@article{715, abstract = {D-cycloserine ameliorates breathing abnormalities and survival rate in a mouse model of Rett syndrome.}, author = {Novarino, Gaia}, issn = {19466234}, journal = {Science Translational Medicine}, number = {405}, publisher = {American Association for the Advancement of Science}, title = {{More excitation for Rett syndrome}}, doi = {10.1126/scitranslmed.aao4218}, volume = {9}, year = {2017}, } @article{716, abstract = {Two-player games on graphs are central in many problems in formal verification and program analysis, such as synthesis and verification of open systems. In this work, we consider solving recursive game graphs (or pushdown game graphs) that model the control flow of sequential programs with recursion.While pushdown games have been studied before with qualitative objectives-such as reachability and ?-regular objectives- in this work, we study for the first time such games with the most well-studied quantitative objective, the mean-payoff objective. In pushdown games, two types of strategies are relevant: (1) global strategies, which depend on the entire global history; and (2) modular strategies, which have only local memory and thus do not depend on the context of invocation but rather only on the history of the current invocation of the module. Our main results are as follows: (1) One-player pushdown games with mean-payoff objectives under global strategies are decidable in polynomial time. (2) Two-player pushdown games with mean-payoff objectives under global strategies are undecidable. (3) One-player pushdown games with mean-payoff objectives under modular strategies are NP-hard. (4) Two-player pushdown games with mean-payoff objectives under modular strategies can be solved in NP (i.e., both one-player and two-player pushdown games with mean-payoff objectives under modular strategies are NP-complete). We also establish the optimal strategy complexity by showing that global strategies for mean-payoff objectives require infinite memory even in one-player pushdown games and memoryless modular strategies are sufficient in two-player pushdown games. Finally, we also show that all the problems have the same complexity if the stack boundedness condition is added, where along with the mean-payoff objective the player must also ensure that the stack height is bounded.}, author = {Chatterjee, Krishnendu and Velner, Yaron}, issn = {00045411}, journal = {Journal of the ACM}, number = {5}, pages = {34}, publisher = {ACM}, title = {{The complexity of mean-payoff pushdown games}}, doi = {10.1145/3121408}, volume = {64}, year = {2017}, } @article{717, abstract = {We consider finite-state and recursive game graphs with multidimensional mean-payoff objectives. In recursive games two types of strategies are relevant: global strategies and modular strategies. Our contributions are: (1) We show that finite-state multidimensional mean-payoff games can be solved in polynomial time if the number of dimensions and the maximal absolute value of weights are fixed; whereas for arbitrary dimensions the problem is coNP-complete. (2) We show that one-player recursive games with multidimensional mean-payoff objectives can be solved in polynomial time. Both above algorithms are based on hyperplane separation technique. (3) For recursive games we show that under modular strategies the multidimensional problem is undecidable. We show that if the number of modules, exits, and the maximal absolute value of the weights are fixed, then one-dimensional recursive mean-payoff games under modular strategies can be solved in polynomial time, whereas for unbounded number of exits or modules the problem is NP-hard.}, author = {Chatterjee, Krishnendu and Velner, Yaron}, journal = {Journal of Computer and System Sciences}, pages = {236 -- 259}, publisher = {Academic Press}, title = {{Hyperplane separation technique for multidimensional mean-payoff games}}, doi = {10.1016/j.jcss.2017.04.005}, volume = {88}, year = {2017}, } @article{719, abstract = {The ubiquity of computation in modern machines and devices imposes a need to assert the correctness of their behavior. Especially in the case of safety-critical systems, their designers need to take measures that enforce their safe operation. Formal methods has emerged as a research field that addresses this challenge: by rigorously proving that all system executions adhere to their specifications, the correctness of an implementation under concern can be assured. To achieve this goal, a plethora of techniques are nowadays available, all of which are optimized for different system types and application domains.