---
_id: '5434'
abstract:
- lang: eng
text: DEC-POMDPs extend POMDPs to a multi-agent setting, where several agents operate
in an uncertain environment independently to achieve a joint objective. DEC-POMDPs
have been studied with finite-horizon and infinite-horizon discounted-sum objectives,
and there exist solvers both for exact and approximate solutions. In this work
we consider Goal-DEC-POMDPs, where given a set of target states, the objective
is to ensure that the target set is reached with minimal cost. We consider the
indefinite-horizon (infinite-horizon with either discounted-sum, or undiscounted-sum,
where absorbing goal states have zero-cost) problem. We present a new method to
solve the problem that extends methods for finite-horizon DEC- POMDPs and the
RTDP-Bel approach for POMDPs. We present experimental results on several examples,
and show our approach presents promising results.
alternative_title:
- IST Austria Technical Report
author:
- first_name: '1'
full_name: Anonymous, 1
last_name: Anonymous
- first_name: '2'
full_name: Anonymous, 2
last_name: Anonymous
citation:
ama: Anonymous 1, Anonymous 2. *Optimal Cost Indefinite-Horizon Reachability in
Goal DEC-POMDPs*. IST Austria; 2015.
apa: Anonymous, 1, & Anonymous, 2. (2015). *Optimal cost indefinite-horizon
reachability in goal DEC-POMDPs*. IST Austria.
chicago: Anonymous, 1, and 2 Anonymous. *Optimal Cost Indefinite-Horizon Reachability
in Goal DEC-POMDPs*. IST Austria, 2015.
ieee: 1 Anonymous and 2 Anonymous, *Optimal cost indefinite-horizon reachability
in goal DEC-POMDPs*. IST Austria, 2015.
ista: Anonymous 1, Anonymous 2. 2015. Optimal cost indefinite-horizon reachability
in goal DEC-POMDPs, IST Austria, 16p.
mla: Anonymous, 1, and 2 Anonymous. *Optimal Cost Indefinite-Horizon Reachability
in Goal DEC-POMDPs*. IST Austria, 2015.
short: 1 Anonymous, 2 Anonymous, Optimal Cost Indefinite-Horizon Reachability in
Goal DEC-POMDPs, IST Austria, 2015.
date_created: 2018-12-12T11:39:18Z
date_published: 2015-02-19T00:00:00Z
date_updated: 2020-07-14T23:04:59Z
day: '19'
ddc:
- '000'
file:
- access_level: open_access
checksum: 8542fd0b10aed7811cd41077b8ccb632
content_type: application/pdf
creator: system
date_created: 2018-12-12T11:53:14Z
date_updated: 2020-07-14T12:46:53Z
file_id: '5475'
file_name: IST-2015-326-v1+1_main.pdf
file_size: 378162
relation: main_file
- access_level: closed
checksum: 84c31c537bdaf7a91909f18d25d640ab
content_type: text/plain
creator: dernst
date_created: 2019-04-16T13:00:33Z
date_updated: 2020-07-14T12:46:53Z
file_id: '6317'
file_name: IST-2015-326-v1+2_authors.txt
file_size: 64
relation: main_file
file_date_updated: 2020-07-14T12:46:53Z
has_accepted_license: '1'
language:
- iso: eng
month: '02'
oa: 1
oa_version: Published Version
page: '16'
publication_identifier:
issn:
- 2664-1690
publication_status: published
publisher: IST Austria
pubrep_id: '326'
status: public
title: Optimal cost indefinite-horizon reachability in goal DEC-POMDPs
type: technical_report
user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87
year: '2015'
...
---
_id: '5435'
abstract:
- lang: eng
text: "We consider Markov decision processes (MDPs) with multiple limit-average
(or mean-payoff) objectives. \r\nThere have been two different views: (i) the
expectation semantics, where the goal is to optimize the expected mean-payoff
objective, and (ii) the satisfaction semantics, where the goal is to maximize
the probability of runs such that the mean-payoff value stays above a given vector.
