--- _id: '1519' abstract: - lang: eng text: Evolutionary biologists have an array of powerful theoretical techniques that can accurately predict changes in the genetic composition of populations. Changes in gene frequencies and genetic associations between loci can be tracked as they respond to a wide variety of evolutionary forces. However, it is often less clear how to decompose these various forces into components that accurately reflect the underlying biology. Here, we present several issues that arise in the definition and interpretation of selection and selection coefficients, focusing on insights gained through the examination of selection coefficients in multilocus notation. Using this notation, we discuss how its flexibility-which allows different biological units to be identified as targets of selection-is reflected in the interpretation of the coefficients that the notation generates. In many situations, it can be difficult to agree on whether loci can be considered to be under "direct" versus "indirect" selection, or to quantify this selection. We present arguments for what the terms direct and indirect selection might best encompass, considering a range of issues, from viability and sexual selection to kin selection. We show how multilocus notation can discriminate between direct and indirect selection, and describe when it can do so. author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Maria full_name: Servedio, Maria last_name: Servedio citation: ama: Barton NH, Servedio M. The interpretation of selection coefficients. Evolution. 2015;69(5):1101-1112. doi:10.1111/evo.12641 apa: Barton, N. H., & Servedio, M. (2015). The interpretation of selection coefficients. Evolution. Wiley. https://doi.org/10.1111/evo.12641 chicago: Barton, Nicholas H, and Maria Servedio. “The Interpretation of Selection Coefficients.” Evolution. Wiley, 2015. https://doi.org/10.1111/evo.12641. ieee: N. H. Barton and M. Servedio, “The interpretation of selection coefficients,” Evolution, vol. 69, no. 5. Wiley, pp. 1101–1112, 2015. ista: Barton NH, Servedio M. 2015. The interpretation of selection coefficients. Evolution. 69(5), 1101–1112. mla: Barton, Nicholas H., and Maria Servedio. “The Interpretation of Selection Coefficients.” Evolution, vol. 69, no. 5, Wiley, 2015, pp. 1101–12, doi:10.1111/evo.12641. short: N.H. Barton, M. Servedio, Evolution 69 (2015) 1101–1112. date_created: 2018-12-11T11:52:29Z date_published: 2015-03-19T00:00:00Z date_updated: 2021-01-12T06:51:20Z day: '19' ddc: - '570' department: - _id: NiBa doi: 10.1111/evo.12641 ec_funded: 1 file: - access_level: open_access checksum: fd8d23f476bc194419929b72ca265c02 content_type: application/pdf creator: system date_created: 2018-12-12T10:10:34Z date_updated: 2020-07-14T12:45:00Z file_id: '4822' file_name: IST-2016-560-v1+1_Interpreting_ML_coefficients_11.2.15_App.pdf file_size: 188872 relation: main_file - access_level: open_access checksum: b774911e70044641d556e258efcb52ef content_type: application/pdf creator: system date_created: 2018-12-12T10:10:35Z date_updated: 2020-07-14T12:45:00Z file_id: '4823' file_name: IST-2016-560-v1+2_Interpreting_ML_coefficients_11.2.15_mainText.pdf file_size: 577415 relation: main_file file_date_updated: 2020-07-14T12:45:00Z has_accepted_license: '1' intvolume: ' 69' issue: '5' language: - iso: eng month: '03' oa: 1 oa_version: Submitted Version page: 1101 - 1112 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Evolution publication_status: published publisher: Wiley publist_id: '5656' pubrep_id: '560' quality_controlled: '1' scopus_import: 1 status: public title: The interpretation of selection coefficients type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 69 year: '2015' ... --- _id: '1525' abstract: - lang: eng text: 'Based on 16 recommendations, efforts should be made to achieve the following goal: By 2025, all scholarly publication activity in Austria should be Open Access. In other words, the final versions of all scholarly publications resulting from the support of public resources must be freely accessible on the Internet without delay (Gold Open Access). The resources required to meet this obligation shall be provided to the authors, or the cost of the publication venues shall be borne directly by the research organisations.' article_processing_charge: No article_type: original author: - first_name: Bruno full_name: Bauer, Bruno last_name: Bauer - first_name: Guido full_name: Blechl, Guido last_name: Blechl - first_name: Christoph full_name: Bock, Christoph last_name: Bock - first_name: Patrick full_name: Danowski, Patrick id: 2EBD1598-F248-11E8-B48F-1D18A9856A87 last_name: Danowski orcid: 0000-0002-6026-4409 - first_name: Andreas full_name: Ferus, Andreas last_name: Ferus - first_name: Anton full_name: Graschopf, Anton last_name: Graschopf - first_name: Thomas full_name: König, Thomas last_name: König - first_name: Katja full_name: Mayer, Katja last_name: Mayer - first_name: Falk full_name: Reckling, Falk last_name: Reckling - first_name: Katharina full_name: Rieck, Katharina last_name: Rieck - first_name: Peter full_name: Seitz, Peter last_name: Seitz - first_name: Herwig full_name: Stöger, Herwig last_name: Stöger - first_name: Elvira full_name: Welzig, Elvira last_name: Welzig citation: ama: Bauer B, Blechl G, Bock C, et al. Arbeitsgruppe „Nationale Strategie“ des Open Access Network Austria OANA. VÖB Mitteilungen. 2015;68(3):580-607. doi:10.5281/zenodo.33178 apa: Bauer, B., Blechl, G., Bock, C., Danowski, P., Ferus, A., Graschopf, A., … Welzig, E. (2015). Arbeitsgruppe „Nationale Strategie“ des Open Access Network Austria OANA. VÖB Mitteilungen. Verein Österreichischer Bibliothekare. https://doi.org/10.5281/zenodo.33178 chicago: Bauer, Bruno, Guido Blechl, Christoph Bock, Patrick Danowski, Andreas Ferus, Anton Graschopf, Thomas König, et al. “Arbeitsgruppe „Nationale Strategie“ Des Open Access Network Austria OANA.” VÖB Mitteilungen. Verein Österreichischer Bibliothekare, 2015. https://doi.org/10.5281/zenodo.33178. ieee: B. Bauer et al., “Arbeitsgruppe „Nationale Strategie“ des Open Access Network Austria OANA,” VÖB Mitteilungen, vol. 68, no. 3. Verein Österreichischer Bibliothekare, pp. 580–607, 2015. ista: Bauer B, Blechl G, Bock C, Danowski P, Ferus A, Graschopf A, König T, Mayer K, Reckling F, Rieck K, Seitz P, Stöger H, Welzig E. 2015. Arbeitsgruppe „Nationale Strategie“ des Open Access Network Austria OANA. VÖB Mitteilungen. 68(3), 580–607. mla: Bauer, Bruno, et al. “Arbeitsgruppe „Nationale Strategie“ Des Open Access Network Austria OANA.” VÖB Mitteilungen, vol. 68, no. 3, Verein Österreichischer Bibliothekare, 2015, pp. 580–607, doi:10.5281/zenodo.33178. short: B. Bauer, G. Blechl, C. Bock, P. Danowski, A. Ferus, A. Graschopf, T. König, K. Mayer, F. Reckling, K. Rieck, P. Seitz, H. Stöger, E. Welzig, VÖB Mitteilungen 68 (2015) 580–607. date_created: 2018-12-11T11:52:31Z date_published: 2015-11-12T00:00:00Z date_updated: 2021-01-12T06:51:22Z day: '12' ddc: - '020' department: - _id: E-Lib doi: 10.5281/zenodo.33178 file: - access_level: open_access checksum: a495fe253bbc7615b1d60e9e85c94408 content_type: application/pdf creator: system date_created: 2018-12-12T10:17:59Z date_updated: 2020-07-14T12:45:00Z file_id: '5317' file_name: IST-2016-720-v1+1_OANA_OA-Empfehlungen_12-11-2015.pdf file_size: 931707 relation: main_file file_date_updated: 2020-07-14T12:45:00Z has_accepted_license: '1' intvolume: ' 68' issue: '3' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 580 - 607 publication: VÖB Mitteilungen publication_status: published publisher: Verein Österreichischer Bibliothekare publist_id: '5648' pubrep_id: '720' quality_controlled: '1' scopus_import: 1 status: public title: Arbeitsgruppe „Nationale Strategie“ des Open Access Network Austria OANA tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 68 year: '2015' ... --- _id: '1520' abstract: - lang: eng text: Creating mechanical automata that can walk in stable and pleasing manners is a challenging task that requires both skill and expertise. We propose to use computational design to offset the technical difficulties of this process. A simple drag-and-drop interface allows casual users to create personalized walking toys from a library of pre-defined template mechanisms. Provided with this input, our method leverages physical simulation and evolutionary optimization to refine the mechanical designs such that the resulting toys are able to walk. The optimization process is guided by an intuitive set of objectives that measure the quality of the walking motions. We demonstrate our approach on a set of simulated mechanical toys with different numbers of legs and various distinct gaits. Two fabricated prototypes showcase the feasibility of our designs. author: - first_name: Gaurav full_name: Bharaj, Gaurav last_name: Bharaj - first_name: Stelian full_name: Coros, Stelian last_name: Coros - first_name: Bernhard full_name: Thomaszewski, Bernhard last_name: Thomaszewski - first_name: James full_name: Tompkin, James last_name: Tompkin - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Hanspeter full_name: Pfister, Hanspeter last_name: Pfister citation: ama: 'Bharaj G, Coros S, Thomaszewski B, Tompkin J, Bickel B, Pfister H. Computational design of walking automata. In: ACM; 2015:93-100. doi:10.1145/2786784.2786803' apa: 'Bharaj, G., Coros, S., Thomaszewski, B., Tompkin, J., Bickel, B., & Pfister, H. (2015). Computational design of walking automata (pp. 93–100). Presented at the SCA: ACM SIGGRAPH/Eurographics Symposium on Computer animation, Los Angeles, CA, United States: ACM. https://doi.org/10.1145/2786784.2786803' chicago: Bharaj, Gaurav, Stelian Coros, Bernhard Thomaszewski, James Tompkin, Bernd Bickel, and Hanspeter Pfister. “Computational Design of Walking Automata,” 93–100. ACM, 2015. https://doi.org/10.1145/2786784.2786803. ieee: 'G. Bharaj, S. Coros, B. Thomaszewski, J. Tompkin, B. Bickel, and H. Pfister, “Computational design of walking automata,” presented at the SCA: ACM SIGGRAPH/Eurographics Symposium on Computer animation, Los Angeles, CA, United States, 2015, pp. 93–100.' ista: 'Bharaj G, Coros S, Thomaszewski B, Tompkin J, Bickel B, Pfister H. 2015. Computational design of walking automata. SCA: ACM SIGGRAPH/Eurographics Symposium on Computer animation, 93–100.' mla: Bharaj, Gaurav, et al. Computational Design of Walking Automata. ACM, 2015, pp. 93–100, doi:10.1145/2786784.2786803. short: G. Bharaj, S. Coros, B. Thomaszewski, J. Tompkin, B. Bickel, H. Pfister, in:, ACM, 2015, pp. 93–100. conference: end_date: 2015-08-09 location: Los Angeles, CA, United States name: 'SCA: ACM SIGGRAPH/Eurographics Symposium on Computer animation' start_date: 2015-08-07 date_created: 2018-12-11T11:52:30Z date_published: 2015-08-01T00:00:00Z date_updated: 2021-01-12T06:51:21Z day: '01' department: - _id: BeBi doi: 10.1145/2786784.2786803 language: - iso: eng month: '08' oa_version: None page: 93 - 100 publication_identifier: isbn: - 978-1-4503-3496-9 publication_status: published publisher: ACM publist_id: '5655' quality_controlled: '1' scopus_import: 1 status: public title: Computational design of walking automata type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2015' ... --- _id: '1532' abstract: - lang: eng text: Ammonium is the major nitrogen source in some plant ecosystems but is toxic at high concentrations, especially when available as the exclusive nitrogen source. Ammonium stress rapidly leads to various metabolic and hormonal imbalances that ultimately inhibit root and shoot growth in many plant species, including Arabidopsis thaliana (L.) Heynh. To identify molecular and genetic factors involved in seedling survival with prolonged exclusive NH4+ nutrition, a transcriptomic analysis with microarrays was used. Substantial transcriptional differences were most pronounced in (NH4)2SO4-grown seedlings, compared with plants grown on KNO3 or NH4NO3. Consistent with previous physiological analyses, major differences in the expression modules of photosynthesis-related genes, an altered mitochondrial metabolism, differential expression of the primary NH4+ assimilation, alteration of transporter gene expression and crucial changes in cell wall biosynthesis were found. A major difference in plant hormone responses, particularly of auxin but not cytokinin, was striking. The activity of the DR5::GUS reporter revealed a dramatically decreased auxin response in (NH4)2SO4-grown primary roots. The impaired root growth on (NH4)2SO4 was partially rescued by exogenous auxin or in specific mutants in the auxin pathway. The data suggest that NH4+-induced nutritional and metabolic imbalances can be partially overcome by elevated auxin levels. article_processing_charge: No article_type: original author: - first_name: Huaiyu full_name: Yang, Huaiyu last_name: Yang - first_name: Jenny full_name: Von Der Fecht Bartenbach, Jenny last_name: Von Der Fecht Bartenbach - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Jan full_name: Lohmann, Jan last_name: Lohmann - first_name: Benjamin full_name: Neuhäuser, Benjamin last_name: Neuhäuser - first_name: Uwe full_name: Ludewig, Uwe last_name: Ludewig citation: ama: Yang H, Von Der Fecht Bartenbach J, Friml J, Lohmann J, Neuhäuser B, Ludewig U. Auxin-modulated root growth inhibition in Arabidopsis thaliana seedlings with ammonium as the sole nitrogen source. Functional Plant Biology. 2015;42(3):239-251. doi:10.1071/FP14171 apa: Yang, H., Von Der Fecht Bartenbach, J., Friml, J., Lohmann, J., Neuhäuser, B., & Ludewig, U. (2015). Auxin-modulated root growth inhibition in Arabidopsis thaliana seedlings with ammonium as the sole nitrogen source. Functional Plant Biology. CSIRO. https://doi.org/10.1071/FP14171 chicago: Yang, Huaiyu, Jenny Von Der Fecht Bartenbach, Jiří Friml, Jan Lohmann, Benjamin Neuhäuser, and Uwe Ludewig. “Auxin-Modulated Root Growth Inhibition in Arabidopsis Thaliana Seedlings with Ammonium as the Sole Nitrogen Source.” Functional Plant Biology. CSIRO, 2015. https://doi.org/10.1071/FP14171. ieee: H. Yang, J. Von Der Fecht Bartenbach, J. Friml, J. Lohmann, B. Neuhäuser, and U. Ludewig, “Auxin-modulated root growth inhibition in Arabidopsis thaliana seedlings with ammonium as the sole nitrogen source,” Functional Plant Biology, vol. 42, no. 3. CSIRO, pp. 239–251, 2015. ista: Yang H, Von Der Fecht Bartenbach J, Friml J, Lohmann J, Neuhäuser B, Ludewig U. 2015. Auxin-modulated root growth inhibition in Arabidopsis thaliana seedlings with ammonium as the sole nitrogen source. Functional Plant Biology. 42(3), 239–251. mla: Yang, Huaiyu, et al. “Auxin-Modulated Root Growth Inhibition in Arabidopsis Thaliana Seedlings with Ammonium as the Sole Nitrogen Source.” Functional Plant Biology, vol. 42, no. 3, CSIRO, 2015, pp. 239–51, doi:10.1071/FP14171. short: H. Yang, J. Von Der Fecht Bartenbach, J. Friml, J. Lohmann, B. Neuhäuser, U. Ludewig, Functional Plant Biology 42 (2015) 239–251. date_created: 2018-12-11T11:52:34Z date_published: 2015-03-01T00:00:00Z date_updated: 2022-05-24T09:02:24Z day: '01' department: - _id: JiFr doi: 10.1071/FP14171 external_id: pmid: - '32480670' intvolume: ' 42' issue: '3' language: - iso: eng month: '03' oa_version: None page: 239 - 251 pmid: 1 publication: Functional Plant Biology publication_identifier: issn: - 1445-4408 publication_status: published publisher: CSIRO publist_id: '5639' quality_controlled: '1' scopus_import: '1' status: public title: Auxin-modulated root growth inhibition in Arabidopsis thaliana seedlings with ammonium as the sole nitrogen source type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 42 year: '2015' ... --- _id: '1531' abstract: - lang: eng text: The Heat Kernel Signature (HKS) is a scalar quantity which is derived from the heat kernel of a given shape. Due to its robustness, isometry invariance, and multiscale nature, it has been successfully applied in many geometric applications. From a more general point of view, the HKS can be considered as a descriptor of the metric of a Riemannian manifold. Given a symmetric positive definite tensor field we may interpret it as the metric of some Riemannian manifold and thereby apply the HKS to visualize and analyze the given tensor data. In this paper, we propose a generalization of this approach that enables the treatment of indefinite tensor fields, like the stress tensor, by interpreting them as a generator of a positive definite tensor field. To investigate the usefulness of this approach we consider the stress tensor from the two-point-load model example and from a mechanical work piece. alternative_title: - Mathematics and Visualization article_processing_charge: No author: - first_name: Valentin full_name: Zobel, Valentin last_name: Zobel - first_name: Jan full_name: Reininghaus, Jan id: 4505473A-F248-11E8-B48F-1D18A9856A87 last_name: Reininghaus - first_name: Ingrid full_name: Hotz, Ingrid last_name: Hotz citation: ama: 'Zobel V, Reininghaus J, Hotz I. Visualizing symmetric indefinite 2D tensor fields using The Heat Kernel Signature. In: Hotz I, Schultz T, eds. Visualization and Processing of Higher Order Descriptors for Multi-Valued Data. Vol 40. 1st ed. Springer; 2015:257-267. doi:10.1007/978-3-319-15090-1_13' apa: Zobel, V., Reininghaus, J., & Hotz, I. (2015). Visualizing symmetric indefinite 2D tensor fields using The Heat Kernel Signature. In I. Hotz & T. Schultz (Eds.), Visualization and Processing of Higher Order Descriptors for Multi-Valued Data (1st ed., Vol. 40, pp. 257–267). Springer. https://doi.org/10.1007/978-3-319-15090-1_13 chicago: Zobel, Valentin, Jan Reininghaus, and Ingrid Hotz. “Visualizing Symmetric Indefinite 2D Tensor Fields Using The Heat Kernel Signature.” In Visualization and Processing of Higher Order Descriptors for Multi-Valued Data, edited by Ingrid Hotz and Thomas Schultz, 1st ed., 40:257–67. Springer, 2015. https://doi.org/10.1007/978-3-319-15090-1_13. ieee: V. Zobel, J. Reininghaus, and I. Hotz, “Visualizing symmetric indefinite 2D tensor fields using The Heat Kernel Signature,” in Visualization and Processing of Higher Order Descriptors for Multi-Valued Data, 1st ed., vol. 40, I. Hotz and T. Schultz, Eds. Springer, 2015, pp. 257–267. ista: 'Zobel V, Reininghaus J, Hotz I. 2015.Visualizing symmetric indefinite 2D tensor fields using The Heat Kernel Signature. In: Visualization and Processing of Higher Order Descriptors for Multi-Valued Data. Mathematics and Visualization, vol. 40, 257–267.' mla: Zobel, Valentin, et al. “Visualizing Symmetric Indefinite 2D Tensor Fields Using The Heat Kernel Signature.” Visualization and Processing of Higher Order Descriptors for Multi-Valued Data, edited by Ingrid Hotz and Thomas Schultz, 1st ed., vol. 40, Springer, 2015, pp. 257–67, doi:10.1007/978-3-319-15090-1_13. short: V. Zobel, J. Reininghaus, I. Hotz, in:, I. Hotz, T. Schultz (Eds.), Visualization and Processing of Higher Order Descriptors for Multi-Valued Data, 1st ed., Springer, 2015, pp. 257–267. date_created: 2018-12-11T11:52:33Z date_published: 2015-01-01T00:00:00Z date_updated: 2022-06-10T09:50:14Z day: '01' department: - _id: HeEd doi: 10.1007/978-3-319-15090-1_13 edition: '1' editor: - first_name: Ingrid full_name: Hotz, Ingrid last_name: Hotz - first_name: Thomas full_name: Schultz, Thomas last_name: Schultz intvolume: ' 40' language: - iso: eng month: '01' oa_version: None page: 257 - 267 publication: Visualization and Processing of Higher Order Descriptors for Multi-Valued Data publication_identifier: isbn: - 978-3-319-15089-5 publication_status: published publisher: Springer publist_id: '5640' quality_controlled: '1' scopus_import: '1' status: public title: Visualizing symmetric indefinite 2D tensor fields using The Heat Kernel Signature type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 40 year: '2015' ... --- _id: '1530' abstract: - lang: eng text: In growing cells, protein synthesis and cell growth are typically not synchronous, and, thus, protein concentrations vary over the cell division cycle. We have developed a theoretical description of genetic regulatory systems in bacteria that explicitly considers the cell division cycle to investigate its impact on gene expression. We calculate the cell-to-cell variations arising from cells being at different stages in the division cycle for unregulated genes and for basic regulatory mechanisms. These variations contribute to the extrinsic noise observed in single-cell experiments, and are most significant for proteins with short lifetimes. Negative autoregulation buffers against variation of protein concentration over the division cycle, but the effect is found to be relatively weak. Stronger buffering is achieved by an increased protein lifetime. Positive autoregulation can strongly amplify such variation if the parameters are set to values that lead to resonance-like behaviour. For cooperative positive autoregulation, the concentration variation over the division cycle diminishes the parameter region of bistability and modulates the switching times between the two stable states. The same effects are seen for a two-gene mutual-repression toggle switch. By contrast, an oscillatory circuit, the repressilator, is only weakly affected by the division cycle. article_number: '066003' author: - first_name: Veronika full_name: Bierbaum, Veronika id: 3FD04378-F248-11E8-B48F-1D18A9856A87 last_name: Bierbaum - first_name: Stefan full_name: Klumpp, Stefan last_name: Klumpp citation: ama: Bierbaum V, Klumpp S. Impact of the cell division cycle on gene circuits. Physical Biology. 2015;12(6). doi:10.1088/1478-3975/12/6/066003 apa: Bierbaum, V., & Klumpp, S. (2015). Impact of the cell division cycle on gene circuits. Physical Biology. IOP Publishing Ltd. https://doi.org/10.1088/1478-3975/12/6/066003 chicago: Bierbaum, Veronika, and Stefan Klumpp. “Impact of the Cell Division Cycle on Gene Circuits.” Physical Biology. IOP Publishing Ltd., 2015. https://doi.org/10.1088/1478-3975/12/6/066003. ieee: V. Bierbaum and S. Klumpp, “Impact of the cell division cycle on gene circuits,” Physical Biology, vol. 12, no. 6. IOP Publishing Ltd., 2015. ista: Bierbaum V, Klumpp S. 2015. Impact of the cell division cycle on gene circuits. Physical Biology. 