}, author = {Chatterjee, Krishnendu and Ehlers, Rüdiger}, issn = {00015903}, journal = {Acta Informatica}, number = {6}, pages = {543 -- 544}, publisher = {Springer}, title = {{Special issue: Synthesis and SYNT 2014}}, doi = {10.1007/s00236-017-0299-0}, volume = {54}, year = {2017}, } @article{720, abstract = {Advances in multi-unit recordings pave the way for statistical modeling of activity patterns in large neural populations. Recent studies have shown that the summed activity of all neurons strongly shapes the population response. A separate recent finding has been that neural populations also exhibit criticality, an anomalously large dynamic range for the probabilities of different population activity patterns. Motivated by these two observations, we introduce a class of probabilistic models which takes into account the prior knowledge that the neural population could be globally coupled and close to critical. These models consist of an energy function which parametrizes interactions between small groups of neurons, and an arbitrary positive, strictly increasing, and twice differentiable function which maps the energy of a population pattern to its probability. We show that: 1) augmenting a pairwise Ising model with a nonlinearity yields an accurate description of the activity of retinal ganglion cells which outperforms previous models based on the summed activity of neurons; 2) prior knowledge that the population is critical translates to prior expectations about the shape of the nonlinearity; 3) the nonlinearity admits an interpretation in terms of a continuous latent variable globally coupling the system whose distribution we can infer from data. Our method is independent of the underlying system’s state space; hence, it can be applied to other systems such as natural scenes or amino acid sequences of proteins which are also known to exhibit criticality.}, author = {Humplik, Jan and Tkacik, Gasper}, issn = {1553734X}, journal = {PLoS Computational Biology}, number = {9}, publisher = {Public Library of Science}, title = {{Probabilistic models for neural populations that naturally capture global coupling and criticality}}, doi = {10.1371/journal.pcbi.1005763}, volume = {13}, year = {2017}, } @article{721, abstract = {Let S be a positivity-preserving symmetric linear operator acting on bounded functions. The nonlinear equation -1/m=z+Sm with a parameter z in the complex upper half-plane ℍ has a unique solution m with values in ℍ. We show that the z-dependence of this solution can be represented as the Stieltjes transforms of a family of probability measures v on ℝ. Under suitable conditions on S, we show that v has a real analytic density apart from finitely many algebraic singularities of degree at most 3. Our motivation comes from large random matrices. The solution m determines the density of eigenvalues of two prominent matrix ensembles: (i) matrices with centered independent entries whose variances are given by S and (ii) matrices with correlated entries with a translation-invariant correlation structure. Our analysis shows that the limiting eigenvalue density has only square root singularities or cubic root cusps; no other singularities occur.}, author = {Ajanki, Oskari H and Krüger, Torben H and Erdös, László}, issn = {00103640}, journal = {Communications on Pure and Applied Mathematics}, number = {9}, pages = {1672 -- 1705}, publisher = {Wiley-Blackwell}, title = {{Singularities of solutions to quadratic vector equations on the complex upper half plane}}, doi = {10.1002/cpa.21639}, volume = {70}, year = {2017}, } @article{722, abstract = {Plants are sessile organisms rooted in one place. The soil resources that plants require are often distributed in a highly heterogeneous pattern. To aid foraging, plants have evolved roots whose growth and development are highly responsive to soil signals. As a result, 3D root architecture is shaped by myriad environmental signals to ensure resource capture is optimised and unfavourable environments are avoided. The first signals sensed by newly germinating seeds — gravity and light — direct root growth into the soil to aid seedling establishment. Heterogeneous soil resources, such as water, nitrogen and phosphate, also act as signals that shape 3D root growth to optimise uptake. Root architecture is also modified through biotic interactions that include soil fungi and neighbouring plants. This developmental plasticity results in a ‘custom-made’ 3D root system that is best adapted to forage for resources in each soil environment that a plant colonises.