughout. The endocytic impairment by WTα-synuclein was rescued by intraterminal coloading of the microtubule (MT) polymerization blocker nocodazole. Furthermore, it was reversibly rescued by presynaptically loaded photostatin-1, a pho-toswitcheable inhibitor of MT polymerization, inalight-wavelength-dependent manner. Incontrast, endocyticinhibition by the A53T mutant at immature calyces was not rescued by nocodazole. Functionally, presynaptically loaded WT α-synuclein had no effect on basal synaptic transmission evoked at a low frequency, but significantly attenuated exocytosis and impaired the fidelity of neurotransmission during prolonged high-frequency stimulation. We conclude that monomeric WTα-synuclein primarily inhibits vesicle endocytosis via MT overassembly, thereby impairing high-frequency neurotransmission.}, author = {Eguchi, Kohgaku and Taoufiq, Zachari and Thorn Seshold, Oliver and Trauner, Dirk and Hasegawa, Masato and Takahashi, Tomoyuki}, issn = {02706474}, journal = {European Journal of Neuroscience}, number = {25}, pages = {6043 -- 6052}, publisher = {Wiley-Blackwell}, title = {{Wild-type monomeric α-synuclein can impair vesicle endocytosis and synaptic fidelity via tubulin polymerization at the calyx of held}}, doi = {10.1523/JNEUROSCI.0179-17.2017}, volume = {37}, year = {2017}, } @article{481, abstract = {We introduce planar matchings on directed pseudo-line arrangements, which yield a planar set of pseudo-line segments such that only matching-partners are adjacent. By translating the planar matching problem into a corresponding stable roommates problem we show that such matchings always exist. Using our new framework, we establish, for the first time, a complete, rigorous definition of weighted straight skeletons, which are based on a so-called wavefront propagation process. We present a generalized and unified approach to treat structural changes in the wavefront that focuses on the restoration of weak planarity by finding planar matchings.}, author = {Biedl, Therese and Huber, Stefan and Palfrader, Peter}, journal = {International Journal of Computational Geometry and Applications}, number = {3-4}, pages = {211 -- 229}, publisher = {World Scientific Publishing}, title = {{Planar matchings for weighted straight skeletons}}, doi = {10.1142/S0218195916600050}, volume = {26}, year = {2017}, } @article{484, abstract = {We consider the dynamics of a large quantum system of N identical bosons in 3D interacting via a two-body potential of the form N3β-1w(Nβ(x - y)). For fixed 0 = β < 1/3 and large N, we obtain a norm approximation to the many-body evolution in the Nparticle Hilbert space. The leading order behaviour of the dynamics is determined by Hartree theory while the second order is given by Bogoliubov theory.}, author = {Nam, Phan and Napiórkowski, Marcin M}, issn = {10950761}, journal = {Advances in Theoretical and Mathematical Physics}, number = {3}, pages = {683 -- 738}, publisher = {International Press}, title = {{Bogoliubov correction to the mean-field dynamics of interacting bosons}}, doi = {10.4310/ATMP.2017.v21.n3.a4}, volume = {21}, year = {2017}, } @article{483, abstract = {We prove the universality for the eigenvalue gap statistics in the bulk of the spectrum for band matrices, in the regime where the band width is comparable with the dimension of the matrix, W ~ N. All previous results concerning universality of non-Gaussian random matrices are for mean-field models. By relying on a new mean-field reduction technique, we deduce universality from quantum unique ergodicity for band matrices.}, author = {Bourgade, Paul and Erdös, László and Yau, Horng and Yin, Jun}, issn = {10950761}, journal = {Advances in Theoretical and Mathematical Physics}, number = {3}, pages = {739 -- 800}, publisher = {International Press}, title = {{Universality for a class of random band matrices}}, doi = {10.4310/ATMP.2017.v21.n3.a5}, volume = {21}, year = {2017}, } @inproceedings{487, abstract = {In this paper we study network architecture for unlicensed cellular networking for outdoor coverage in TV white spaces. The main technology proposed for TV white spaces is 802.11af, a Wi-Fi variant adapted for TV frequencies. However, 802.11af is originally designed for improved indoor propagation. We show that long links, typical for outdoor use, exacerbate known Wi-Fi issues, such as hidden and exposed terminal, and