12(6), 066003. mla: Bierbaum, Veronika, and Stefan Klumpp. “Impact of the Cell Division Cycle on Gene Circuits.” Physical Biology, vol. 12, no. 6, 066003, IOP Publishing Ltd., 2015, doi:10.1088/1478-3975/12/6/066003. short: V. Bierbaum, S. Klumpp, Physical Biology 12 (2015). date_created: 2018-12-11T11:52:33Z date_published: 2015-09-25T00:00:00Z date_updated: 2021-01-12T06:51:25Z day: '25' department: - _id: MiSi doi: 10.1088/1478-3975/12/6/066003 intvolume: ' 12' issue: '6' language: - iso: eng month: '09' oa_version: None publication: Physical Biology publication_status: published publisher: IOP Publishing Ltd. publist_id: '5641' quality_controlled: '1' scopus_import: 1 status: public title: Impact of the cell division cycle on gene circuits type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 12 year: '2015' ... --- _id: '1539' abstract: - lang: eng text: 'Many stochastic models of biochemical reaction networks contain some chemical species for which the number of molecules that are present in the system can only be finite (for instance due to conservation laws), but also other species that can be present in arbitrarily large amounts. The prime example of such networks are models of gene expression, which typically contain a small and finite number of possible states for the promoter but an infinite number of possible states for the amount of mRNA and protein. One of the main approaches to analyze such models is through the use of equations for the time evolution of moments of the chemical species. Recently, a new approach based on conditional moments of the species with infinite state space given all the different possible states of the finite species has been proposed. It was argued that this approach allows one to capture more details about the full underlying probability distribution with a smaller number of equations. Here, I show that the result that less moments provide more information can only stem from an unnecessarily complicated description of the system in the classical formulation. The foundation of this argument will be the derivation of moment equations that describe the complete probability distribution over the finite state space but only low-order moments over the infinite state space. I will show that the number of equations that is needed is always less than what was previously claimed and always less than the number of conditional moment equations up to the same order. To support these arguments, a symbolic algorithm is provided that can be used to derive minimal systems of unconditional moment equations for models with partially finite state space. ' article_number: '244103' author: - first_name: Jakob full_name: Ruess, Jakob id: 4A245D00-F248-11E8-B48F-1D18A9856A87 last_name: Ruess orcid: 0000-0003-1615-3282 citation: ama: Ruess J. Minimal moment equations for stochastic models of biochemical reaction networks with partially finite state space. Journal of Chemical Physics. 2015;143(24). doi:10.1063/1.4937937 apa: Ruess, J. (2015). Minimal moment equations for stochastic models of biochemical reaction networks with partially finite state space. Journal of Chemical Physics. American Institute of Physics. https://doi.org/10.1063/1.4937937 chicago: Ruess, Jakob. “Minimal Moment Equations for Stochastic Models of Biochemical Reaction Networks with Partially Finite State Space.” Journal of Chemical Physics. American Institute of Physics, 2015. https://doi.org/10.1063/1.4937937. ieee: J. Ruess, “Minimal moment equations for stochastic models of biochemical reaction networks with partially finite state space,” Journal of Chemical Physics, vol. 143, no. 24. American Institute of Physics, 2015. ista: Ruess J. 2015. Minimal moment equations for stochastic models of biochemical reaction networks with partially finite state space. Journal of Chemical Physics. 143(24), 244103. mla: Ruess, Jakob. “Minimal Moment Equations for Stochastic Models of Biochemical Reaction Networks with Partially Finite State Space.” Journal of Chemical Physics, vol. 143, no. 24, 244103, American Institute of Physics, 2015, doi:10.1063/1.4937937. short: J. Ruess, Journal of Chemical Physics 143 (2015). date_created: 2018-12-11T11:52:36Z date_published: 2015-12-22T00:00:00Z date_updated: 2021-01-12T06:51:28Z day: '22' ddc: - '000' department: - _id: ToHe - _id: GaTk doi: 10.1063/1.4937937 ec_funded: 1 file: - access_level: open_access checksum: 838657118ae286463a2b7737319f35ce content_type: application/pdf creator: system date_created: 2018-12-12T10:07:43Z date_updated: 2020-07-14T12:45:01Z file_id: '4641' file_name: IST-2016-593-v1+1_Minimal_moment_equations.pdf file_size: 605355 relation: main_file file_date_updated: 2020-07-14T12:45:01Z has_accepted_license: '1' intvolume: ' 143' issue: '24' language: - iso: eng month: '12' oa: 1 oa_version: Published Version project: - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Journal of Chemical Physics publication_status: published publisher: American Institute of Physics publist_id: '5632' pubrep_id: '593' quality_controlled: '1' scopus_import: 1 status: public title: Minimal moment equations for stochastic models of biochemical reaction networks with partially finite state space type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 143 year: '2015' ... --- _id: '1534' abstract: - lang: eng text: PIN proteins are auxin export carriers that direct intercellular auxin flow and in turn regulate many aspects of plant growth and development including responses to environmental changes. The Arabidopsis R2R3-MYB transcription factor FOUR LIPS (FLP) and its paralogue MYB88 regulate terminal divisions during stomatal development, as well as female reproductive development and stress responses. Here we show that FLP and MYB88 act redundantly but differentially in regulating the transcription of PIN3 and PIN7 in gravity-sensing cells of primary and lateral roots. On the one hand, FLP is involved in responses to gravity stimulation in primary roots, whereas on the other, FLP and MYB88 function complementarily in establishing the gravitropic set-point angles of lateral roots. Our results support a model in which FLP and MYB88 expression specifically determines the temporal-spatial patterns of PIN3 and PIN7 transcription that are closely associated with their preferential functions during root responses to gravity. article_number: '8822' author: - first_name: Hongzhe full_name: Wang, Hongzhe last_name: Wang - first_name: Kezhen full_name: Yang, Kezhen last_name: Yang - first_name: Junjie full_name: Zou, Junjie last_name: Zou - first_name: Lingling full_name: Zhu, Lingling last_name: Zhu - first_name: Zidian full_name: Xie, Zidian last_name: Xie - first_name: Miyoterao full_name: Morita, Miyoterao last_name: Morita - first_name: Masao full_name: Tasaka, Masao last_name: Tasaka - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Erich full_name: Grotewold, Erich last_name: Grotewold - first_name: Tom full_name: Beeckman, Tom last_name: Beeckman - first_name: Steffen full_name: Vanneste, Steffen last_name: Vanneste - first_name: Fred full_name: Sack, Fred last_name: Sack - first_name: Jie full_name: Le, Jie last_name: Le citation: ama: Wang H, Yang K, Zou J, et al. Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism. Nature Communications. 2015;6. doi:10.1038/ncomms9822 apa: Wang, H., Yang, K., Zou, J., Zhu, L., Xie, Z., Morita, M., … Le, J. (2015). Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/ncomms9822 chicago: Wang, Hongzhe, Kezhen Yang, Junjie Zou, Lingling Zhu, Zidian Xie, Miyoterao Morita, Masao Tasaka, et al. “Transcriptional Regulation of PIN Genes by FOUR LIPS and MYB88 during Arabidopsis Root Gravitropism.” Nature Communications. Nature Publishing Group, 2015. https://doi.org/10.1038/ncomms9822. ieee: H. Wang et al., “Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism,” Nature Communications, vol. 6. Nature Publishing Group, 2015. ista: Wang H, Yang K, Zou J, Zhu L, Xie Z, Morita M, Tasaka M, Friml J, Grotewold E, Beeckman T, Vanneste S, Sack F, Le J. 2015. Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism. Nature Communications. 6, 8822. mla: Wang, Hongzhe, et al. “Transcriptional Regulation of PIN Genes by FOUR LIPS and MYB88 during Arabidopsis Root Gravitropism.” Nature Communications, vol. 6, 8822, Nature Publishing Group, 2015, doi:10.1038/ncomms9822. short: H. Wang, K. Yang, J. Zou, L. Zhu, Z. Xie, M. Morita, M. Tasaka, J. Friml, E. Grotewold, T. Beeckman, S. Vanneste, F. Sack, J. Le, Nature Communications 6 (2015). date_created: 2018-12-11T11:52:34Z date_published: 2015-11-18T00:00:00Z date_updated: 2021-01-12T06:51:26Z day: '18' ddc: - '570' department: - _id: JiFr doi: 10.1038/ncomms9822 ec_funded: 1 file: - access_level: open_access checksum: 3c06735fc7cd7e482ca830cbd26001bf content_type: application/pdf creator: system date_created: 2018-12-12T10:17:07Z date_updated: 2020-07-14T12:45:01Z file_id: '5259' file_name: IST-2016-485-v1+1_ncomms9822.pdf file_size: 1852268 relation: main_file file_date_updated: 2020-07-14T12:45:01Z has_accepted_license: '1' intvolume: ' 6' language: - iso: eng month: '11' oa: 1 oa_version: Published Version project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: Nature Communications publication_status: published publisher: Nature Publishing Group publist_id: '5637' pubrep_id: '485' quality_controlled: '1' scopus_import: 1 status: public title: Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2015' ... --- _id: '1538' abstract: - lang: eng text: Systems biology rests on the idea that biological complexity can be better unraveled through the interplay of modeling and experimentation. However, the success of this approach depends critically on the informativeness of the chosen experiments, which is usually unknown a priori. Here, we propose a systematic scheme based on iterations of optimal experiment design, flow cytometry experiments, and Bayesian parameter inference to guide the discovery process in the case of stochastic biochemical reaction networks. To illustrate the benefit of our methodology, we apply it to the characterization of an engineered light-inducible gene expression circuit in yeast and compare the performance of the resulting model with models identified from nonoptimal experiments. In particular, we compare the parameter posterior distributions and the precision to which the outcome of future experiments can be predicted. Moreover, we illustrate how the identified stochastic model can be used to determine light induction patterns that make either the average amount of protein or the variability in a population of cells follow a desired profile. Our results show that optimal experiment design allows one to derive models that are accurate enough to precisely predict and regulate the protein expression in heterogeneous cell populations over extended periods of time. acknowledgement: 'J.R., F.P., and J.L. acknowledge support from the European Commission under the Network of Excellence HYCON2 (highly-complex and networked control systems) and SystemsX.ch under the SignalX Project. J.R. acknowledges support from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013 under REA (Research Executive Agency) Grant 291734. M.K. acknowledges support from Human Frontier Science Program Grant RP0061/2011 (www.hfsp.org). ' author: - first_name: Jakob full_name: Ruess, Jakob id: 4A245D00-F248-11E8-B48F-1D18A9856A87 last_name: Ruess orcid: 0000-0003-1615-3282 - first_name: Francesca full_name: Parise, Francesca last_name: Parise - first_name: Andreas full_name: Milias Argeitis, Andreas last_name: Milias Argeitis - first_name: Mustafa full_name: Khammash, Mustafa last_name: Khammash - first_name: John full_name: Lygeros, John last_name: Lygeros citation: ama: Ruess J, Parise F, Milias Argeitis A, Khammash M, Lygeros J. Iterative experiment design guides the characterization of a light-inducible gene expression circuit. PNAS. 2015;112(26):8148-8153. doi:10.1073/pnas.1423947112 apa: Ruess, J., Parise, F., Milias Argeitis, A., Khammash, M., & Lygeros, J. (2015). Iterative experiment design guides the characterization of a light-inducible gene expression circuit. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1423947112 chicago: Ruess, Jakob, Francesca Parise, Andreas Milias Argeitis, Mustafa Khammash, and John Lygeros. “Iterative Experiment Design Guides the Characterization of a Light-Inducible Gene Expression Circuit.” PNAS. National Academy of Sciences, 2015. https://doi.org/10.1073/pnas.1423947112. ieee: J. Ruess, F. Parise, A. Milias Argeitis, M. Khammash, and J. Lygeros, “Iterative experiment design guides the characterization of a light-inducible gene expression circuit,” PNAS, vol. 112, no. 26. National Academy of Sciences, pp. 8148–8153, 2015. ista: Ruess J, Parise F, Milias Argeitis A, Khammash M, Lygeros J. 2015. Iterative experiment design guides the characterization of a light-inducible gene expression circuit. PNAS. 112(26), 8148–8153. mla: Ruess, Jakob, et al. “Iterative Experiment Design Guides the Characterization of a Light-Inducible Gene Expression Circuit.” PNAS, vol. 112, no. 26, National Academy of Sciences, 2015, pp. 8148–53, doi:10.1073/pnas.1423947112. short: J. Ruess, F. Parise, A. Milias Argeitis, M. Khammash, J. Lygeros, PNAS 112 (2015) 8148–8153. date_created: 2018-12-11T11:52:36Z date_published: 2015-06-30T00:00:00Z date_updated: 2021-01-12T06:51:27Z day: '30' department: - _id: ToHe - _id: GaTk doi: 10.1073/pnas.1423947112 ec_funded: 1 external_id: pmid: - '26085136' intvolume: ' 112' issue: '26' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4491780/ month: '06' oa: 1 oa_version: Submitted Version page: 8148 - 8153 pmid: 1 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: PNAS publication_status: published publisher: National Academy of Sciences publist_id: '5633' quality_controlled: '1' scopus_import: 1 status: public title: Iterative experiment design guides the characterization of a light-inducible gene expression circuit type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 112 year: '2015' ... --- _id: '1535' abstract: - lang: eng text: Neuronal and neuroendocrine L-type calcium channels (Cav1.2, Cav1.3) open readily at relatively low membrane potentials and allow Ca2+ to enter the cells near resting potentials. In this way, Cav1.2 and Cav1.3 shape the action potential waveform, contribute to gene expression, synaptic plasticity, neuronal differentiation, hormone secretion and pacemaker activity. In the chromaffin cells (CCs) of the adrenal medulla, Cav1.3 is highly expressed and is shown to support most of the pacemaking current that sustains action potential (AP) firings and part of the catecholamine secretion. Cav1.3 forms Ca2+-nanodomains with the fast inactivating BK channels and drives the resting SK currents. These latter set the inter-spike interval duration between consecutive spikes during spontaneous firing and the rate of spike adaptation during sustained depolarizations. Cav1.3 plays also a primary role in the switch from “tonic” to “burst” firing that occurs in mouse CCs when either the availability of voltage-gated Na channels (Nav) is reduced or the β2 subunit featuring the fast inactivating BK channels is deleted. Here, we discuss the functional role of these “neuronlike” firing modes in CCs and how Cav1.3 contributes to them. The open issue is to understand how these novel firing patterns are adapted to regulate the quantity of circulating catecholamines during resting condition or in response to acute and chronic stress. acknowledgement: This work was supported by the Italian MIUR (PRIN 2010/2011 project 2010JFYFY2) and the University of Torino. article_processing_charge: No article_type: original author: - first_name: David H full_name: Vandael, David H id: 3AE48E0A-F248-11E8-B48F-1D18A9856A87 last_name: Vandael orcid: 0000-0001-7577-1676 - first_name: Andrea full_name: Marcantoni, Andrea last_name: Marcantoni - first_name: Emilio full_name: Carbone, Emilio last_name: Carbone citation: ama: Vandael DH, Marcantoni A, Carbone E. Cav1.3 channels as key regulators of neuron-like firings and catecholamine release in chromaffin cells. Current Molecular Pharmacology. 2015;8(2):149-161. doi:10.2174/1874467208666150507105443 apa: Vandael, D. H., Marcantoni, A., & Carbone, E. (2015). Cav1.3 channels as key regulators of neuron-like firings and catecholamine release in chromaffin cells. Current Molecular Pharmacology. Bentham Science Publishers. https://doi.org/10.2174/1874467208666150507105443 chicago: Vandael, David H, Andrea Marcantoni, and Emilio Carbone. “Cav1.3 Channels as Key Regulators of Neuron-like Firings and Catecholamine Release in Chromaffin Cells.” Current Molecular Pharmacology. Bentham Science Publishers, 2015. https://doi.org/10.2174/1874467208666150507105443. ieee: D. H. Vandael, A. Marcantoni, and E. Carbone, “Cav1.3 channels as key regulators of neuron-like firings and catecholamine release in chromaffin cells,” Current Molecular Pharmacology, vol. 8, no. 2. Bentham Science Publishers, pp. 149–161, 2015. ista: Vandael DH, Marcantoni A, Carbone E. 2015. Cav1.3 channels as key regulators of neuron-like firings and catecholamine release in chromaffin cells. Current Molecular Pharmacology. 8(2), 149–161. mla: Vandael, David H., et al. “Cav1.3 Channels as Key Regulators of Neuron-like Firings and Catecholamine Release in Chromaffin Cells.” Current Molecular Pharmacology, vol. 8, no. 2, Bentham Science Publishers, 2015, pp. 149–61, doi:10.2174/1874467208666150507105443. short: D.H. Vandael, A. Marcantoni, E. Carbone, Current Molecular Pharmacology 8 (2015) 149–161. date_created: 2018-12-11T11:52:35Z date_published: 2015-10-01T00:00:00Z date_updated: 2021-01-12T06:51:26Z day: '01' department: - _id: PeJo doi: 10.2174/1874467208666150507105443 external_id: pmid: - '25966692' intvolume: ' 8' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384372/ month: '10' oa: 1 oa_version: Submitted Version page: 149 - 161 pmid: 1 publication: Current Molecular Pharmacology publication_status: published publisher: Bentham Science Publishers publist_id: '5636' quality_controlled: '1' scopus_import: 1 status: public title: Cav1.3 channels as key regulators of neuron-like firings and catecholamine release in chromaffin cells type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8 year: '2015' ... --- _id: '1536' abstract: - lang: eng text: Strigolactones, first discovered as germination stimulants for parasitic weeds [1], are carotenoid-derived phytohormones that play major roles in inhibiting lateral bud outgrowth and promoting plant-mycorrhizal symbiosis [2-4]. Furthermore, strigolactones are involved in the regulation of lateral and adventitious root development, root cell division [5, 6], secondary growth [7], and leaf senescence [8]. Recently, we discovered the strigolactone transporter Petunia axillaris PLEIOTROPIC DRUG RESISTANCE 1 (PaPDR1), which is required for efficient mycorrhizal colonization and inhibition of lateral bud outgrowth [9]. However, how strigolactones are transported through the plant remained unknown. Here we show that PaPDR1 exhibits a cell-type-specific asymmetric localization in different root tissues. In root tips, PaPDR1 is co-expressed with the strigolactone biosynthetic gene DAD1 (CCD8), and it is localized at the apical membrane of root hypodermal cells, presumably mediating the shootward transport of strigolactone. Above the root tip, in the hypodermal passage cells that form gates for the entry of mycorrhizal fungi, PaPDR1 is present in the outer-lateral membrane, compatible with its postulated function as strigolactone exporter from root to soil. Transport studies are in line with our localization studies since (1) a papdr1 mutant displays impaired transport of strigolactones out of the root tip to the shoot as well as into the rhizosphere and (2) DAD1 expression and PIN1/PIN2 levels change in plants deregulated for PDR1 expression, suggestive of variations in endogenous strigolactone contents. In conclusion, our results indicate that the polar localizations of PaPDR1 mediate directional shootward strigolactone transport as well as localized exudation into the soil. acknowledgement: "This work was funded by a grant of the Swiss National Foundation to E.M.\r\nWe thank Dr. José María Mateos (University of Zurich) for providing us with the vibratome, Prof. Dolf Weijers (Wageningen University, the Netherlands) for shipping us his set of ligation-independent cloning vectors, Prof. Bruno Humbel (University of Lausanne) for suggestions on GFP-PDR1 detection, and Dr. Undine Krügel (University of Zurich) and Prof. Michal Jasinski (Polish Academy of Science) for hints on protein quantification." author: - first_name: Joëlle full_name: Sasse, Joëlle last_name: Sasse - first_name: Sibu full_name: Simon, Sibu id: 4542EF9A-F248-11E8-B48F-1D18A9856A87 last_name: Simon orcid: 0000-0002-1998-6741 - first_name: Christian full_name: Gübeli, Christian last_name: Gübeli - first_name: Guowei full_name: Liu, Guowei last_name: Liu - first_name: Xi full_name: Cheng, Xi last_name: Cheng - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Harro full_name: Bouwmeester, Harro last_name: Bouwmeester - first_name: Enrico full_name: Martinoia, Enrico last_name: Martinoia - first_name: Lorenzo full_name: Borghi, Lorenzo last_name: Borghi citation: ama: Sasse J, Simon S, Gübeli C, et al. Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport. Current Biology. 2015;25(5):647-655. doi:10.1016/j.cub.2015.01.015 apa: Sasse, J., Simon, S., Gübeli, C., Liu, G., Cheng, X., Friml, J., … Borghi, L. (2015). Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport. Current Biology. Cell Press. https://doi.org/10.1016/j.cub.2015.01.015 chicago: Sasse, Joëlle, Sibu Simon, Christian Gübeli, Guowei Liu, Xi Cheng, Jiří Friml, Harro Bouwmeester, Enrico Martinoia, and Lorenzo Borghi. “Asymmetric Localizations of the ABC Transporter PaPDR1 Trace Paths of Directional Strigolactone Transport.” Current Biology. Cell Press, 2015. https://doi.org/10.1016/j.cub.2015.01.015. ieee: J. Sasse et al., “Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport,” Current Biology, vol. 25, no. 5. Cell Press, pp. 647–655, 2015. ista: Sasse J, Simon S, Gübeli C, Liu G, Cheng X, Friml J, Bouwmeester H, Martinoia E, Borghi L. 2015. Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport. Current Biology. 25(5), 647–655. mla: Sasse, Joëlle, et al. “Asymmetric Localizations of the ABC Transporter PaPDR1 Trace Paths of Directional Strigolactone Transport.” Current Biology, vol. 25, no. 5, Cell Press, 2015, pp. 647–55, doi:10.1016/j.cub.2015.01.015. short: J. Sasse, S. Simon, C. Gübeli, G. Liu, X. Cheng, J. Friml, H. Bouwmeester, E. Martinoia, L. Borghi, Current Biology 25 (2015) 647–655. date_created: 2018-12-11T11:52:35Z date_published: 2015-02-12T00:00:00Z date_updated: 2021-01-12T06:51:27Z day: '12' department: - _id: JiFr doi: 10.1016/j.cub.2015.01.015 intvolume: ' 25' issue: '5' language: - iso: eng month: '02' oa_version: None page: 647 - 655 publication: Current Biology publication_status: published publisher: Cell Press publist_id: '5635' quality_controlled: '1' scopus_import: 1 status: public title: Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 25 year: '2015' ... --- _id: '1533' abstract: - lang: eng text: This paper addresses the problem of semantic segmentation, where the possible class labels are from a predefined set. We exploit top-down guidance, i.e., the coarse localization of the objects and their class labels provided by object detectors. For each detected bounding box, figure-ground segmentation is performed and the final result is achieved by merging the figure-ground segmentations. The main idea of the proposed approach, which is presented in our preliminary work, is to reformulate the figure-ground segmentation problem as sparse reconstruction pursuing the object mask in a nonparametric manner. The latent segmentation mask should be coherent subject to sparse error caused by intra-category diversity; thus, the object mask is inferred by making use of sparse representations over the training set. To handle local spatial deformations, local patch-level masks are also considered and inferred by sparse representations over the spatially nearby patches. The sparse reconstruction coefficients and the latent mask are alternately optimized by applying the Lasso algorithm and the accelerated proximal gradient method. The proposed formulation results in a convex optimization problem; thus, the global optimal solution is achieved. In this paper, we provide theoretical analysis of the convergence and optimality. We also give an extended numerical analysis of the proposed algorithm and a comprehensive comparison with the related semantic segmentation methods on the challenging PASCAL visual object class object segmentation datasets and the Weizmann horse dataset. The experimental results demonstrate that the proposed algorithm achieves a competitive performance when compared with the state of the arts. author: - first_name: Wei full_name: Xia, Wei last_name: Xia - first_name: Csaba full_name: Domokos, Csaba id: 492DACF8-F248-11E8-B48F-1D18A9856A87 last_name: Domokos - first_name: Junjun full_name: Xiong, Junjun last_name: Xiong - first_name: Loongfah full_name: Cheong, Loongfah last_name: Cheong - first_name: Shuicheng full_name: Yan, Shuicheng last_name: Yan citation: ama: Xia W, Domokos C, Xiong J, Cheong L, Yan S. Segmentation over detection via optimal sparse reconstructions. IEEE Transactions on Circuits and Systems for Video Technology. 2015;25(8):1295-1308. doi:10.1109/TCSVT.2014.2379972 apa: Xia, W., Domokos, C., Xiong, J., Cheong, L., & Yan, S. (2015). Segmentation over detection via optimal sparse reconstructions. IEEE Transactions on Circuits and Systems for Video Technology. IEEE. https://doi.org/10.1109/TCSVT.2014.2379972 chicago: Xia, Wei, Csaba Domokos, Junjun Xiong, Loongfah Cheong, and Shuicheng Yan. “Segmentation over Detection via Optimal Sparse Reconstructions.” IEEE Transactions on Circuits and Systems for Video Technology. IEEE, 2015. https://doi.org/10.1109/TCSVT.2014.2379972. ieee: W. Xia, C. Domokos, J. Xiong, L. Cheong, and S. Yan, “Segmentation over detection via optimal sparse reconstructions,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 25, no. 8. IEEE, pp. 1295–1308, 2015. ista: Xia W, Domokos C, Xiong J, Cheong L, Yan S. 2015. Segmentation over detection via optimal sparse reconstructions. IEEE Transactions on Circuits and Systems for Video Technology. 25(8), 1295–1308. mla: Xia, Wei, et al. “Segmentation over Detection via Optimal Sparse Reconstructions.” IEEE Transactions on Circuits and Systems for Video Technology, vol. 25, no. 8, IEEE, 2015, pp. 1295–308, doi:10.1109/TCSVT.2014.2379972. short: W. Xia, C. Domokos, J. Xiong, L. Cheong, S. Yan, IEEE Transactions on Circuits and Systems for Video Technology 25 (2015) 1295–1308. date_created: 2018-12-11T11:52:34Z date_published: 2015-08-01T00:00:00Z date_updated: 2021-01-12T06:51:26Z day: '01' department: - _id: ChLa doi: 10.1109/TCSVT.2014.2379972 intvolume: ' 25' issue: '8' language: - iso: eng month: '08' oa_version: None page: 1295 - 1308 publication: IEEE Transactions on Circuits and Systems for Video Technology publication_status: published publisher: IEEE publist_id: '5638' quality_controlled: '1' scopus_import: 1 status: public title: Segmentation over detection via optimal sparse reconstructions type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 25 year: '2015' ... --- _id: '1542' abstract: - lang: eng text: 'The theory of population genetics and evolutionary computation have been evolving separately for nearly 30 years. Many results have been independently obtained in both fields and many others are unique to its respective field. We aim to bridge this gap by developing a unifying framework for evolutionary processes that allows both evolutionary algorithms and population genetics models to be cast in the same formal framework. The framework we present here decomposes the evolutionary process into its several components in order to facilitate the identification of similarities between different models. In particular, we propose a classification of evolutionary operators based on the defining properties of the different components. We cast several commonly used operators from both fields into this common framework. Using this, we map different evolutionary and genetic algorithms to different evolutionary regimes and identify candidates with the most potential for the translation of results between the fields. This provides a unified description of evolutionary processes and represents a stepping stone towards new tools and results to both fields. ' author: - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 - first_name: Golnaz full_name: Badkobeh, Golnaz last_name: Badkobeh - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Doğan full_name: Çörüş, Doğan last_name: Çörüş - first_name: Duccuong full_name: Dang, Duccuong last_name: Dang - first_name: Tobias full_name: Friedrich, Tobias last_name: Friedrich - first_name: Per full_name: Lehre, Per last_name: Lehre - first_name: Dirk full_name: Sudholt, Dirk last_name: Sudholt - first_name: Andrew full_name: Sutton, Andrew last_name: Sutton - first_name: Barbora full_name: Trubenova, Barbora id: 42302D54-F248-11E8-B48F-1D18A9856A87 last_name: Trubenova orcid: 0000-0002-6873-2967 citation: ama: Paixao T, Badkobeh G, Barton NH, et al. Toward a unifying framework for evolutionary processes. Journal of Theoretical Biology. 2015;383:28-43. doi:10.1016/j.jtbi.2015.07.011 apa: Paixao, T., Badkobeh, G., Barton, N. H., Çörüş, D., Dang, D., Friedrich, T., … Trubenova, B. (2015). Toward a unifying framework for evolutionary processes. Journal of Theoretical Biology. Elsevier. https://doi.org/10.1016/j.jtbi.2015.07.011 chicago: Paixao, Tiago, Golnaz Badkobeh, Nicholas H Barton, Doğan Çörüş, Duccuong Dang, Tobias Friedrich, Per Lehre, Dirk Sudholt, Andrew Sutton, and Barbora Trubenova. “Toward a Unifying Framework for Evolutionary Processes.” Journal of Theoretical Biology. Elsevier, 2015. https://doi.org/10.1016/j.jtbi.2015.07.011. ieee: T. Paixao et al., “Toward a unifying framework for evolutionary processes,” Journal of Theoretical Biology, vol. 383. Elsevier, pp. 28–43, 2015. ista: Paixao T, Badkobeh G, Barton NH, Çörüş D, Dang D, Friedrich T, Lehre P, Sudholt D, Sutton A, Trubenova B. 2015. Toward a unifying framework for evolutionary processes. Journal of Theoretical Biology. 383, 28–43. mla: Paixao, Tiago, et al. “Toward a Unifying Framework for Evolutionary Processes.” Journal of Theoretical Biology, vol. 383, Elsevier, 2015, pp. 28–43, doi:10.1016/j.jtbi.2015.07.011. short: T. Paixao, G. Badkobeh, N.H. Barton, D. Çörüş, D. Dang, T. Friedrich, P. Lehre, D. Sudholt, A. Sutton, B. Trubenova, Journal of Theoretical Biology 383 (2015) 28–43. date_created: 2018-12-11T11:52:37Z date_published: 2015-10-21T00:00:00Z date_updated: 2021-01-12T06:51:29Z day: '21' ddc: - '570' department: - _id: NiBa - _id: CaGu doi: 10.1016/j.jtbi.2015.07.011 ec_funded: 1 file: - access_level: open_access checksum: 33b60ecfea60764756a9ee9df5eb65ca content_type: application/pdf creator: system date_created: 2018-12-12T10:16:53Z date_updated: 2020-07-14T12:45:01Z file_id: '5244' file_name: IST-2016-483-v1+1_1-s2.0-S0022519315003409-main.pdf file_size: 595307 relation: main_file file_date_updated: 2020-07-14T12:45:01Z has_accepted_license: '1' intvolume: ' 383' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 28 - 43 project: - _id: 25B1EC9E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618091' name: Speed of Adaptation in Population Genetics and Evolutionary Computation - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: ' Journal of Theoretical Biology' publication_status: published publisher: Elsevier publist_id: '5629' pubrep_id: '483' quality_controlled: '1' scopus_import: 1 status: public title: Toward a unifying framework for evolutionary processes tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 383 year: '2015' ... --- _id: '1546' abstract: - lang: eng text: Synaptic efficacy and precision are influenced by the coupling of voltage-gated Ca2+ channels (VGCCs) to vesicles. But because the topography of VGCCs and their proximity to vesicles is unknown, a quantitative understanding of the determinants of vesicular release at nanometer scale is lacking. To investigate this, we combined freeze-fracture replica immunogold labeling of Cav2.1 channels, local [Ca2+] imaging, and patch pipette perfusion of EGTA at the calyx of Held. Between postnatal day 7 and 21, VGCCs formed variable sized clusters and vesicular release became less sensitive to EGTA, whereas fixed Ca2+ buffer properties remained constant. Experimentally constrained reaction-diffusion simulations suggest that Ca2+ sensors for vesicular release are located at the perimeter of VGCC clusters (<30nm) and predict that VGCC number per cluster determines vesicular release probability without altering release time course. This "perimeter release model" provides a unifying