}, author = {Morris, Emily and Griffiths, Marcus and Golebiowska, Agata and Mairhofer, Stefan and Burr Hersey, Jasmine and Goh, Tatsuaki and Von Wangenheim, Daniel and Atkinson, Brian and Sturrock, Craig and Lynch, Jonathan and Vissenberg, Kris and Ritz, Karl and Wells, Darren and Mooney, Sacha and Bennett, Malcolm}, issn = {09609822}, journal = {Current Biology}, number = {17}, pages = {R919 -- R930}, publisher = {Cell Press}, title = {{Shaping 3D root system architecture}}, doi = {10.1016/j.cub.2017.06.043}, volume = {27}, year = {2017}, } @article{725, abstract = {Individual computations and social interactions underlying collective behavior in groups of animals are of great ethological, behavioral, and theoretical interest. While complex individual behaviors have successfully been parsed into small dictionaries of stereotyped behavioral modes, studies of collective behavior largely ignored these findings; instead, their focus was on inferring single, mode-independent social interaction rules that reproduced macroscopic and often qualitative features of group behavior. Here, we bring these two approaches together to predict individual swimming patterns of adult zebrafish in a group. We show that fish alternate between an “active” mode, in which they are sensitive to the swimming patterns of conspecifics, and a “passive” mode, where they ignore them. Using a model that accounts for these two modes explicitly, we predict behaviors of individual fish with high accuracy, outperforming previous approaches that assumed a single continuous computation by individuals and simple metric or topological weighing of neighbors’ behavior. At the group level, switching between active and passive modes is uncorrelated among fish, but correlated directional swimming behavior still emerges. Our quantitative approach for studying complex, multi-modal individual behavior jointly with emergent group behavior is readily extensible to additional behavioral modes and their neural correlates as well as to other species.}, author = {Harpaz, Roy and Tkacik, Gasper and Schneidman, Elad}, issn = {00278424}, journal = {PNAS}, number = {38}, pages = {10149 -- 10154}, publisher = {National Academy of Sciences}, title = {{Discrete modes of social information processing predict individual behavior of fish in a group}}, doi = {10.1073/pnas.1703817114}, volume = {114}, year = {2017}, } @article{724, abstract = {We investigate the stationary and dynamical behavior of an Anderson localized chain coupled to a single central bound state. Although this coupling partially dilutes the Anderson localized peaks towards nearly resonant sites, the most weight of the original peaks remains unchanged. This leads to multifractal wave functions with a frozen spectrum of fractal dimensions, which is characteristic for localized phases in models with power-law hopping. Using a perturbative approach we identify two different dynamical regimes. At weak couplings to the central site, the transport of particles and information is logarithmic in time, a feature usually attributed to many-body localization. We connect such transport to the persistence of the Poisson statistics of level spacings in parts of the spectrum. In contrast, at stronger couplings the level repulsion is established in the entire spectrum, the problem can be mapped to the Fano resonance, and the transport is ballistic.}, author = {Hetterich, Daniel and Serbyn, Maksym and Domínguez, Fernando and Pollmann, Frank and Trauzettel, Björn}, issn = {24699950}, journal = {Physical Review B}, number = {10}, publisher = {American Physical Society}, title = {{Noninteracting central site model localization and logarithmic entanglement growth}}, doi = {10.1103/PhysRevB.96.104203}, volume = {96}, year = {2017}, } @article{7289, abstract = {Aprotic sodium–O2 batteries require the reversible formation/dissolution of sodium superoxide (NaO2) on cycling. Poor cycle life has been associated with parasitic chemistry caused by the reactivity of electrolyte and electrode with NaO2, a strong nucleophile and base. Its reactivity can, however, not consistently explain the side reactions and irreversibility. Herein we show that singlet oxygen (1O2) forms at all stages of cycling and that it is a main driver for parasitic chemistry. It was detected in‐ and ex‐situ via a 1O2 trap that selectively and rapidly forms a stable adduct with 1O2. The 1O2 formation mechanism involves proton‐mediated superoxide disproportionation on discharge, rest, and charge below ca. 3.3 V, and direct electrochemical 1O2 evolution above ca. 3.3 V. Trace water, which is needed for high capacities also drives parasitic chemistry. Controlling the highly reactive singlet oxygen is thus crucial for achieving highly reversible cell operation.}, author = {Schafzahl, Lukas and Mahne, Nika and Schafzahl, Bettina and Wilkening, Martin and Slugovc, Christian and Borisov, Sergey M. and Freunberger, Stefan Alexander}, issn = {1433-7851}, journal = {Angewandte Chemie International Edition}, number = {49}, pages = {15728--15732}, publisher = {Wiley}, title = {{Singlet oxygen during cycling of the aprotic sodium-O2 battery}}, doi = {10.1002/anie.201709351}, volume = {56}, year = {2017}, } @article{7288, abstract = {Nowadays commercial supercapacitors are based on purely capacitive storage at the porous carbons that are used for the electrodes. However, the limits that capacitive storage imposes on energy density calls to investigate new materials to improve the capacitance of the