@article{715, abstract = {D-cycloserine ameliorates breathing abnormalities and survival rate in a mouse model of Rett syndrome.}, author = {Novarino, Gaia}, issn = {19466234}, journal = {Science Translational Medicine}, number = {405}, publisher = {American Association for the Advancement of Science}, title = {{More excitation for Rett syndrome}}, doi = {10.1126/scitranslmed.aao4218}, volume = {9}, year = {2017}, } @article{716, abstract = {Two-player games on graphs are central in many problems in formal verification and program analysis, such as synthesis and verification of open systems. In this work, we consider solving recursive game graphs (or pushdown game graphs) that model the control flow of sequential programs with recursion.While pushdown games have been studied before with qualitative objectives-such as reachability and ?-regular objectives- in this work, we study for the first time such games with the most well-studied quantitative objective, the mean-payoff objective. In pushdown games, two types of strategies are relevant: (1) global strategies, which depend on the entire global history; and (2) modular strategies, which have only local memory and thus do not depend on the context of invocation but rather only on the history of the current invocation of the module. Our main results are as follows: (1) One-player pushdown games with mean-payoff objectives under global strategies are decidable in polynomial time. (2) Two-player pushdown games with mean-payoff objectives under global strategies are undecidable. (3) One-player pushdown games with mean-payoff objectives under modular strategies are NP-hard. (4) Two-player pushdown games with mean-payoff objectives under modular strategies can be solved in NP (i.e., both one-player and two-player pushdown games with mean-payoff objectives under modular strategies are NP-complete). We also establish the optimal strategy complexity by showing that global strategies for mean-payoff objectives require infinite memory even in one-player pushdown games and memoryless modular strategies are sufficient in two-player pushdown games. Finally, we also show that all the problems have the same complexity if the stack boundedness condition is added, where along with the mean-payoff objective the player must also ensure that the stack height is bounded.}, author = {Chatterjee, Krishnendu and Velner, Yaron}, issn = {00045411}, journal = {Journal of the ACM}, number = {5}, pages = {34}, publisher = {ACM}, title = {{The complexity of mean-payoff pushdown games}}, doi = {10.1145/3121408}, volume = {64}, year = {2017}, } @article{717, abstract = {We consider finite-state and recursive game graphs with multidimensional mean-payoff objectives. In recursive games two types of strategies are relevant: global strategies and modular strategies. Our contributions are: (1) We show that finite-state multidimensional mean-payoff games can be solved in polynomial time if the number of dimensions and the maximal absolute value of weights are fixed; whereas for arbitrary dimensions the problem is coNP-complete. (2) We show that one-player recursive games with multidimensional mean-payoff objectives can be solved in polynomial time. Both above algorithms are based on hyperplane separation technique. (3) For recursive games we show that under modular strategies the multidimensional problem is undecidable. We show that if the number of modules, exits, and the maximal absolute value of the weights are fixed, then one-dimensional recursive mean-payoff games under modular strategies can be solved in polynomial time, whereas for unbounded number of exits or modules the problem is NP-hard.}, author = {Chatterjee, Krishnendu and Velner, Yaron}, journal = {Journal of Computer and System Sciences}, pages = {236 -- 259}, publisher = {Academic Press}, title = {{Hyperplane separation technique for multidimensional mean-payoff games}}, doi = {10.1016/j.jcss.2017.04.005}, volume = {88}, year = {2017}, } @article{719, abstract = {The ubiquity of computation in modern machines and devices imposes a need to assert the correctness of their behavior. Especially in the case of safety-critical systems, their designers need to take measures that enforce their safe operation. Formal methods has emerged as a research field that addresses this challenge: by rigorously proving that all system executions adhere to their specifications, the correctness of an implementation under concern can be assured. To achieve this goal, a plethora of techniques are nowadays available, all of which are optimized for different system types and application domains.