\ \r\nWe consider the problem where the goal is to optimize the expectation under
the constraint that the satisfaction semantics is ensured, and thus consider a
generalization that unifies the existing semantics. Our problem captures the notion
of optimization with respect to strategies that are risk-averse (i.e., ensures
certain probabilistic guarantee).\r\nOur main results are algorithms for the decision
problem which are always polynomial in the size of the MDP.\r\nWe also show that
an approximation of the Pareto-curve can be computed in time polynomial in the
size of the MDP, and the approximation factor, but exponential in the number of
dimensions. Finally, we present a complete characterization of the strategy complexity
(in terms of memory bounds and randomization) required to solve our problem."
alternative_title:
- IST Austria Technical Report
author:
- first_name: Krishnendu
full_name: Chatterjee, Krishnendu
id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87
last_name: Chatterjee
orcid: 0000-0002-4561-241X
- first_name: Zuzana
full_name: Komarkova, Zuzana
last_name: Komarkova
- first_name: Jan
full_name: Kretinsky, Jan
id: 44CEF464-F248-11E8-B48F-1D18A9856A87
last_name: Kretinsky
orcid: 0000-0002-8122-2881
citation:
ama: Chatterjee K, Komarkova Z, Kretinsky J. *Unifying Two Views on Multiple Mean-Payoff
Objectives in Markov Decision Processes*. IST Austria; 2015. doi:10.15479/AT:IST-2015-318-v2-1
apa: Chatterjee, K., Komarkova, Z., & Kretinsky, J. (2015). *Unifying two
views on multiple mean-payoff objectives in Markov decision processes*. IST
Austria. https://doi.org/10.15479/AT:IST-2015-318-v2-1
chicago: Chatterjee, Krishnendu, Zuzana Komarkova, and Jan Kretinsky. *Unifying
Two Views on Multiple Mean-Payoff Objectives in Markov Decision Processes*.
IST Austria, 2015. https://doi.org/10.15479/AT:IST-2015-318-v2-1.
ieee: K. Chatterjee, Z. Komarkova, and J. Kretinsky, *Unifying two views on multiple
mean-payoff objectives in Markov decision processes*. IST Austria, 2015.
ista: Chatterjee K, Komarkova Z, Kretinsky J. 2015. Unifying two views on multiple
mean-payoff objectives in Markov decision processes, IST Austria, 51p.
mla: Chatterjee, Krishnendu, et al. *Unifying Two Views on Multiple Mean-Payoff
Objectives in Markov Decision Processes*. IST Austria, 2015, doi:10.15479/AT:IST-2015-318-v2-1.
short: K. Chatterjee, Z. Komarkova, J. Kretinsky, Unifying Two Views on Multiple
Mean-Payoff Objectives in Markov Decision Processes, IST Austria, 2015.
date_created: 2018-12-12T11:39:19Z
date_published: 2015-02-23T00:00:00Z
date_updated: 2021-01-12T08:02:15Z
day: '23'
ddc:
- '004'
department:
- _id: KrCh
doi: 10.15479/AT:IST-2015-318-v2-1
file:
- access_level: open_access
checksum: 75284adec80baabdfe71ff9ebbc27445
content_type: application/pdf
creator: system
date_created: 2018-12-12T11:54:03Z
date_updated: 2020-07-14T12:46:53Z
file_id: '5525'
file_name: IST-2015-318-v2+1_main.pdf
file_size: 717630
relation: main_file
file_date_updated: 2020-07-14T12:46:53Z
has_accepted_license: '1'
language:
- iso: eng
month: '02'
oa: 1
oa_version: Published Version
page: '51'
publication_identifier:
issn:
- 2664-1690
publication_status: published
publisher: IST Austria
pubrep_id: '327'
related_material:
record:
- id: '5429'
relation: earlier_version
status: public
- id: '466'
relation: later_version
status: public
- id: '1657'
relation: later_version
status: public
status: public
title: Unifying two views on multiple mean-payoff objectives in Markov decision processes
type: technical_report
user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87
year: '2015'
...
---
_id: '5436'
abstract:
- lang: eng
text: "Recently there has been a significant effort to handle quantitative properties
in formal verification and synthesis. While weighted automata over finite and
infinite words provide a natural and flexible framework to express quantitative
properties, perhaps surprisingly, some basic system properties such as average
response time cannot be expressed using weighted automata, nor in any other know
decidable formalism. In this work, we introduce nested weighted automata as a
natural extension of weighted automata which makes it possible to express important
quantitative properties such as average response time.\r\nIn nested weighted automata,
a master automaton spins off and collects results from weighted slave automata,
each of which computes a quantity along a finite portion of an infinite word.