device. This new type of electrodes (e.g., RuO2, MnO2…) involves pseudo-capacitive faradaic redox processes with the solid material. Ion exchange with solid materials is, however, much slower than the adsorption process in capacitive storage and inevitably leads to significant loss of power. Faradaic process in the liquid state, in contrast can be similarly fast as capacitive processes due to the fast ion transport. Designing new devices with liquid like dynamics and improved specific capacitance is challenging. We present a new approach to increase the specific capacitance using biredox ionic liquids, where redox moieties are tethered to the electrolyte ions, allowing high redox concentrations and significant pseudo-capacitive storage in the liquid state. Anions and cations are functionalized with anthraquinone (AQ) and 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO) moieties, respectively. Glassy carbon, carbon-onion, and commercial activated carbon electrodes that exhibit different double layer structures and thus different diffusion dynamics were used to simultaneously study the electrochemical response of biredox ionic liquids at the positive and negative electrode.}, author = {Bodin, C. and Mourad, E. and Zigah, D. and Le Vot, S. and Freunberger, Stefan Alexander and Favier, F. and Fontaine, O.}, issn = {1359-6640}, journal = {Faraday Discussions}, pages = {393--404}, publisher = {Royal Society of Chemistry}, title = {{Biredox ionic liquids: New opportunities toward high performance supercapacitors}}, doi = {10.1039/c7fd00174f}, volume = {206}, year = {2017}, } @article{7290, abstract = {We report a family of Pt and Pd benzoporphyrin dyes with versatile photophysical properties and easy access from cheap and abundant chemicals. Attaching 4 or 8 alkylsulfone groups onto a meso-tetraphenyltetrabenzoporphyrin (TPTBP) macrocylcle renders the dyes highly soluble in organic solvents, photostable, and electron-deficient with the redox potential raised up to 0.65 V versus the parent porphyrin. The new dyes intensively absorb in the blue (Soret band, 440–480 nm) and in the red (Q-band, 620–650 nm) parts of the electromagnetic spectrum and show bright phosphorescence at room-temperature in the NIR with quantum yields up to 30% in solution. The small singlet–triplet energy gap yields unusually efficient thermally activated delayed fluorescence (TADF) at elevated temperatures in solution and in polymeric matrices with quantum yields as high as 27% at 120 °C, which is remarkable for benzoporphyrins. Apart from oxygen sensing, these properties enable unprecedented simultaneous, self-referenced oxygen and temperature sensing with a single indicator dye: whereas oxygen can be determined either via the decay time of phosphorescence or TADF, the temperature is accessed via the ratio of the two emissions. Moreover, the dyes are efficient sensitizers for triplet–triplet annihilation (TTA)-based upconversion making possible longer sensitization wavelength than the conventional benzoporphyrin complexes. The Pt-octa-sulfone dye also features interesting semireversible transformation in basic media, which generates new NIR absorbing species.}, author = {Zach, Peter W. and Freunberger, Stefan Alexander and Klimant, Ingo and Borisov, Sergey M.}, issn = {1944-8252}, journal = {ACS Applied Materials & Interfaces}, number = {43}, pages = {38008--38023}, publisher = {ACS}, title = {{Electron-deficient near-infrared Pt(II) and Pd(II) benzoporphyrins with dual phosphorescence and unusually efficient thermally activated delayed fluorescence: First demonstration of simultaneous oxygen and temperature sensing with a single emitter}}, doi = {10.1021/acsami.7b10669}, volume = {9}, year = {2017}, } @article{7292, abstract = {Rechargeable Li–O2 batteries have amongst the highest formal energy and could store significantly more energy than other rechargeable batteries in practice if at least a large part of their promise could be realized. Realization, however, still faces many challenges than can only be overcome by fundamental understanding of the processes taking place. Here, we review recent advances in understanding the chemistry of the Li–O2 cathode and provide a perspective on dominant research needs. We put particular emphasis on issues that are often grossly misunderstood: realistic performance metrics and their reporting as well as identifying reversibility and quantitative measures to do so. Parasitic reactions are the prime obstacle for reversible cell operation and have recently been identified to be predominantly caused by singlet oxygen and not by reduced oxygen species as thought before. We discuss the far reaching implications of this finding on electrolyte and cathode stability, electrocatalysis, and future research needs.