framework accounting for developmental changes in both synaptic efficacy and time course. acknowledgement: This work was supported by the Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency to T.T. and R.S.; by the funding provided by Okinawa Institute of Science and Technology (OIST) to T.T. and Y.N.; by JSPS Core-to-Core Program, A. Advanced Networks to T.T.; by the Grant-in-Aid for Young Scientists from the Japanese Ministry of Education, Culture, Sports, Science and Technology (#23700474) to Y.N.; by the Centre National de la Recherche Scientifique through the Actions Thematiques et Initatives sur Programme, Fondation Fyssen, Fondation pour la Recherche Medicale, Federation pour la Recherche sur le Cerveau, Agence Nationale de la Recherche (ANR-2007-Neuro-008-01 and ANR-2010-BLAN-1411-01) to D.D. and Y.N.; and by the European Commission Coordination Action ENINET (LSHM-CT-2005-19063) to D.D. and R.A.S. R.A.S. and J.S.R. were funded by Wellcome Trust Senior (064413) and Principal (095667) Research Fellowship and an ERC advance grant (294667) to RAS. author: - first_name: Yukihiro full_name: Nakamura, Yukihiro last_name: Nakamura - first_name: Harumi full_name: Harada, Harumi id: 2E55CDF2-F248-11E8-B48F-1D18A9856A87 last_name: Harada orcid: 0000-0001-7429-7896 - first_name: Naomi full_name: Kamasawa, Naomi last_name: Kamasawa - first_name: Ko full_name: Matsui, Ko last_name: Matsui - first_name: Jason full_name: Rothman, Jason last_name: Rothman - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: R Angus full_name: Silver, R Angus last_name: Silver - first_name: David full_name: Digregorio, David last_name: Digregorio - first_name: Tomoyuki full_name: Takahashi, Tomoyuki last_name: Takahashi citation: ama: Nakamura Y, Harada H, Kamasawa N, et al. Nanoscale distribution of presynaptic Ca2+ channels and its impact on vesicular release during development. Neuron. 2015;85(1):145-158. doi:10.1016/j.neuron.2014.11.019 apa: Nakamura, Y., Harada, H., Kamasawa, N., Matsui, K., Rothman, J., Shigemoto, R., … Takahashi, T. (2015). Nanoscale distribution of presynaptic Ca2+ channels and its impact on vesicular release during development. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2014.11.019 chicago: Nakamura, Yukihiro, Harumi Harada, Naomi Kamasawa, Ko Matsui, Jason Rothman, Ryuichi Shigemoto, R Angus Silver, David Digregorio, and Tomoyuki Takahashi. “Nanoscale Distribution of Presynaptic Ca2+ Channels and Its Impact on Vesicular Release during Development.” Neuron. Elsevier, 2015. https://doi.org/10.1016/j.neuron.2014.11.019. ieee: Y. Nakamura et al., “Nanoscale distribution of presynaptic Ca2+ channels and its impact on vesicular release during development,” Neuron, vol. 85, no. 1. Elsevier, pp. 145–158, 2015. ista: Nakamura Y, Harada H, Kamasawa N, Matsui K, Rothman J, Shigemoto R, Silver RA, Digregorio D, Takahashi T. 2015. Nanoscale distribution of presynaptic Ca2+ channels and its impact on vesicular release during development. Neuron. 85(1), 145–158. mla: Nakamura, Yukihiro, et al. “Nanoscale Distribution of Presynaptic Ca2+ Channels and Its Impact on Vesicular Release during Development.” Neuron, vol. 85, no. 1, Elsevier, 2015, pp. 145–58, doi:10.1016/j.neuron.2014.11.019. short: Y. Nakamura, H. Harada, N. Kamasawa, K. Matsui, J. Rothman, R. Shigemoto, R.A. Silver, D. Digregorio, T. Takahashi, Neuron 85 (2015) 145–158. date_created: 2018-12-11T11:52:39Z date_published: 2015-01-07T00:00:00Z date_updated: 2021-01-12T06:51:31Z day: '07' ddc: - '570' department: - _id: RySh doi: 10.1016/j.neuron.2014.11.019 file: - access_level: open_access checksum: 725f4d5be2dbb44b283ce722645ef37d content_type: application/pdf creator: system date_created: 2018-12-12T10:15:47Z date_updated: 2020-07-14T12:45:01Z file_id: '5170' file_name: IST-2016-482-v1+1_1-s2.0-S0896627314010472-main.pdf file_size: 3080111 relation: main_file file_date_updated: 2020-07-14T12:45:01Z has_accepted_license: '1' intvolume: ' 85' issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 145 - 158 publication: Neuron publication_status: published publisher: Elsevier publist_id: '5625' pubrep_id: '482' quality_controlled: '1' scopus_import: 1 status: public title: Nanoscale distribution of presynaptic Ca2+ channels and its impact on vesicular release during development tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 85 year: '2015' ... --- _id: '1541' abstract: - lang: eng text: We present XSpeed a parallel state-space exploration algorithm for continuous systems with linear dynamics and nondeterministic inputs. The motivation of having parallel algorithms is to exploit the computational power of multi-core processors to speed-up performance. The parallelization is achieved on two fronts. First, we propose a parallel implementation of the support function algorithm by sampling functions in parallel. Second, we propose a parallel state-space exploration by slicing the time horizon and computing the reachable states in the time slices in parallel. The second method can be however applied only to a class of linear systems with invertible dynamics and fixed input. A GP-GPU implementation is also presented following a lazy evaluation strategy on support functions. The parallel algorithms are implemented in the tool XSpeed. We evaluated the performance on two benchmarks including an 28 dimension Helicopter model. Comparison with the sequential counterpart shows a maximum speed-up of almost 7× on a 6 core, 12 thread Intel Xeon CPU E5-2420 processor. Our GP-GPU implementation shows a maximum speed-up of 12× over the sequential implementation and 53× over SpaceEx (LGG scenario), the state of the art tool for reachability analysis of linear hybrid systems. Experiments illustrate that our parallel algorithm with time slicing not only speeds-up performance but also improves precision. acknowledgement: This work was supported in part by the European Research Council (ERC) under grant 267989 (QUAREM) and by the Austrian Science Fund (FWF) under grants S11402-N23, S11405-N23 and S11412-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award). alternative_title: - LNCS author: - first_name: Rajarshi full_name: Ray, Rajarshi last_name: Ray - first_name: Amit full_name: Gurung, Amit last_name: Gurung - first_name: Binayak full_name: Das, Binayak last_name: Das - first_name: Ezio full_name: Bartocci, Ezio last_name: Bartocci - first_name: Sergiy full_name: Bogomolov, Sergiy id: 369D9A44-F248-11E8-B48F-1D18A9856A87 last_name: Bogomolov orcid: 0000-0002-0686-0365 - first_name: Radu full_name: Grosu, Radu last_name: Grosu citation: ama: 'Ray R, Gurung A, Das B, Bartocci E, Bogomolov S, Grosu R. XSpeed: Accelerating reachability analysis on multi-core processors. 2015;9434:3-18. doi:10.1007/978-3-319-26287-1_1' apa: 'Ray, R., Gurung, A., Das, B., Bartocci, E., Bogomolov, S., & Grosu, R. (2015). XSpeed: Accelerating reachability analysis on multi-core processors. Presented at the HVC: Haifa Verification Conference, Haifa, Israel: Springer. https://doi.org/10.1007/978-3-319-26287-1_1' chicago: 'Ray, Rajarshi, Amit Gurung, Binayak Das, Ezio Bartocci, Sergiy Bogomolov, and Radu Grosu. “XSpeed: Accelerating Reachability Analysis on Multi-Core Processors.” Lecture Notes in Computer Science. Springer, 2015. https://doi.org/10.1007/978-3-319-26287-1_1.' ieee: 'R. Ray, A. Gurung, B. Das, E. Bartocci, S. Bogomolov, and R. Grosu, “XSpeed: Accelerating reachability analysis on multi-core processors,” vol. 9434. Springer, pp. 3–18, 2015.' ista: 'Ray R, Gurung A, Das B, Bartocci E, Bogomolov S, Grosu R. 2015. XSpeed: Accelerating reachability analysis on multi-core processors. 9434, 3–18.' mla: 'Ray, Rajarshi, et al. XSpeed: Accelerating Reachability Analysis on Multi-Core Processors. Vol. 9434, Springer, 2015, pp. 3–18, doi:10.1007/978-3-319-26287-1_1.' short: R. Ray, A. Gurung, B. Das, E. Bartocci, S. Bogomolov, R. Grosu, 9434 (2015) 3–18. conference: end_date: 2015-11-19 location: Haifa, Israel name: 'HVC: Haifa Verification Conference' start_date: 2015-11-17 date_created: 2018-12-11T11:52:37Z date_published: 2015-11-28T00:00:00Z date_updated: 2020-08-11T10:09:17Z day: '28' department: - _id: ToHe doi: 10.1007/978-3-319-26287-1_1 ec_funded: 1 intvolume: ' 9434' language: - iso: eng month: '11' oa_version: None page: 3 - 18 project: - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling - _id: 25F5A88A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Moderne Concurrency Paradigms - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication_status: published publisher: Springer publist_id: '5630' quality_controlled: '1' scopus_import: 1 series_title: Lecture Notes in Computer Science status: public title: 'XSpeed: Accelerating reachability analysis on multi-core processors' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 9434 year: '2015' ... --- _id: '1543' abstract: - lang: eng text: A plethora of diverse programmed cell death (PCD) processes has been described in living organisms. In animals and plants, different forms of PCD play crucial roles in development, immunity, and responses to the environment. While the molecular control of some animal PCD forms such as apoptosis is known in great detail, we still know comparatively little about the regulation of the diverse types of plant PCD. In part, this deficiency in molecular understanding is caused by the lack of reliable reporters to detect PCD processes. Here, we addressed this issue by using a combination of bioinformatics approaches to identify commonly regulated genes during diverse plant PCD processes in Arabidopsis (Arabidopsis thaliana). Our results indicate that the transcriptional signatures of developmentally controlled cell death are largely distinct from the ones associated with environmentally induced cell death. Moreover, different cases of developmental PCD share a set of cell death-associated genes. Most of these genes are evolutionary conserved within the green plant lineage, arguing for an evolutionary conserved core machinery of developmental PCD. Based on this information, we established an array of specific promoter-reporter lines for developmental PCD in Arabidopsis. These PCD indicators represent a powerful resource that can be used in addition to established morphological and biochemical methods to detect and analyze PCD processes in vivo and in planta. author: - first_name: Yadira full_name: Olvera Carrillo, Yadira last_name: Olvera Carrillo - first_name: Michiel full_name: Van Bel, Michiel last_name: Van Bel - first_name: Tom full_name: Van Hautegem, Tom last_name: Van Hautegem - first_name: Matyas full_name: Fendrych, Matyas id: 43905548-F248-11E8-B48F-1D18A9856A87 last_name: Fendrych orcid: 0000-0002-9767-8699 - first_name: Marlies full_name: Huysmans, Marlies last_name: Huysmans - first_name: Mária full_name: Šimášková, Mária last_name: Šimášková - first_name: Matthias full_name: Van Durme, Matthias last_name: Van Durme - first_name: Pierre full_name: Buscaill, Pierre last_name: Buscaill - first_name: Susana full_name: Rivas, Susana last_name: Rivas - first_name: Núria full_name: Coll, Núria last_name: Coll - first_name: Frederik full_name: Coppens, Frederik last_name: Coppens - first_name: Steven full_name: Maere, Steven last_name: Maere - first_name: Moritz full_name: Nowack, Moritz last_name: Nowack citation: ama: Olvera Carrillo Y, Van Bel M, Van Hautegem T, et al. A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants. Plant Physiology. 