--- _id: '1624' abstract: - lang: eng text: Population structure can facilitate evolution of cooperation. In a structured population, cooperators can form clusters which resist exploitation by defectors. Recently, it was observed that a shift update rule is an extremely strong amplifier of cooperation in a one dimensional spatial model. For the shift update rule, an individual is chosen for reproduction proportional to fecundity; the offspring is placed next to the parent; a random individual dies. Subsequently, the population is rearranged (shifted) until all individual cells are again evenly spaced out. For large population size and a one dimensional population structure, the shift update rule favors cooperation for any benefit-to-cost ratio greater than one. But every attempt to generalize shift updating to higher dimensions while maintaining its strong effect has failed. The reason is that in two dimensions the clusters are fragmented by the movements caused by rearranging the cells. Here we introduce the natural phenomenon of a repulsive force between cells of different types. After a birth and death event, the cells are being rearranged minimizing the overall energy expenditure. If the repulsive force is sufficiently high, shift becomes a strong promoter of cooperation in two dimensions. acknowledgement: 'The research was supported by the Austrian Science Fund (FWF) Grant No P23499-N23, FWF NFN Grant No S11407-N23 (RiSE/SHiNE), ERC Start grant (279307: Graph Games), and Microsoft Faculty Fellows award. Support from the John Templeton foundation is gratefully acknowledged.' article_number: '17147' author: - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Ben full_name: Adlam, Ben last_name: Adlam - first_name: Martin full_name: Nowak, Martin last_name: Nowak citation: ama: Pavlogiannis A, Chatterjee K, Adlam B, Nowak M. Cellular cooperation with shift updating and repulsion. Scientific Reports. 2015;5. doi:10.1038/srep17147 apa: Pavlogiannis, A., Chatterjee, K., Adlam, B., & Nowak, M. (2015). Cellular cooperation with shift updating and repulsion. Scientific Reports. Nature Publishing Group. https://doi.org/10.1038/srep17147 chicago: Pavlogiannis, Andreas, Krishnendu Chatterjee, Ben Adlam, and Martin Nowak. “Cellular Cooperation with Shift Updating and Repulsion.” Scientific Reports. Nature Publishing Group, 2015. https://doi.org/10.1038/srep17147. ieee: A. Pavlogiannis, K. Chatterjee, B. Adlam, and M. Nowak, “Cellular cooperation with shift updating and repulsion,” Scientific Reports, vol. 5. Nature Publishing Group, 2015. ista: Pavlogiannis A, Chatterjee K, Adlam B, Nowak M. 2015. Cellular cooperation with shift updating and repulsion. Scientific Reports. 5, 17147. mla: Pavlogiannis, Andreas, et al. “Cellular Cooperation with Shift Updating and Repulsion.” Scientific Reports, vol. 5, 17147, Nature Publishing Group, 2015, doi:10.1038/srep17147. short: A. Pavlogiannis, K. Chatterjee, B. Adlam, M. Nowak, Scientific Reports 5 (2015). date_created: 2018-12-11T11:53:06Z date_published: 2015-11-25T00:00:00Z date_updated: 2021-01-12T06:52:05Z day: '25' ddc: - '000' department: - _id: KrCh doi: 10.1038/srep17147 ec_funded: 1 file: - access_level: open_access checksum: 38e06d8310d2087cae5f6d4d4bfe082b content_type: application/pdf creator: system date_created: 2018-12-12T10:12:29Z date_updated: 2020-07-14T12:45:07Z file_id: '4947' file_name: IST-2016-466-v1+1_srep17147.pdf file_size: 1021931 relation: main_file file_date_updated: 2020-07-14T12:45:07Z has_accepted_license: '1' intvolume: ' 5' language: - iso: eng month: '11' oa: 1 oa_version: Published Version project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: Scientific Reports publication_status: published publisher: Nature Publishing Group publist_id: '5536' pubrep_id: '466' quality_controlled: '1' scopus_import: 1 status: public title: Cellular cooperation with shift updating and repulsion tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2015' ... --- _id: '1623' abstract: - lang: eng text: "Background\r\nPhotosynthetic cyanobacteria are attractive for a range of biotechnological applications including biofuel production. However, due to slow growth, screening of mutant libraries using microtiter plates is not feasible.