Nested weighted automata can be viewed as the quantitative analogue of monitor
automata, which are used in run-time verification. We establish an almost complete
decidability picture for the basic decision problems about nested weighted automata,
and illustrate their applicability in several domains. In particular, nested weighted
automata can be used to decide average response time properties."
alternative_title:
- IST Austria Technical Report
author:
- first_name: Krishnendu
full_name: Chatterjee, Krishnendu
id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87
last_name: Chatterjee
orcid: 0000-0002-4561-241X
- first_name: Thomas A
full_name: Henzinger, Thomas A
id: 40876CD8-F248-11E8-B48F-1D18A9856A87
last_name: Henzinger
orcid: 0000−0002−2985−7724
- first_name: Jan
full_name: Otop, Jan
id: 2FC5DA74-F248-11E8-B48F-1D18A9856A87
last_name: Otop
citation:
ama: Chatterjee K, Henzinger TA, Otop J. *Nested Weighted Automata*. IST Austria;
2015. doi:10.15479/AT:IST-2015-170-v2-2
apa: Chatterjee, K., Henzinger, T. A., & Otop, J. (2015). *Nested weighted
automata*. IST Austria. https://doi.org/10.15479/AT:IST-2015-170-v2-2
chicago: Chatterjee, Krishnendu, Thomas A Henzinger, and Jan Otop. *Nested Weighted
Automata*. IST Austria, 2015. https://doi.org/10.15479/AT:IST-2015-170-v2-2.
ieee: K. Chatterjee, T. A. Henzinger, and J. Otop, *Nested weighted automata*.
IST Austria, 2015.
ista: Chatterjee K, Henzinger TA, Otop J. 2015. Nested weighted automata, IST Austria,
29p.
mla: Chatterjee, Krishnendu, et al. *Nested Weighted Automata*. IST Austria,
2015, doi:10.15479/AT:IST-2015-170-v2-2.
short: K. Chatterjee, T.A. Henzinger, J. Otop, Nested Weighted Automata, IST Austria,
2015.
date_created: 2018-12-12T11:39:19Z
date_published: 2015-04-24T00:00:00Z
date_updated: 2021-01-12T08:02:16Z
day: '24'
ddc:
- '000'
department:
- _id: KrCh
- _id: ToHe
doi: 10.15479/AT:IST-2015-170-v2-2
file:
- access_level: open_access
checksum: 3c402f47d3669c28d04d1af405a08e3f
content_type: application/pdf
creator: system
date_created: 2018-12-12T11:54:19Z
date_updated: 2020-07-14T12:46:54Z
file_id: '5541'
file_name: IST-2015-170-v2+2_report.pdf
file_size: 569991
relation: main_file
file_date_updated: 2020-07-14T12:46:54Z
has_accepted_license: '1'
language:
- iso: eng
month: '04'
oa: 1
oa_version: Published Version
page: '29'
publication_identifier:
issn:
- 2664-1690
publication_status: published
publisher: IST Austria
pubrep_id: '331'
related_material:
record:
- id: '5415'
relation: earlier_version
status: public
- id: '467'
relation: later_version
status: public
- id: '1656'
relation: later_version
status: public
status: public
title: Nested weighted automata
type: technical_report
user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87
year: '2015'
...
---
_id: '5437'
abstract:
- lang: eng
text: "We consider the core algorithmic problems related to verification of systems
with respect to three classical quantitative properties, namely, the mean-payoff
property, the ratio property, and the minimum initial credit for energy property.