significantly reduce its efficiency. Instead, we propose CellFi, an alternative architecture based on LTE. LTE is designed for long-range coverage and throughput efficiency, but it is also designed to operate in tightly controlled and centrally managed networks. CellFi overcomes these problems by designing an LTE-compatible spectrum database component, mandatory for TV white space networking, and introducing an interference management component for distributed coordination. CellFi interference management is compatible with existing LTE mechanisms, requires no explicit communication between base stations, and is more efficient than CSMA for long links. We evaluate our design through extensive real world evaluation on of-the-shelf LTE equipment and simulations. We show that, compared to 802.11af, it increases coverage by 40% and reduces median flow completion times by 2.3x.}, author = {Baig, Ghufran and Radunovic, Bozidar and Alistarh, Dan-Adrian and Balkwill, Matthew and Karagiannis, Thomas and Qiu, Lili}, booktitle = {Proceedings of the 2017 13th International Conference on emerging Networking EXperiments and Technologies}, isbn = {978-145035422-6}, location = {Incheon, South Korea}, pages = {2 -- 14}, publisher = {ACM}, title = {{Towards unlicensed cellular networks in TV white spaces}}, doi = {10.1145/3143361.3143367}, year = {2017}, } @article{514, abstract = {Orientation in space is represented in specialized brain circuits. Persistent head direction signals are transmitted from anterior thalamus to the presubiculum, but the identity of the presubicular target neurons, their connectivity and function in local microcircuits are unknown. Here, we examine how thalamic afferents recruit presubicular principal neurons and Martinotti interneurons, and the ensuing synaptic interactions between these cells. Pyramidal neuron activation of Martinotti cells in superficial layers is strongly facilitating such that high-frequency head directional stimulation efficiently unmutes synaptic excitation. Martinotti-cell feedback plays a dual role: precisely timed spikes may not inhibit the firing of in-tune head direction cells, while exerting lateral inhibition. Autonomous attractor dynamics emerge from a modelled network implementing wiring motifs and timing sensitive synaptic interactions in the pyramidal - Martinotti-cell feedback loop. This inhibitory microcircuit is therefore tuned to refine and maintain head direction information in the presubiculum.}, author = {Simonnet, Jean and Nassar, Mérie and Stella, Federico and Cohen, Ivan and Mathon, Bertrand and Boccara, Charlotte and Miles, Richard and Fricker, Desdemona}, issn = {20411723}, journal = {Nature Communications}, publisher = {Nature Publishing Group}, title = {{Activity dependent feedback inhibition may maintain head direction signals in mouse presubiculum}}, doi = {10.1038/ncomms16032}, volume = {8}, year = {2017}, } @article{515, abstract = {The oxidative phosphorylation electron transport chain (OXPHOS-ETC) of the inner mitochondrial membrane is composed of five large protein complexes, named CI-CV. These complexes convert energy from the food we eat into ATP, a small molecule used to power a multitude of essential reactions throughout the cell. OXPHOS-ETC complexes are organized into supercomplexes (SCs) of defined stoichiometry: CI forms a supercomplex with CIII2 and CIV (SC I+III2+IV, known as the respirasome), as well as with CIII2 alone (SC I+III2). CIII2 forms a supercomplex with CIV (SC III2+IV) and CV forms dimers (CV2). Recent cryo-EM studies have revealed the structures of SC I+III2+IV and SC I+III2. Furthermore, recent work has shed light on the assembly and function of the SCs. Here we review and compare these recent studies and discuss how they have advanced our understanding of mitochondrial electron transport.