}, author = {Mahne, Nika and Fontaine, Olivier and Thotiyl, Musthafa Ottakam and Wilkening, Martin and Freunberger, Stefan Alexander}, issn = {2041-6539}, journal = {Chemical Science}, number = {10}, pages = {6716--6729}, publisher = {RSC}, title = {{Mechanism and performance of lithium–oxygen batteries – a perspective}}, doi = {10.1039/c7sc02519j}, volume = {8}, year = {2017}, } @article{7291, abstract = {Na battery chemistries show poor passivation behavior of low voltage Na storage compounds and Na metal with organic carbonate‐based electrolytes adopted from Li‐ion batteries. Therefore, a suitable electrolyte remains a major challenge for establishing Na batteries. Here we report highly concentrated sodium bis(fluorosulfonyl)imide (NaFSI) in dimethoxyethane (DME) electrolytes and investigate them for Na metal and hard carbon anodes and intercalation cathodes. For a DME/NaFSI ratio of 2, a stable passivation of anode materials was found owing to the formation of a stable solid electrolyte interface, which was characterized spectroscopically. This permitted non‐dentritic Na metal cycling with approximately 98 % coulombic efficiency as shown for up to 300 cycles. The NaFSI/DME electrolyte may enable Na‐metal anodes and allows for more reliable assessment of electrode materials in Na‐ion half‐cells, as is demonstrated by comparing half‐cell cycling of hard carbon anodes and Na3V2(PO4)3 cathodes with a widely used carbonate and the NaFSI/DME electrolyte.}, author = {Schafzahl, Lukas and Hanzu, Ilie and Wilkening, Martin and Freunberger, Stefan Alexander}, issn = {1864-5631}, journal = {ChemSusChem}, number = {2}, pages = {401--408}, publisher = {Wiley}, title = {{An electrolyte for reversible cycling of sodium metal and intercalation compounds}}, doi = {10.1002/cssc.201601222}, volume = {10}, year = {2017}, } @article{731, abstract = {Genetic variations in the oxytocin receptor gene affect patients with ASD and ADHD differently.}, author = {Novarino, Gaia}, issn = {19466234}, journal = {Science Translational Medicine}, number = {411}, publisher = {American Association for the Advancement of Science}, title = {{The science of love in ASD and ADHD}}, doi = {10.1126/scitranslmed.aap8168}, volume = {9}, year = {2017}, } @article{7360, abstract = {Inflammation, which is a highly regulated host response against danger signals, may be harmful if it is excessive and deregulated. Ideally, anti-inflammatory therapy should autonomously commence as soon as possible after the onset of inflammation, should be controllable by a physician, and should not systemically block beneficial immune response in the long term. We describe a genetically encoded anti-inflammatory mammalian cell device based on a modular engineered genetic circuit comprising a sensor, an amplifier, a “thresholder” to restrict activation of a positive-feedback loop, a combination of advanced clinically used biopharmaceutical proteins, and orthogonal regulatory elements that linked modules into the functional device. This genetic circuit was autonomously activated by inflammatory signals, including endogenous cecal ligation and puncture (CLP)-induced inflammation in mice and serum from a systemic juvenile idiopathic arthritis (sIJA) patient, and could be reset externally by a chemical signal. The microencapsulated anti-inflammatory device significantly reduced the pathology in dextran sodium sulfate (DSS)-induced acute murine colitis, demonstrating a synthetic immunological approach for autonomous anti-inflammatory therapy.}, author = {Smole, Anže and Lainšček, Duško and Bezeljak, Urban and Horvat, Simon and Jerala, Roman}, issn = {1525-0016}, journal = {Molecular Therapy}, number = {1}, pages = {102--119}, publisher = {Elsevier}, title = {{A synthetic mammalian therapeutic gene circuit for sensing and suppressing inflammation}}, doi = {10.1016/j.ymthe.2016.10.005}, volume = {25}, year = {2017}, } @inbook{748, abstract = {The essay focuses on individual and collective forms of liminality in John Marlyn’s Under the Ribs of Death. Set in early twentieth-century Winnipeg, the 1957 immigrant novel explores liminal experiences related to ethnic identity, male sexuality, social class, urban spaces and turbulent economic times. As the son of a poor working-class family from Hungary, Sandor Hunyadi makes every effort to become a true Canadian and a successful businessman, but, no matter how hard he tries to overcome contemporary ethnic prejudices and economic hardships, his personal and professional life remains in liminality. In other words, the protagonist undergoes separation, fails at incorporation, and becomes stuck in transition.}, author = {Bernhard Wenzl}, booktitle = {In-Between - Liminal Spaces in Canadian Literature and Culture}, editor = {Brandt, Stefan L.