\r\nThe algorithmic problem given a graph and a quantitative property asks to
compute the optimal value (the infimum value over all traces) from every node
of the graph. We consider graphs with constant treewidth, and it is well-known
that the control-flow graphs of most programs have constant treewidth. Let $n$
denote the number of nodes of a graph, $m$ the number of edges (for constant treewidth
graphs $m=O(n)$) and $W$ the largest absolute value of the weights.\r\nOur main
theoretical results are as follows.\r\nFirst, for constant treewidth graphs we
present an algorithm that approximates the mean-payoff value within a multiplicative
factor of $\\epsilon$ in time $O(n \\cdot \\log (n/\\epsilon))$ and linear space,
as compared to the classical algorithms that require quadratic time. Second, for
the ratio property we present an algorithm that for constant treewidth graphs
works in time $O(n \\cdot \\log (|a\\cdot b|))=O(n\\cdot\\log (n\\cdot W))$, when
the output is $\\frac{a}{b}$, as compared to the previously best known algorithm
with running time $O(n^2 \\cdot \\log (n\\cdot W))$. Third, for the minimum initial
credit problem we show that (i)~for general graphs the problem can be solved in
$O(n^2\\cdot m)$ time and the associated decision problem can be solved in $O(n\\cdot
m)$ time, improving the previous known $O(n^3\\cdot m\\cdot \\log (n\\cdot W))$
and $O(n^2 \\cdot m)$ bounds, respectively; and (ii)~for constant treewidth graphs
we present an algorithm that requires $O(n\\cdot \\log n)$ time, improving the
previous known $O(n^4 \\cdot \\log (n \\cdot W))$ bound.\r\nWe have implemented
some of our algorithms and show that they present a significant speedup on standard
benchmarks. "
alternative_title:
- IST Austria Technical Report
author:
- first_name: Krishnendu
full_name: Chatterjee, Krishnendu
id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87
last_name: Chatterjee
orcid: 0000-0002-4561-241X
- first_name: Rasmus
full_name: Ibsen-Jensen, Rasmus
id: 3B699956-F248-11E8-B48F-1D18A9856A87
last_name: Ibsen-Jensen
orcid: 0000-0003-4783-0389
- first_name: Andreas
full_name: Pavlogiannis, Andreas
id: 49704004-F248-11E8-B48F-1D18A9856A87
last_name: Pavlogiannis
orcid: 0000-0002-8943-0722
citation:
ama: Chatterjee K, Ibsen-Jensen R, Pavlogiannis A. *Faster Algorithms for Quantitative
Verification in Constant Treewidth Graphs*. IST Austria; 2015. doi:10.15479/AT:IST-2015-330-v2-1
apa: Chatterjee, K., Ibsen-Jensen, R., & Pavlogiannis, A. (2015). *Faster
algorithms for quantitative verification in constant treewidth graphs*. IST
Austria. https://doi.org/10.15479/AT:IST-2015-330-v2-1
chicago: Chatterjee, Krishnendu, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis.
*Faster Algorithms for Quantitative Verification in Constant Treewidth Graphs*.
IST Austria, 2015. https://doi.org/10.15479/AT:IST-2015-330-v2-1.
ieee: K. Chatterjee, R. Ibsen-Jensen, and A. Pavlogiannis, *Faster algorithms
for quantitative verification in constant treewidth graphs*. IST Austria, 2015.
ista: Chatterjee K, Ibsen-Jensen R, Pavlogiannis A. 2015. Faster algorithms for
quantitative verification in constant treewidth graphs, IST Austria, 27p.
mla: Chatterjee, Krishnendu, et al. *Faster Algorithms for Quantitative Verification
in Constant Treewidth Graphs*. IST Austria, 2015, doi:10.15479/AT:IST-2015-330-v2-1.
short: K. Chatterjee, R. Ibsen-Jensen, A. Pavlogiannis, Faster Algorithms for Quantitative
Verification in Constant Treewidth Graphs, IST Austria, 2015.
date_created: 2018-12-12T11:39:19Z
date_published: 2015-04-27T00:00:00Z
date_updated: 2021-01-12T08:02:17Z
day: '27'
ddc:
- '000'
department:
- _id: KrCh
doi: 10.15479/AT:IST-2015-330-v2-1
file:
- access_level: open_access
checksum: f5917c20f84018b362d385c000a2e123
content_type: application/pdf
creator: system
date_created: 2018-12-12T11:53:12Z
date_updated: 2020-07-14T12:46:54Z
file_id: '5473'
file_name: IST-2015-330-v2+1_main.pdf
file_size: 1072137
relation: main_file
file_date_updated: 2020-07-14T12:46:54Z
has_accepted_license: '1'
language:
- iso: eng
month: '04'
oa: 1
oa_version: Published Version
page: '27'
publication_identifier:
issn:
- 2664-1690
publication_status: published
publisher: IST Austria
pubrep_id: '333'
related_material:
record:
- id: '5430'
relation: earlier_version
status: public
- id: '1607'
relation: later_version
status: public
status: public
title: Faster algorithms for quantitative verification in constant treewidth graphs
type: technical_report
user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87
year: '2015'
...