}, author = {Letts, James A and Sazanov, Leonid A}, issn = {15459993}, journal = {Nature Structural and Molecular Biology}, number = {10}, pages = {800 -- 808}, publisher = {Nature Publishing Group}, title = {{Clarifying the supercomplex: The higher-order organization of the mitochondrial electron transport chain}}, doi = {10.1038/nsmb.3460}, volume = {24}, year = {2017}, } @article{513, abstract = {We present an experimental setup that creates a shear flow with zero mean advection velocity achieved by counterbalancing the nonzero streamwise pressure gradient by moving boundaries, which generates plane Couette-Poiseuille flow. We obtain experimental results in the transitional regime for this flow. Using flow visualization, we characterize the subcritical transition to turbulence in Couette-Poiseuille flow and show the existence of turbulent spots generated by a permanent perturbation. Due to the zero mean advection velocity of the base profile, these turbulent structures are nearly stationary. We distinguish two regions of the turbulent spot: the active turbulent core, which is characterized by waviness of the streaks similar to traveling waves, and the surrounding region, which includes in addition the weak undisturbed streaks and oblique waves at the laminar-turbulent interface. We also study the dependence of the size of these two regions on Reynolds number. Finally, we show that the traveling waves move in the downstream (Poiseuille) direction.}, author = {Klotz, Lukasz and Lemoult, Grégoire M and Frontczak, Idalia and Tuckerman, Laurette and Wesfreid, José}, journal = {Physical Review Fluids}, number = {4}, publisher = {American Physical Society}, title = {{Couette-Poiseuille flow experiment with zero mean advection velocity: Subcritical transition to turbulence}}, doi = {10.1103/PhysRevFluids.2.043904}, volume = {2}, year = {2017}, } @article{520, abstract = {Cyanobacteria are mostly engineered to be sustainable cell-factories by genetic manipulations alone. Here, by modulating the concentration of allosteric effectors, we focus on increasing product formation without further burdening the cells with increased expression of enzymes. Resorting to a novel 96-well microplate cultivation system for cyanobacteria, and using lactate-producing strains of Synechocystis PCC6803 expressing different l-lactate dehydrogenases (LDH), we titrated the effect of 2,5-anhydro-mannitol supplementation. The latter acts in cells as a nonmetabolizable analogue of fructose 1,6-bisphosphate, a known allosteric regulator of one of the tested LDHs. In this strain (SAA023), we achieved over 2-fold increase of lactate productivity. Furthermore, we observed that as carbon is increasingly deviated during growth toward product formation, there is an increased fixation rate in the population of spontaneous mutants harboring an impaired production pathway. This is a challenge in the development of green cell factories, which may be countered by the incorporation in biotechnological processes of strategies such as the one pioneered here.}, author = {Du, Wei and Angermayr, Andreas and Jongbloets, Joeri and Molenaar, Douwe and Bachmann, Herwig and Hellingwerf, Klaas and Branco Dos Santos, Filipe}, issn = {21615063}, journal = {ACS Synthetic Biology}, number = {3}, pages = {395 -- 401}, publisher = {American Chemical Society}, title = {{Nonhierarchical flux regulation exposes the fitness burden associated with lactate production in Synechocystis sp. PCC6803}}, doi = {10.1021/acssynbio.6b00235}, volume = {6}, year = {2017}, } @article{521, abstract = {Let X and Y be proper metric spaces. We show that a coarsely n-to-1 map f:X→Y induces an n-to-1 map of Higson coronas. This viewpoint turns out to be successful in showing that the classical dimension raising theorems hold in large scale; that is, if f:X→Y is a coarsely n-to-1 map between proper metric spaces X and Y then asdim(Y)≤asdim(X)+n−1. Furthermore we introduce coarsely open coarsely n-to-1 maps, which include the natural quotient maps via a finite group action, and prove that they preserve the asymptotic dimension.}, author = {Austin, Kyle and Virk, Ziga}, issn = {01668641}, journal = {Topology and its Applications}, pages = {45 -- 57}, publisher = {Elsevier}, title = {{Higson compactification and dimension raising}}, doi = {10.1016/j.topol.2016.10.005}, volume = {215}, year = {2017}, } @article{525, abstract = {The Casparian strip is an important barrier regulating water and nutrient uptake into root tissues. New research reveals two peptide signals and their co-receptors play critical roles patterning and maintaining barrier integrity. }, author = {Daniel von Wangenheim and Goh, Tatsuaki and Dietrich, Daniela and Bennett, Malcolm J}, journal = {Current Biology}, number = {5}, pages = {R172 -- R174}, publisher = {Cell Press}, title = {{Plant biology: Building barriers… in roots}}, doi = {10.1016/j.cub.2017.01.060}, volume = {27}, year = {2017}, }