}, author = {Chatterjee, Krishnendu and Ehlers, Rüdiger}, issn = {00015903}, journal = {Acta Informatica}, number = {6}, pages = {543 -- 544}, publisher = {Springer}, title = {{Special issue: Synthesis and SYNT 2014}}, doi = {10.1007/s00236-017-0299-0}, volume = {54}, year = {2017}, } @article{720, abstract = {Advances in multi-unit recordings pave the way for statistical modeling of activity patterns in large neural populations. Recent studies have shown that the summed activity of all neurons strongly shapes the population response. A separate recent finding has been that neural populations also exhibit criticality, an anomalously large dynamic range for the probabilities of different population activity patterns. Motivated by these two observations, we introduce a class of probabilistic models which takes into account the prior knowledge that the neural population could be globally coupled and close to critical. These models consist of an energy function which parametrizes interactions between small groups of neurons, and an arbitrary positive, strictly increasing, and twice differentiable function which maps the energy of a population pattern to its probability. We show that: 1) augmenting a pairwise Ising model with a nonlinearity yields an accurate description of the activity of retinal ganglion cells which outperforms previous models based on the summed activity of neurons; 2) prior knowledge that the population is critical translates to prior expectations about the shape of the nonlinearity; 3) the nonlinearity admits an interpretation in terms of a continuous latent variable globally coupling the system whose distribution we can infer from data. Our method is independent of the underlying system’s state space; hence, it can be applied to other systems such as natural scenes or amino acid sequences of proteins which are also known to exhibit criticality.}, author = {Humplik, Jan and Tkacik, Gasper}, issn = {1553734X}, journal = {PLoS Computational Biology}, number = {9}, publisher = {Public Library of Science}, title = {{Probabilistic models for neural populations that naturally capture global coupling and criticality}}, doi = {10.1371/journal.pcbi.1005763}, volume = {13}, year = {2017}, } @article{721, abstract = {Let S be a positivity-preserving symmetric linear operator acting on bounded functions. The nonlinear equation -1/m=z+Sm with a parameter z in the complex upper half-plane ℍ has a unique solution m with values in ℍ. We show that the z-dependence of this solution can be represented as the Stieltjes transforms of a family of probability measures v on ℝ. Under suitable conditions on S, we show that v has a real analytic density apart from finitely many algebraic singularities of degree at most 3. Our motivation comes from large random matrices. The solution m determines the density of eigenvalues of two prominent matrix ensembles: (i) matrices with centered independent entries whose variances are given by S and (ii) matrices with correlated entries with a translation-invariant correlation structure. Our analysis shows that the limiting eigenvalue density has only square root singularities or cubic root cusps; no other singularities occur.}, author = {Ajanki, Oskari H and Krüger, Torben H and Erdös, László}, issn = {00103640}, journal = {Communications on Pure and Applied Mathematics}, number = {9}, pages = {1672 -- 1705}, publisher = {Wiley-Blackwell}, title = {{Singularities of solutions to quadratic vector equations on the complex upper half plane}}, doi = {10.1002/cpa.21639}, volume = {70}, year = {2017}, } @article{722, abstract = {Plants are sessile organisms rooted in one place. The soil resources that plants require are often distributed in a highly heterogeneous pattern. To aid foraging, plants have evolved roots whose growth and development are highly responsive to soil signals. As a result, 3D root architecture is shaped by myriad environmental signals to ensure resource capture is optimised and unfavourable environments are avoided. The first signals sensed by newly germinating seeds — gravity and light — direct root growth into the soil to aid seedling establishment. Heterogeneous soil resources, such as water, nitrogen and phosphate, also act as signals that shape 3D root growth to optimise uptake. Root architecture is also modified through biotic interactions that include soil fungi and neighbouring plants. This developmental plasticity results in a ‘custom-made’ 3D root system that is best adapted to forage for resources in each soil environment that a plant colonises.