}, pages = {91 -- 100}, publisher = {Peter Lang GmbH}, title = {{'...beyond the invisible barrier at Portage and Main': Liminality in John Marlyn's Under the Ribs of Death}}, doi = {10.3726/b11899}, year = {2017}, } @inproceedings{750, abstract = {Modern communication technologies allow first responders to contact thousands of potential volunteers simultaneously for support during a crisis or disaster event. However, such volunteer efforts must be well coordinated and monitored, in order to offer an effective relief to the professionals. In this paper we extend earlier work on optimally assigning volunteers to selected landmark locations. In particular, we emphasize the aspect that obtaining good assignments requires not only advanced computational tools, but also a realistic measure of distance between volunteers and landmarks. Specifically, we propose the use of the Open Street Map (OSM) driving distance instead of he previously used flight distance. We find the OSM driving distance to be better aligned with the interests of volunteers and first responders. Furthermore, we show that relying on the flying distance leads to a substantial underestimation of the number of required volunteers, causing negative side effects in case of an actual crisis situation.}, author = {Pielorz, Jasmin and Prandtstetter, Matthias and Straub, Markus and Lampert, Christoph}, booktitle = {2017 IEEE International Conference on Big Data}, isbn = {978-153862714-3}, location = {Boston, MA, United States}, pages = {3760 -- 3763}, publisher = {IEEE}, title = {{Optimal geospatial volunteer allocation needs realistic distances}}, doi = {10.1109/BigData.2017.8258375}, year = {2017}, } @article{7728, abstract = {Meta-analyses of genome-wide association studies, which dominate genetic discovery, are based on data from diverse historical time periods and populations. Genetic scores derived from genome-wide association studies explain only a fraction of the heritability estimates obtained from whole-genome studies on single populations, known as the ‘hidden heritability’ puzzle. Using seven sampling populations (n = 35,062), we test whether hidden heritability is attributed to heterogeneity across sampling populations and time, showing that estimates are substantially smaller across populations compared with within populations. We show that the hidden heritability varies substantially: from zero for height to 20% for body mass index, 37% for education, 40% for age at first birth and up to 75% for number of children. Simulations demonstrate that our results are more likely to reflect heterogeneity in phenotypic measurement or gene–environment interactions than genetic heterogeneity. These findings have substantial implications for genetic discovery, suggesting that large homogenous datasets are required for behavioural phenotypes and that gene–environment interaction may be a central challenge for genetic discovery.}, author = {Tropf, Felix C. and Lee, S. Hong and Verweij, Renske M. and Stulp, Gert and van der Most, Peter J. and de Vlaming, Ronald and Bakshi, Andrew and Briley, Daniel A. and Rahal, Charles and Hellpap, Robert and Iliadou, Anastasia N. and Esko, Tõnu and Metspalu, Andres and Medland, Sarah E. and Martin, Nicholas G. and Barban, Nicola and Snieder, Harold and Robinson, Matthew Richard and Mills, Melinda C.}, issn = {2397-3374}, journal = {Nature Human Behaviour}, number = {10}, pages = {757--765}, publisher = {Springer Nature}, title = {{Hidden heritability due to heterogeneity across seven populations}}, doi = {10.1038/s41562-017-0195-1}, volume = {1}, year = {2017}, } @article{7727, abstract = {Genes of the major histocompatibility complex (MHC) have been shown to influence social signalling and mate preferences in many species, including humans. First observations suggest that MHC signalling may also affect female fertility. To test this hypothesis, we exposed 191 female horses (Equus caballus) to either an MHC-similar or an MHC-dissimilar stimulus male around the time of ovulation and conception. A within-subject experimental design controlled for non-MHC-linked male characteristics, and instrumental insemination with semen of other males (n = 106) controlled for potential confounding effects of semen or embryo characteristics. We found that females were more likely to become pregnant if exposed to an MHC-dissimilar than to an MHC-similar male, while overall genetic distance to the stimulus males (based on microsatellite markers on 20 chromosomes) had no effect. Our results demonstrate that early pregnancy failures can be due to maternal life-history decisions (cryptic female choice) influenced by MHC-linked social signalling.}, author = {Burger, D. and Thomas, S. and Aepli, H. and Dreyer, M. and Fabre, G. and Marti, E. and Sieme, H. and Robinson, Matthew Richard and Wedekind, C.}, issn = {0962-8452}, journal = {Proceedings of the Royal Society B: Biological Sciences}, number = {1868}, publisher = {The Royal Society}, title = {{Major histocompatibility complex-linked social signalling affects female fertility}}, doi = {10.1098/rspb.2017.1824}, volume = {284}, year = {2017}, }