2015;169(4):2684-2699. doi:10.1104/pp.15.00769 apa: Olvera Carrillo, Y., Van Bel, M., Van Hautegem, T., Fendrych, M., Huysmans, M., Šimášková, M., … Nowack, M. (2015). A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants. Plant Physiology. American Society of Plant Biologists. https://doi.org/10.1104/pp.15.00769 chicago: Olvera Carrillo, Yadira, Michiel Van Bel, Tom Van Hautegem, Matyas Fendrych, Marlies Huysmans, Mária Šimášková, Matthias Van Durme, et al. “A Conserved Core of Programmed Cell Death Indicator Genes Discriminates Developmentally and Environmentally Induced Programmed Cell Death in Plants.” Plant Physiology. American Society of Plant Biologists, 2015. https://doi.org/10.1104/pp.15.00769. ieee: Y. Olvera Carrillo et al., “A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants,” Plant Physiology, vol. 169, no. 4. American Society of Plant Biologists, pp. 2684–2699, 2015. ista: Olvera Carrillo Y, Van Bel M, Van Hautegem T, Fendrych M, Huysmans M, Šimášková M, Van Durme M, Buscaill P, Rivas S, Coll N, Coppens F, Maere S, Nowack M. 2015. A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants. Plant Physiology. 169(4), 2684–2699. mla: Olvera Carrillo, Yadira, et al. “A Conserved Core of Programmed Cell Death Indicator Genes Discriminates Developmentally and Environmentally Induced Programmed Cell Death in Plants.” Plant Physiology, vol. 169, no. 4, American Society of Plant Biologists, 2015, pp. 2684–99, doi:10.1104/pp.15.00769. short: Y. Olvera Carrillo, M. Van Bel, T. Van Hautegem, M. Fendrych, M. Huysmans, M. Šimášková, M. Van Durme, P. Buscaill, S. Rivas, N. Coll, F. Coppens, S. Maere, M. Nowack, Plant Physiology 169 (2015) 2684–2699. date_created: 2018-12-11T11:52:38Z date_published: 2015-12-01T00:00:00Z date_updated: 2021-01-12T06:51:30Z day: '01' department: - _id: JiFr doi: 10.1104/pp.15.00769 intvolume: ' 169' issue: '4' language: - iso: eng month: '12' oa_version: None page: 2684 - 2699 publication: Plant Physiology publication_status: published publisher: American Society of Plant Biologists publist_id: '5628' scopus_import: 1 status: public title: A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 169 year: '2015' ... --- _id: '1544' abstract: - lang: eng text: 'Cell division in prokaryotes and eukaryotes is commonly initiated by the well-controlled binding of proteins to the cytoplasmic side of the cell membrane. However, a precise characterization of the spatiotemporal dynamics of membrane-bound proteins is often difficult to achieve in vivo. Here, we present protocols for the use of supported lipid bilayers to rebuild the cytokinetic machineries of cells with greatly different dimensions: the bacterium Escherichia coli and eggs of the vertebrate Xenopus laevis. Combined with total internal reflection fluorescence microscopy, these experimental setups allow for precise quantitative analyses of membrane-bound proteins. The protocols described to obtain glass-supported membranes from bacterial and vertebrate lipids can be used as starting points for other reconstitution experiments. We believe that similar biochemical assays will be instrumental to study the biochemistry and biophysics underlying a variety of complex cellular tasks, such as signaling, vesicle trafficking, and cell motility.' author: - first_name: Phuong full_name: Nguyen, Phuong last_name: Nguyen - first_name: Christine full_name: Field, Christine last_name: Field - first_name: Aaron full_name: Groen, Aaron last_name: Groen - first_name: Timothy full_name: Mitchison, Timothy last_name: Mitchison - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 citation: ama: 'Nguyen P, Field C, Groen A, Mitchison T, Loose M. Using supported bilayers to study the spatiotemporal organization of membrane-bound proteins. In: Building a Cell from Its Components Parts. Vol 128. Academic Press; 2015:223-241. doi:10.1016/bs.mcb.2015.01.007' apa: Nguyen, P., Field, C., Groen, A., Mitchison, T., & Loose, M. (2015). Using supported bilayers to study the spatiotemporal organization of membrane-bound proteins. In Building a Cell from its Components Parts (Vol. 128, pp. 223–241). Academic Press. https://doi.org/10.1016/bs.mcb.2015.01.007 chicago: Nguyen, Phuong, Christine Field, Aaron Groen, Timothy Mitchison, and Martin Loose. “Using Supported Bilayers to Study the Spatiotemporal Organization of Membrane-Bound Proteins.” In Building a Cell from Its Components Parts, 128:223–41. Academic Press, 2015. https://doi.org/10.1016/bs.mcb.2015.01.007. ieee: P. Nguyen, C. Field, A. Groen, T. Mitchison, and M. Loose, “Using supported bilayers to study the spatiotemporal organization of membrane-bound proteins,” in Building a Cell from its Components Parts, vol. 128, Academic Press, 2015, pp. 223–241. ista: 'Nguyen P, Field C, Groen A, Mitchison T, Loose M. 2015.Using supported bilayers to study the spatiotemporal organization of membrane-bound proteins. In: Building a Cell from its Components Parts. vol. 128, 223–241.' mla: Nguyen, Phuong, et al. “Using Supported Bilayers to Study the Spatiotemporal Organization of Membrane-Bound Proteins.” Building a Cell from Its Components Parts, vol. 128, Academic Press, 2015, pp. 223–41, doi:10.1016/bs.mcb.2015.01.007. short: P. Nguyen, C. Field, A. Groen, T. Mitchison, M. Loose, in:, Building a Cell from Its Components Parts, Academic Press, 2015, pp. 223–241. date_created: 2018-12-11T11:52:38Z date_published: 2015-04-08T00:00:00Z date_updated: 2021-01-12T06:51:30Z day: '08' department: - _id: MaLo doi: 10.1016/bs.mcb.2015.01.007 external_id: pmid: - '25997350' intvolume: ' 128' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4578691/ month: '04' oa: 1 oa_version: Submitted Version page: 223 - 241 pmid: 1 publication: Building a Cell from its Components Parts publication_status: published publisher: Academic Press publist_id: '5627' quality_controlled: '1' scopus_import: 1 status: public title: Using supported bilayers to study the spatiotemporal organization of membrane-bound proteins type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 128 year: '2015' ... --- _id: '1540' abstract: - lang: eng text: 'Plant sexual reproduction involves highly structured and specialized organs: stamens (male) and gynoecia (female, containing ovules). These organs synchronously develop within protective flower buds, until anthesis, via tightly coordinated mechanisms that are essential for effective fertilization and production of viable seeds. The phytohormone auxin is one of the key endogenous signalling molecules controlling initiation and development of these, and other, plant organs. In particular, its uneven distribution, resulting from tightly controlled production, metabolism and directional transport, is an important morphogenic factor. In this review we discuss how developmentally controlled and localized auxin biosynthesis and transport contribute to the coordinated development of plants'' reproductive organs, and their fertilized derivatives (embryos) via the regulation of auxin levels and distribution within and around them. Current understanding of the links between de novo local auxin biosynthesis, auxin transport and/or signalling is presented to highlight the importance of the non-cell autonomous action of auxin production on development and morphogenesis of reproductive organs and embryos. An overview of transcription factor families, which spatiotemporally define local auxin production by controlling key auxin biosynthetic enzymes, is also presented.' acknowledgement: 'The work was supported by grants from: the Employment of Best Young Scientists for International Cooperation Empowerment/OPVKII programme (CZ.1.07/2.3.00/30.0037) to HSR and LCK; the Czech Science Foundation (GA13-39982S) to EB, LCK and SM; and the SoMoPro II programme (3SGA5602), cofinanced by the South-Moravian Region and the EU (FP7/2007–2013 People Programme), to HSR.' author: - first_name: Hélène full_name: Robert, Hélène last_name: Robert - first_name: Lucie full_name: Crhák Khaitová, Lucie last_name: Crhák Khaitová - first_name: Souad full_name: Mroue, Souad last_name: Mroue - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 citation: ama: Robert H, Crhák Khaitová L, Mroue S, Benková E. The importance of localized auxin production for morphogenesis of reproductive organs and embryos in Arabidopsis. Journal of Experimental Botany. 2015;66(16):5029-5042. doi:10.1093/jxb/erv256 apa: Robert, H., Crhák Khaitová, L., Mroue, S., & Benková, E. (2015). The importance of localized auxin production for morphogenesis of reproductive organs and embryos in Arabidopsis. Journal of Experimental Botany. Oxford University Press. https://doi.org/10.1093/jxb/erv256 chicago: Robert, Hélène, Lucie Crhák Khaitová, Souad Mroue, and Eva Benková. “The Importance of Localized Auxin Production for Morphogenesis of Reproductive Organs and Embryos in Arabidopsis.” Journal of Experimental Botany. Oxford University Press, 2015. https://doi.org/10.1093/jxb/erv256. ieee: H. Robert, L. Crhák Khaitová, S. Mroue, and E. Benková, “The importance of localized auxin production for morphogenesis of reproductive organs and embryos in Arabidopsis,” Journal of Experimental Botany, vol. 66, no. 16. Oxford University Press, pp. 5029–5042, 2015. ista: Robert H, Crhák Khaitová L, Mroue S, Benková E. 2015. The importance of localized auxin production for morphogenesis of reproductive organs and embryos in Arabidopsis. Journal of Experimental Botany. 