@article{737, abstract = {We generalize Brazas’ topology on the fundamental group to the whole universal path space X˜ i.e., to the set of homotopy classes of all based paths. We develop basic properties of the new notion and provide a complete comparison of the obtained topology with the established topologies, in particular with the Lasso topology and the CO topology, i.e., the topology that is induced by the compact-open topology. It turns out that the new topology is the finest topology contained in the CO topology, for which the action of the fundamental group on the universal path space is a continuous group action.}, author = {Virk, Ziga and Zastrow, Andreas}, issn = {01668641}, journal = {Topology and its Applications}, pages = {186 -- 196}, publisher = {Elsevier}, title = {{A new topology on the universal path space}}, doi = {10.1016/j.topol.2017.09.015}, volume = {231}, year = {2017}, } @article{733, abstract = {Let A and B be two N by N deterministic Hermitian matrices and let U be an N by N Haar distributed unitary matrix. It is well known that the spectral distribution of the sum H = A + UBU∗ converges weakly to the free additive convolution of the spectral distributions of A and B, as N tends to infinity. We establish the optimal convergence rate in the bulk of the spectrum.}, author = {Bao, Zhigang and Erdös, László and Schnelli, Kevin}, journal = {Advances in Mathematics}, pages = {251 -- 291}, publisher = {Academic Press}, title = {{Convergence rate for spectral distribution of addition of random matrices}}, doi = {10.1016/j.aim.2017.08.028}, volume = {319}, year = {2017}, } @article{840, abstract = {Heavy holes confined in quantum dots are predicted to be promising candidates for the realization of spin qubits with long coherence times. Here we focus on such heavy-hole states confined in germanium hut wires. By tuning the growth density of the latter we can realize a T-like structure between two neighboring wires. Such a structure allows the realization of a charge sensor, which is electrostatically and tunnel coupled to a quantum dot, with charge-transfer signals as high as 0.3 e. By integrating the T-like structure into a radiofrequency reflectometry setup, single-shot measurements allowing the extraction of hole tunneling times are performed. The extracted tunneling times of less than 10 μs are attributed to the small effective mass of Ge heavy-hole states and pave the way toward projective spin readout measurements.}, author = {Vukusic, Lada and Kukucka, Josip and Watzinger, Hannes and Katsaros, Georgios}, issn = {15306984}, journal = {Nano Letters}, number = {9}, pages = {5706 -- 5710}, publisher = {American Chemical Society}, title = {{Fast hole tunneling times in germanium hut wires probed by single-shot reflectometry}}, doi = {10.1021/acs.nanolett.7b02627}, volume = {17}, year = {2017}, } @article{914, abstract = {Infections with potentially lethal pathogens may negatively affect an individual’s lifespan and decrease its reproductive value. The terminal investment hypothesis predicts that individuals faced with a reduced survival should invest more into reproduction instead of maintenance and growth. Several studies suggest that individuals are indeed able to estimate their body condition and to increase their reproductive effort with approaching death, while other studies gave ambiguous results. We investigate whether queens of a perennial social insect (ant) are able to boost their reproduction following infection with an obligate killing pathogen. Social insect queens are special with regard to reproduction and aging, as they outlive conspecific non-reproductive workers. Moreover, in the ant Cardiocondyla obscurior, fecundity increases with queen age. However, it remained unclear whether this reflects negative reproductive senescence or terminal investment in response to approaching death. Here, we test whether queens of C. obscurior react to infection with the entomopathogenic fungus Metarhizium brunneum by an increased egg-laying rate. We show that a fungal infection triggers a reinforced investment in reproduction in queens. This adjustment of the reproductive rate by ant queens is consistent with predictions of the terminal investment hypothesis and is reported for the first time in a social insect.}, author = {Giehr, Julia and Grasse, Anna V and Cremer, Sylvia and Heinze, Jürgen and Schrempf, Alexandra}, issn = {20545703}, journal = {Royal Society Open Science}, number = {7}, publisher = {Royal Society, The}, title = {{Ant queens increase their reproductive efforts after pathogen infection}}, doi = {10.1098/rsos.170547}, volume = {4}, year = {2017}, } @article{910, abstract = {Frequency-independent selection is generally considered as a force that acts to reduce the genetic variation in evolving populations, yet rigorous arguments for this idea are scarce. When selection fluctuates in time, it is unclear whether frequency-independent selection may maintain genetic polymorphism without invoking additional mechanisms. We show that constant frequency-independent selection with arbitrary epistasis on a well-mixed haploid population eliminates genetic variation if we assume linkage equilibrium between alleles. To this end, we introduce the notion of frequency-independent selection at the level of alleles, which is sufficient to prove our claim and contains the notion of frequency-independent selection on haploids. When selection and recombination are weak but of the same order, there may be strong linkage disequilibrium; numerical calculations show that stable equilibria are highly unlikely. Using the example of a diallelic two-locus model, we then demonstrate that frequency-independent selection that fluctuates in time can maintain stable polymorphism if linkage disequilibrium changes its sign periodically. We put our findings in the context of results from the existing literature and point out those scenarios in which the possible role of frequency-independent selection in maintaining genetic variation remains unclear. }, author = {Novak, Sebastian and Barton, Nicholas H}, journal = {Genetics}, number = {2}, pages = {653 -- 668}, publisher = {Genetics Society of America}, title = {{When does frequency-independent selection maintain genetic variation?