}, author = {Morris, Emily and Griffiths, Marcus and Golebiowska, Agata and Mairhofer, Stefan and Burr Hersey, Jasmine and Goh, Tatsuaki and Von Wangenheim, Daniel and Atkinson, Brian and Sturrock, Craig and Lynch, Jonathan and Vissenberg, Kris and Ritz, Karl and Wells, Darren and Mooney, Sacha and Bennett, Malcolm}, issn = {09609822}, journal = {Current Biology}, number = {17}, pages = {R919 -- R930}, publisher = {Cell Press}, title = {{Shaping 3D root system architecture}}, doi = {10.1016/j.cub.2017.06.043}, volume = {27}, year = {2017}, } @article{725, abstract = {Individual computations and social interactions underlying collective behavior in groups of animals are of great ethological, behavioral, and theoretical interest. While complex individual behaviors have successfully been parsed into small dictionaries of stereotyped behavioral modes, studies of collective behavior largely ignored these findings; instead, their focus was on inferring single, mode-independent social interaction rules that reproduced macroscopic and often qualitative features of group behavior. Here, we bring these two approaches together to predict individual swimming patterns of adult zebrafish in a group. We show that fish alternate between an “active” mode, in which they are sensitive to the swimming patterns of conspecifics, and a “passive” mode, where they ignore them. Using a model that accounts for these two modes explicitly, we predict behaviors of individual fish with high accuracy, outperforming previous approaches that assumed a single continuous computation by individuals and simple metric or topological weighing of neighbors’ behavior. At the group level, switching between active and passive modes is uncorrelated among fish, but correlated directional swimming behavior still emerges. Our quantitative approach for studying complex, multi-modal individual behavior jointly with emergent group behavior is readily extensible to additional behavioral modes and their neural correlates as well as to other species.}, author = {Harpaz, Roy and Tkacik, Gasper and Schneidman, Elad}, issn = {00278424}, journal = {PNAS}, number = {38}, pages = {10149 -- 10154}, publisher = {National Academy of Sciences}, title = {{Discrete modes of social information processing predict individual behavior of fish in a group}}, doi = {10.1073/pnas.1703817114}, volume = {114}, year = {2017}, } @article{724, abstract = {We investigate the stationary and dynamical behavior of an Anderson localized chain coupled to a single central bound state. Although this coupling partially dilutes the Anderson localized peaks towards nearly resonant sites, the most weight of the original peaks remains unchanged. This leads to multifractal wave functions with a frozen spectrum of fractal dimensions, which is characteristic for localized phases in models with power-law hopping. Using a perturbative approach we identify two different dynamical regimes. At weak couplings to the central site, the transport of particles and information is logarithmic in time, a feature usually attributed to many-body localization. We connect such transport to the persistence of the Poisson statistics of level spacings in parts of the spectrum. In contrast, at stronger couplings the level repulsion is established in the entire spectrum, the problem can be mapped to the Fano resonance, and the transport is ballistic.}, author = {Hetterich, Daniel and Serbyn, Maksym and Domínguez, Fernando and Pollmann, Frank and Trauzettel, Björn}, issn = {24699950}, journal = {Physical Review B}, number = {10}, publisher = {American Physical Society}, title = {{Noninteracting central site model localization and logarithmic entanglement growth}}, doi = {10.1103/PhysRevB.96.104203}, volume = {96}, year = {2017}, } @article{7289, abstract = {Aprotic sodium–O2 batteries require the reversible formation/dissolution of sodium superoxide (NaO2) on cycling. Poor cycle life has been associated with parasitic chemistry caused by the reactivity of electrolyte and electrode with NaO2, a strong nucleophile and base. Its reactivity can, however, not consistently explain the side reactions and irreversibility. Herein we show that singlet oxygen (1O2) forms at all stages of cycling and that it is a main driver for parasitic chemistry. It was detected in‐ and ex‐situ via a 1O2 trap that selectively and rapidly forms a stable adduct with 1O2. The 1O2 formation mechanism involves proton‐mediated superoxide disproportionation on discharge, rest, and charge below ca. 3.3 V, and direct electrochemical 1O2 evolution above ca. 3.3 V. Trace water, which is needed for high capacities also drives parasitic chemistry. Controlling the highly reactive singlet oxygen is thus crucial for achieving highly reversible cell operation.}, author = {Schafzahl, Lukas and Mahne, Nika and Schafzahl, Bettina and Wilkening, Martin and Slugovc, Christian and Borisov, Sergey M. and Freunberger, Stefan Alexander}, issn = {1433-7851}, journal = {Angewandte Chemie International Edition}, number = {49}, pages = {15728--15732}, publisher = {Wiley}, title = {{Singlet oxygen during cycling of the aprotic sodium-O2 battery}}, doi = {10.1002/anie.201709351}, volume = {56}, year = {2017}, }