\r\nResults\r\nWe present a method for high-throughput, single-cell analysis and sorting of genetically engineered l-lactate-producing strains of Synechocystis sp. PCC6803. A microfluidic device is used to encapsulate single cells in picoliter droplets, assay the droplets for l-lactate production, and sort strains with high productivity. We demonstrate the separation of low- and high-producing reference strains, as well as enrichment of a more productive l-lactate-synthesizing population after UV-induced mutagenesis. The droplet platform also revealed population heterogeneity in photosynthetic growth and lactate production, as well as the presence of metabolically stalled cells.\r\nConclusions\r\nThe workflow will facilitate metabolic engineering and directed evolution studies and will be useful in studies of cyanobacteria biochemistry and physiology.\r\n" article_number: '193' author: - first_name: Petter full_name: Hammar, Petter last_name: Hammar - first_name: Andreas full_name: Angermayr, Andreas id: 4677C796-F248-11E8-B48F-1D18A9856A87 last_name: Angermayr orcid: 0000-0001-8619-2223 - first_name: Staffan full_name: Sjostrom, Staffan last_name: Sjostrom - first_name: Josefin full_name: Van Der Meer, Josefin last_name: Van Der Meer - first_name: Klaas full_name: Hellingwerf, Klaas last_name: Hellingwerf - first_name: Elton full_name: Hudson, Elton last_name: Hudson - first_name: Hakaan full_name: Joensson, Hakaan last_name: Joensson citation: ama: Hammar P, Angermayr A, Sjostrom S, et al. Single-cell screening of photosynthetic growth and lactate production by cyanobacteria. Biotechnology for Biofuels. 2015;8(1). doi:10.1186/s13068-015-0380-2 apa: Hammar, P., Angermayr, A., Sjostrom, S., Van Der Meer, J., Hellingwerf, K., Hudson, E., & Joensson, H. (2015). Single-cell screening of photosynthetic growth and lactate production by cyanobacteria. Biotechnology for Biofuels. BioMed Central. https://doi.org/10.1186/s13068-015-0380-2 chicago: Hammar, Petter, Andreas Angermayr, Staffan Sjostrom, Josefin Van Der Meer, Klaas Hellingwerf, Elton Hudson, and Hakaan Joensson. “Single-Cell Screening of Photosynthetic Growth and Lactate Production by Cyanobacteria.” Biotechnology for Biofuels. BioMed Central, 2015. https://doi.org/10.1186/s13068-015-0380-2. ieee: P. Hammar et al., “Single-cell screening of photosynthetic growth and lactate production by cyanobacteria,” Biotechnology for Biofuels, vol. 8, no. 1. BioMed Central, 2015. ista: Hammar P, Angermayr A, Sjostrom S, Van Der Meer J, Hellingwerf K, Hudson E, Joensson H. 2015. Single-cell screening of photosynthetic growth and lactate production by cyanobacteria. Biotechnology for Biofuels. 8(1), 193. mla: Hammar, Petter, et al. “Single-Cell Screening of Photosynthetic Growth and Lactate Production by Cyanobacteria.” Biotechnology for Biofuels, vol. 8, no. 1, 193, BioMed Central, 2015, doi:10.1186/s13068-015-0380-2. short: P. Hammar, A. Angermayr, S. Sjostrom, J. Van Der Meer, K. Hellingwerf, E. Hudson, H. Joensson, Biotechnology for Biofuels 8 (2015). date_created: 2018-12-11T11:53:05Z date_published: 2015-11-25T00:00:00Z date_updated: 2021-01-12T06:52:04Z day: '25' ddc: - '570' department: - _id: ToBo doi: 10.1186/s13068-015-0380-2 file: - access_level: open_access checksum: 172b0b6f4eb2e5c22b7cec1d57dc0107 content_type: application/pdf