---
_id: '5438'
abstract:
- lang: eng
text: "The edit distance between two words w1, w2 is the minimal number of word
operations (letter insertions, deletions, and substitutions) necessary to transform
w1 to w2. The edit distance generalizes to languages L1, L2, where the edit distance
is the minimal number k such that for every word from L1 there exists a word in
L2 with edit distance at most k. We study the edit distance computation problem
between pushdown automata and their subclasses.\r\nThe problem of computing edit
distance to a pushdown automaton is undecidable, and in practice, the interesting
question is to compute the edit distance from a pushdown automaton (the implementation,
a standard model for programs with recursion) to a regular language (the specification).
In this work, we present a complete picture of decidability and complexity for
deciding whether, for a given threshold k, the edit distance from a pushdown automaton
to a finite automaton is at most k. "
alternative_title:
- IST Austria Technical Report
author:
- first_name: Krishnendu
full_name: Chatterjee, Krishnendu
id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87
last_name: Chatterjee
orcid: 0000-0002-4561-241X
- first_name: Thomas A
full_name: Henzinger, Thomas A
id: 40876CD8-F248-11E8-B48F-1D18A9856A87
last_name: Henzinger
orcid: 0000−0002−2985−7724
- first_name: Rasmus
full_name: Ibsen-Jensen, Rasmus
id: 3B699956-F248-11E8-B48F-1D18A9856A87
last_name: Ibsen-Jensen
orcid: 0000-0003-4783-0389
- first_name: Jan
full_name: Otop, Jan
id: 2FC5DA74-F248-11E8-B48F-1D18A9856A87
last_name: Otop
citation:
ama: Chatterjee K, Henzinger TA, Ibsen-Jensen R, Otop J. *Edit Distance for Pushdown
Automata*. IST Austria; 2015. doi:10.15479/AT:IST-2015-334-v1-1
apa: Chatterjee, K., Henzinger, T. A., Ibsen-Jensen, R., & Otop, J. (2015).
*Edit distance for pushdown automata*. IST Austria. https://doi.org/10.15479/AT:IST-2015-334-v1-1
chicago: Chatterjee, Krishnendu, Thomas A Henzinger, Rasmus Ibsen-Jensen, and Jan
Otop. *Edit Distance for Pushdown Automata*. IST Austria, 2015. https://doi.org/10.15479/AT:IST-2015-334-v1-1.
ieee: K. Chatterjee, T. A. Henzinger, R. Ibsen-Jensen, and J. Otop, *Edit distance
for pushdown automata*. IST Austria, 2015.
ista: Chatterjee K, Henzinger TA, Ibsen-Jensen R, Otop J. 2015. Edit distance for
pushdown automata, IST Austria, 15p.
mla: Chatterjee, Krishnendu, et al. *Edit Distance for Pushdown Automata*.
IST Austria, 2015, doi:10.15479/AT:IST-2015-334-v1-1.
short: K. Chatterjee, T.A. Henzinger, R. Ibsen-Jensen, J. Otop, Edit Distance for
Pushdown Automata, IST Austria, 2015.
date_created: 2018-12-12T11:39:20Z
date_published: 2015-05-05T00:00:00Z
date_updated: 2021-01-12T08:02:18Z
day: '05'
ddc:
- '004'
department:
- _id: KrCh
doi: 10.15479/AT:IST-2015-334-v1-1
file:
- access_level: open_access
checksum: 8a5f2d77560e552af87eb1982437a43b
content_type: application/pdf
creator: system
date_created: 2018-12-12T11:53:56Z
date_updated: 2020-07-14T12:46:55Z
file_id: '5518'
file_name: IST-2015-334-v1+1_report.pdf
file_size: 422573
relation: main_file
file_date_updated: 2020-07-14T12:46:55Z
has_accepted_license: '1'
language:
- iso: eng
month: '05'
oa: 1
oa_version: Published Version
page: '15'
publication_identifier:
issn:
- 2664-1690
publication_status: published
publisher: IST Austria
pubrep_id: '334'
related_material:
record:
- id: '465'
relation: later_version
status: public
- id: '1610'
relation: later_version
status: public
status: public
title: Edit distance for pushdown automata
type: technical_report
user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87
year: '2015'
...