}}, doi = {10.1534/genetics.117.300129}, volume = {207}, year = {2017}, } @article{835, abstract = {An outstanding question in animal development, tissue homeostasis and disease is how cell populations adapt to sensory inputs. During Drosophila larval development, hematopoietic sites are in direct contact with sensory neuron clusters of the peripheral nervous system (PNS), and blood cells (hemocytes) require the PNS for their survival and recruitment to these microenvironments, known as Hematopoietic Pockets. Here we report that Activin-β, a TGF-β family ligand, is expressed by sensory neurons of the PNS and regulates the proliferation and adhesion of hemocytes. These hemocyte responses depend on PNS activity, as shown by agonist treatment and transient silencing of sensory neurons. Activin-β has a key role in this regulation, which is apparent from reporter expression and mutant analyses. This mechanism of local sensory neurons controlling blood cell adaptation invites evolutionary parallels with vertebrate hematopoietic progenitors and the independent myeloid system of tissue macrophages, whose regulation by local microenvironments remain undefined.}, author = {Makhijani, Kalpana and Alexander, Brandy and Rao, Deepti and Petraki, Sophia and Herboso, Leire and Kukar, Katelyn and Batool, Itrat and Wachner, Stephanie and Gold, Katrina and Wong, Corinna and O'Connor, Michael and Brückner, Katja}, issn = {20411723}, journal = {Nature Communications}, publisher = {Nature Publishing Group}, title = {{Regulation of Drosophila hematopoietic sites by Activin-β from active sensory neurons}}, doi = {10.1038/ncomms15990}, volume = {8}, year = {2017}, } @inproceedings{836, abstract = {Recent research has examined how to study the topological features of a continuous self-map by means of the persistence of the eigenspaces, for given eigenvalues, of the endomorphism induced in homology over a field. This raised the question of how to select dynamically significant eigenvalues. The present paper aims to answer this question, giving an algorithm that computes the persistence of eigenspaces for every eigenvalue simultaneously, also expressing said eigenspaces as direct sums of “finite” and “singular” subspaces.}, author = {Ethier, Marc and Jablonski, Grzegorz and Mrozek, Marian}, booktitle = {Special Sessions in Applications of Computer Algebra}, isbn = {978-331956930-7}, location = {Kalamata, Greece}, pages = {119 -- 136}, publisher = {Springer}, title = {{Finding eigenvalues of self-maps with the Kronecker canonical form}}, doi = {10.1007/978-3-319-56932-1_8}, volume = {198}, year = {2017}, } @inproceedings{916, abstract = {We study the quadratic assignment problem, in computer vision also known as graph matching. Two leading solvers for this problem optimize the Lagrange decomposition duals with sub-gradient and dual ascent (also known as message passing) updates. We explore this direction further and propose several additional Lagrangean relaxations of the graph matching problem along with corresponding algorithms, which are all based on a common dual ascent framework. Our extensive empirical evaluation gives several theoretical insights and suggests a new state-of-the-art anytime solver for the considered problem. Our improvement over state-of-the-art is particularly visible on a new dataset with large-scale sparse problem instances containing more than 500 graph nodes each.}, author = {Swoboda, Paul and Rother, Carsten and Abu Alhaija, Carsten and Kainmueller, Dagmar and Savchynskyy, Bogdan}, isbn = {978-153860457-1}, location = {Honolulu, HA, United States}, pages = {7062--7071}, publisher = {IEEE}, title = {{A study of lagrangean decompositions and dual ascent solvers for graph matching}}, doi = {10.1109/CVPR.2017.747}, volume = {2017}, year = {2017}, } @inproceedings{915, abstract = {We propose a dual decomposition and linear program relaxation of the NP-hard minimum cost multicut problem. Unlike other polyhedral relaxations of the multicut polytope, it is amenable to efficient optimization by message passing. Like other polyhedral relaxations, it can be tightened efficiently by cutting planes. We define an algorithm that alternates between message passing and efficient separation of cycle- and odd-wheel inequalities. This algorithm is more efficient than state-of-the-art algorithms based on linear programming, including algorithms written in the framework of leading commercial software, as we show in experiments with large instances of the problem from applications in computer vision, biomedical image analysis and data mining.}, author = {Swoboda, Paul and Andres, Bjoern}, isbn = {978-153860457-1}, location = {Honolulu, HA, United States}, pages = {4990--4999}, publisher = {IEEE}, title = {{A message passing algorithm for the minimum cost multicut problem}}, doi = {10.1109/CVPR.2017.530}, volume = {2017}, year = {2017}, } @inproceedings{917, abstract = {We propose a general dual ascent framework for Lagrangean decomposition of combinatorial problems. Although methods of this type have shown their efficiency for a number of problems, so far there was no general algorithm applicable to multiple problem types. In this work, we propose such a general algorithm. It depends on several parameters, which can be used to optimize its performance in each particular setting. We demonstrate efficacy of our method on graph matching and multicut problems, where it outperforms state-of-the-art solvers including those based on subgradient optimization and off-the-shelf linear programming solvers.}, author = {Swoboda, Paul and Kuske, Jan and Savchynskyy, Bogdan}, isbn = {978-153860457-1}, location = {Honolulu, HA, United States}, pages = {4950--4960}, publisher = {IEEE}, title = {{A dual ascent framework for Lagrangean decomposition of combinatorial problems}}, doi = {10.1109/CVPR.2017.526}, volume = {2017}, year = {2017}, }