creator: system date_created: 2018-12-12T10:10:11Z date_updated: 2020-07-14T12:45:07Z file_id: '4796' file_name: IST-2016-467-v1+1_s13068-015-0380-2.pdf file_size: 2914089 relation: main_file file_date_updated: 2020-07-14T12:45:07Z has_accepted_license: '1' intvolume: ' 8' issue: '1' language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: Biotechnology for Biofuels publication_status: published publisher: BioMed Central publist_id: '5537' pubrep_id: '467' quality_controlled: '1' scopus_import: 1 status: public title: Single-cell screening of photosynthetic growth and lactate production by cyanobacteria tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8 year: '2015' ... --- _id: '1625' abstract: - lang: eng text: In recent years we have seen numerous improvements on 3D scanning and tracking of human faces, greatly advancing the creation of digital doubles for film and video games. However, despite the high-resolution quality of the reconstruction approaches available, current methods are unable to capture one of the most important regions of the face - the eye region. In this work we present the first method for detailed spatio-temporal reconstruction of eyelids. Tracking and reconstructing eyelids is extremely challenging, as this region exhibits very complex and unique skin deformation where skin is folded under while opening the eye. Furthermore, eyelids are often only partially visible and obstructed due to selfocclusion and eyelashes. Our approach is to combine a geometric deformation model with image data, leveraging multi-view stereo, optical flow, contour tracking and wrinkle detection from local skin appearance. Our deformation model serves as a prior that enables reconstruction of eyelids even under strong self-occlusions caused by rolling and folding skin as the eye opens and closes. The output is a person-specific, time-varying eyelid reconstruction with anatomically plausible deformations. Our high-resolution detailed eyelids couple naturally with current facial performance capture approaches. As a result, our method can largely increase the fidelity of facial capture and the creation of digital doubles. article_number: '44' author: - first_name: Amit full_name: Bermano, Amit last_name: Bermano - first_name: Thabo full_name: Beeler, Thabo last_name: Beeler - first_name: Yeara full_name: Kozlov, Yeara last_name: Kozlov - first_name: Derek full_name: Bradley, Derek last_name: Bradley - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Markus full_name: Gross, Markus last_name: Gross citation: ama: 'Bermano A, Beeler T, Kozlov Y, Bradley D, Bickel B, Gross M. Detailed spatio-temporal reconstruction of eyelids. In: Vol 34. ACM; 2015. doi:10.1145/2766924' apa: 'Bermano, A., Beeler, T., Kozlov, Y., Bradley, D., Bickel, B., & Gross, M. (2015). Detailed spatio-temporal reconstruction of eyelids (Vol. 34). Presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, United States: ACM. https://doi.org/10.1145/2766924' chicago: Bermano, Amit, Thabo Beeler, Yeara Kozlov, Derek Bradley, Bernd Bickel, and Markus Gross. “Detailed Spatio-Temporal Reconstruction of Eyelids,” Vol. 34. ACM, 2015. https://doi.org/10.1145/2766924. ieee: 'A. Bermano, T. Beeler, Y. Kozlov, D. Bradley, B. Bickel, and M. Gross, “Detailed spatio-temporal reconstruction of eyelids,” presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, United States, 2015, vol. 34, no. 4.' ista: 'Bermano A, Beeler T, Kozlov Y, Bradley D, Bickel B, Gross M. 2015. Detailed spatio-temporal reconstruction of eyelids. SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques vol. 34, 44.' mla: Bermano, Amit, et al. Detailed Spatio-Temporal Reconstruction of Eyelids. Vol. 34, no. 4, 44, ACM, 2015, doi:10.1145/2766924. short: A. Bermano, T. Beeler, Y. Kozlov, D. Bradley, B. Bickel, M. Gross, in:, ACM, 