66(16), 5029–5042. mla: Robert, Hélène, et al. “The Importance of Localized Auxin Production for Morphogenesis of Reproductive Organs and Embryos in Arabidopsis.” Journal of Experimental Botany, vol. 66, no. 16, Oxford University Press, 2015, pp. 5029–42, doi:10.1093/jxb/erv256. short: H. Robert, L. Crhák Khaitová, S. Mroue, E. Benková, Journal of Experimental Botany 66 (2015) 5029–5042. date_created: 2018-12-11T11:52:36Z date_published: 2015-05-05T00:00:00Z date_updated: 2021-01-12T06:51:29Z day: '05' department: - _id: EvBe doi: 10.1093/jxb/erv256 intvolume: ' 66' issue: '16' language: - iso: eng month: '05' oa_version: None page: 5029 - 5042 publication: Journal of Experimental Botany publication_status: published publisher: Oxford University Press publist_id: '5631' quality_controlled: '1' scopus_import: 1 status: public title: The importance of localized auxin production for morphogenesis of reproductive organs and embryos in Arabidopsis type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 66 year: '2015' ... --- _id: '1551' abstract: - lang: eng text: 'Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic mechanisms and associated trait functions that are unique to rapid coevolutionary change are generally unknown. We here combined experimental evolution of the bacterial biocontrol agent Bacillus thuringiensis and its nematode host Caenorhabditis elegans with large-scale phenotyping, whole genome analysis, and functional genetics to demonstrate the selective benefit of pathogen virulence and the underlying toxin genes during the adaptation process. We show that: (i) high virulence was specifically favoured during pathogen–host coevolution rather than pathogen one-sided adaptation to a nonchanging host or to an environment without host; (ii) the pathogen genotype BT-679 with known nematocidal toxin genes and high virulence specifically swept to fixation in all of the independent replicate populations under coevolution but only some under one-sided adaptation; (iii) high virulence in the BT-679-dominated populations correlated with elevated copy numbers of the plasmid containing the nematocidal toxin genes; (iv) loss of virulence in a toxin-plasmid lacking BT-679 isolate was reconstituted by genetic reintroduction or external addition of the toxins.We conclude that sustained coevolution is distinct from unidirectional selection in shaping the pathogen''s genome and life history characteristics. To our knowledge, this study is the first to characterize the pathogen genes involved in coevolutionary adaptation in an animal host–pathogen interaction system.' acknowledgement: We are very grateful for funding from the German Science Foundation (DFG) to HS (SCHU 1415/8, SCHU 1415/9), PR (RO 2994/3), EBB (BO 2544/7), HL (LI 1690/2), AT (TE 976/2), RDS (SCHU 2522/1), JK (KU 1929/4); from the Kiel Excellence Cluster Inflammation at Interfaces to HS and PR; and from the ISTFELLOW program (Co-fund Marie Curie Actions of the European Commission) to LM. author: - first_name: Leila full_name: El Masri, Leila id: 349A6E66-F248-11E8-B48F-1D18A9856A87 last_name: El Masri - first_name: Antoine full_name: Branca, Antoine last_name: Branca - first_name: Anna full_name: Sheppard, Anna last_name: Sheppard - first_name: Andrei full_name: Papkou, Andrei last_name: Papkou - first_name: David full_name: Laehnemann, David last_name: Laehnemann - first_name: Patrick full_name: Guenther, Patrick last_name: Guenther - first_name: Swantje full_name: Prahl, Swantje last_name: Prahl - first_name: Manja full_name: Saebelfeld, Manja last_name: Saebelfeld - first_name: Jacqueline full_name: Hollensteiner, Jacqueline last_name: Hollensteiner - first_name: Heiko full_name: Liesegang, Heiko last_name: Liesegang - first_name: Elzbieta full_name: Brzuszkiewicz, Elzbieta last_name: Brzuszkiewicz - first_name: Rolf full_name: Daniel, Rolf last_name: Daniel - first_name: Nico full_name: Michiels, Nico last_name: Michiels - first_name: Rebecca full_name: Schulte, Rebecca last_name: Schulte - first_name: Joachim full_name: Kurtz, Joachim last_name: Kurtz - first_name: Philip full_name: Rosenstiel, Philip last_name: Rosenstiel - first_name: Arndt full_name: Telschow, Arndt last_name: Telschow - first_name: Erich full_name: Bornberg Bauer, Erich last_name: Bornberg Bauer - first_name: Hinrich full_name: Schulenburg, Hinrich last_name: Schulenburg citation: ama: 'El Masri L, Branca A, Sheppard A, et al. Host–pathogen coevolution: The selective advantage of Bacillus thuringiensis virulence and its cry toxin genes. PLoS Biology. 2015;13(6):1-30. doi:10.1371/journal.pbio.1002169' apa: 'El Masri, L., Branca, A., Sheppard, A., Papkou, A., Laehnemann, D., Guenther, P., … Schulenburg, H. (2015). Host–pathogen coevolution: The selective advantage of Bacillus thuringiensis virulence and its cry toxin genes. PLoS Biology. Public Library of Science. https://doi.org/10.1371/journal.pbio.1002169' chicago: 'El Masri, Leila, Antoine Branca, Anna Sheppard, Andrei Papkou, David Laehnemann, Patrick Guenther, Swantje Prahl, et al. “Host–Pathogen Coevolution: The Selective Advantage of Bacillus Thuringiensis Virulence and Its Cry Toxin Genes.” PLoS Biology. Public Library of Science, 2015. https://doi.org/10.1371/journal.pbio.1002169.' ieee: 'L. El Masri et al., “Host–pathogen coevolution: The selective advantage of Bacillus thuringiensis virulence and its cry toxin genes,” PLoS Biology, vol. 13, no. 6. Public Library of Science, pp. 1–30, 2015.' ista: 'El Masri L, Branca A, Sheppard A, Papkou A, Laehnemann D, Guenther P, Prahl S, Saebelfeld M, Hollensteiner J, Liesegang H, Brzuszkiewicz E, Daniel R, Michiels N, Schulte R, Kurtz J, Rosenstiel P, Telschow A, Bornberg Bauer E, Schulenburg H. 2015. Host–pathogen coevolution: The selective advantage of Bacillus thuringiensis virulence and its cry toxin genes. PLoS Biology. 13(6), 1–30.' mla: 'El Masri, Leila, et al. “Host–Pathogen Coevolution: The Selective Advantage of Bacillus Thuringiensis Virulence and Its Cry Toxin Genes.” PLoS Biology, vol. 13, no. 6, Public Library of Science, 2015, pp. 1–30, doi:10.1371/journal.pbio.1002169.' short: L. El Masri, A. Branca, A. Sheppard, A. Papkou, D. Laehnemann, P. Guenther, S. Prahl, M. Saebelfeld, J. Hollensteiner, H. Liesegang, E. Brzuszkiewicz, R. Daniel, N. Michiels, R. Schulte, J. Kurtz, P. Rosenstiel, A. Telschow, E. Bornberg Bauer, H. Schulenburg, PLoS Biology 13 (2015) 1–30. date_created: 2018-12-11T11:52:40Z date_published: 2015-06-04T00:00:00Z date_updated: 2021-01-12T06:51:33Z day: '04' ddc: - '570' department: - _id: SyCr doi: 10.1371/journal.pbio.1002169 ec_funded: 1 file: - access_level: open_access checksum: 30dee7a2c11ed09f2f5634655c0146f8 content_type: application/pdf creator: system date_created: 2018-12-12T10:14:13Z date_updated: 2020-07-14T12:45:02Z file_id: '5063' file_name: IST-2016-481-v1+1_journal.pbio.1002169.pdf file_size: 3468956 relation: main_file file_date_updated: 2020-07-14T12:45:02Z has_accepted_license: '1' intvolume: ' 13' issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 1 - 30 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: PLoS Biology publication_status: published publisher: Public Library of Science publist_id: '5620' pubrep_id: '481' quality_controlled: '1' scopus_import: 1 status: public title: 'Host–pathogen coevolution: The selective advantage of Bacillus thuringiensis virulence and its cry toxin genes' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 13 year: '2015' ... --- _id: '1549' abstract: - lang: eng text: Nature has incorporated small photochromic molecules, colloquially termed 'photoswitches', in photoreceptor proteins to sense optical cues in photo-taxis and vision. While Nature's ability to employ light-responsive functionalities has long been recognized, it was not until recently that scientists designed, synthesized and applied synthetic photochromes to manipulate many of which open rapidly and locally in their native cell types, biological processes with the temporal and spatial resolution of light. Ion channels in particular have come to the forefront of proteins that can be put under the designer control of synthetic photochromes. Photochromic ion channel controllers are comprised of three classes, photochromic soluble ligands (PCLs), photochromic tethered ligands (PTLs) and photochromic crosslinkers (PXs), and in each class ion channel functionality is controlled through reversible changes in photochrome structure. By acting as light-dependent ion channel agonists, antagonist or modulators, photochromic controllers effectively converted a wide range of ion channels, including voltage-gated ion channels, 'leak channels', tri-, tetra- and pentameric ligand-gated ion channels, and temperaturesensitive ion channels, into man-made photoreceptors. Control by photochromes can be reversible, unlike in the case of 'caged' compounds, and non-invasive with high spatial precision, unlike pharmacology and electrical manipulation. Here, we introduce design principles of emerging photochromic molecules that act on ion channels and discuss the impact that these molecules are beginning to have on ion channel biophysics and neuronal physiology. author: - first_name: Catherine full_name: Mckenzie, Catherine id: 3EEDE19A-F248-11E8-B48F-1D18A9856A87 last_name: Mckenzie - first_name: Inmaculada full_name: Sanchez Romero, Inmaculada id: 3D9C5D30-F248-11E8-B48F-1D18A9856A87 last_name: Sanchez Romero - first_name: Harald L full_name: Janovjak, Harald L id: 33BA6C30-F248-11E8-B48F-1D18A9856A87 last_name: Janovjak orcid: 0000-0002-8023-9315 citation: ama: 'Mckenzie C, Sanchez-Romero I, Janovjak HL. Flipping the photoswitch: Ion channels under light control. In: Novel Chemical Tools to Study Ion Channel Biology. Vol 869. Advances in Experimental Medicine and Biology. Springer; 2015:101-117. doi:10.1007/978-1-4939-2845-3_6' apa: 'Mckenzie, C., Sanchez-Romero, I., & Janovjak, H. L. (2015). Flipping the photoswitch: Ion channels under light control. In Novel chemical tools to study ion channel biology (Vol. 869, pp. 101–117). Springer. https://doi.org/10.1007/978-1-4939-2845-3_6' chicago: 'Mckenzie, Catherine, Inmaculada Sanchez-Romero, and Harald L Janovjak. “Flipping the Photoswitch: Ion Channels under Light Control.” In Novel Chemical Tools to Study Ion Channel Biology, 869:101–17. Advances in Experimental Medicine and Biology. Springer, 2015. https://doi.org/10.1007/978-1-4939-2845-3_6.' ieee: 'C. Mckenzie, I. Sanchez-Romero, and H. L. Janovjak, “Flipping the photoswitch: Ion channels under light control,” in Novel chemical tools to study ion channel biology, vol. 869, Springer, 2015, pp. 101–117.' ista: 'Mckenzie C, Sanchez-Romero I, Janovjak HL. 2015.Flipping the photoswitch: Ion channels under light control. In: Novel chemical tools to study ion channel biology. vol. 869, 101–117.' mla: 'Mckenzie, Catherine, et al. “Flipping the Photoswitch: Ion Channels under Light Control.” Novel Chemical Tools to Study Ion Channel Biology, vol. 869, Springer, 2015, pp. 101–17, doi:10.1007/978-1-4939-2845-3_6.' short: C. Mckenzie, I. Sanchez-Romero, H.L. Janovjak, in:, Novel Chemical Tools to Study Ion Channel Biology, Springer, 2015, pp. 101–117. date_created: 2018-12-11T11:52:39Z date_published: 2015-09-18T00:00:00Z date_updated: 2021-01-12T06:51:32Z day: '18' ddc: - '571' - '576' department: - _id: HaJa doi: 10.1007/978-1-4939-2845-3_6 file: - access_level: open_access checksum: bd1bfdf2423a0c3b6e7cabfa8b44bc0f content_type: application/pdf creator: system date_created: 2018-12-12T10:11:02Z date_updated: 2020-07-14T12:45:01Z file_id: '4854' file_name: IST-2017-839-v1+1_mckenzie.pdf file_size: 1919655 relation: main_file file_date_updated: 2020-07-14T12:45:01Z has_accepted_license: '1' intvolume: ' 869' language: - iso: eng month: '09' oa: 1 oa_version: Submitted Version page: 101 - 117 publication: Novel chemical tools to study ion channel biology publication_identifier: isbn: - 978-1-4939-2844-6 publication_status: published publisher: Springer publist_id: '5622' pubrep_id: '839' quality_controlled: '1' scopus_import: 1 series_title: Advances in Experimental Medicine and Biology status: public title: 'Flipping the photoswitch: Ion channels under light control' type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 869 year: '2015' ...