2015. conference: end_date: 2015-08-13 location: Los Angeles, CA, United States name: 'SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques' start_date: 2015-08-09 date_created: 2018-12-11T11:53:06Z date_published: 2015-07-27T00:00:00Z date_updated: 2021-01-12T06:52:05Z day: '27' department: - _id: BeBi doi: 10.1145/2766924 intvolume: ' 34' issue: '4' language: - iso: eng month: '07' oa_version: None publication_status: published publisher: ACM publist_id: '5535' quality_controlled: '1' scopus_import: 1 status: public title: Detailed spatio-temporal reconstruction of eyelids type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2015' ... --- _id: '1626' abstract: - lang: eng text: This paper introduces "OmniAD," a novel data-driven pipeline to model and acquire the aerodynamics of three-dimensional rigid objects. Traditionally, aerodynamics are examined through elaborate wind tunnel experiments or expensive fluid dynamics computations, and are only measured for a small number of discrete wind directions. OmniAD allows the evaluation of aerodynamic forces, such as drag and lift, for any incoming wind direction using a novel representation based on spherical harmonics. Our datadriven technique acquires the aerodynamic properties of an object simply by capturing its falling motion using a single camera. Once model parameters are estimated, OmniAD enables realistic realtime simulation of rigid bodies, such as the tumbling and gliding of leaves, without simulating the surrounding air. In addition, we propose an intuitive user interface based on OmniAD to interactively design three-dimensional kites that actually fly. Various nontraditional kites were designed to demonstrate the physical validity of our model. alternative_title: - ACM Transactions on Graphics article_number: '113' author: - first_name: Tobias full_name: Martin, Tobias last_name: Martin - first_name: Nobuyuki full_name: Umetani, Nobuyuki last_name: Umetani - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 citation: ama: 'Martin T, Umetani N, Bickel B. OmniAD: Data-driven omni-directional aerodynamics. In: Vol 34. ACM; 2015. doi:10.1145/2766919' apa: 'Martin, T., Umetani, N., & Bickel, B. (2015). OmniAD: Data-driven omni-directional aerodynamics (Vol. 34). Presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, United States: ACM. https://doi.org/10.1145/2766919' chicago: 'Martin, Tobias, Nobuyuki Umetani, and Bernd Bickel. “OmniAD: Data-Driven Omni-Directional Aerodynamics,” Vol. 34. ACM, 2015. https://doi.org/10.1145/2766919.' ieee: 'T. Martin, N. Umetani, and B. Bickel, “OmniAD: Data-driven omni-directional aerodynamics,” presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, United States, 2015, vol. 34, no. 4.' ista: 'Martin T, Umetani N, Bickel B. 2015. OmniAD: Data-driven omni-directional aerodynamics. SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, ACM Transactions on Graphics, vol. 34, 113.' mla: 'Martin, Tobias, et al. OmniAD: Data-Driven Omni-Directional Aerodynamics. Vol. 34, no. 4, 113, ACM, 2015, doi:10.1145/2766919.' short: T. Martin, N. Umetani, B. Bickel, in:, ACM, 2015. conference: end_date: 2015-08-13 location: Los Angeles, CA, United States name: 'SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques' start_date: 2015-08-09 date_created: 2018-12-11T11:53:06Z date_published: 2015-07-27T00:00:00Z date_updated: 2021-01-12T06:52:05Z day: '27' department: - _id: BeBi doi: 10.1145/2766919 intvolume: ' 34' issue: '4' language: - iso: eng month: '07' oa_version: None publication_status: published publisher: ACM publist_id: '5532' quality_controlled: '1' scopus_import: 1 status: public title: 'OmniAD: Data-driven omni-directional aerodynamics' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2015' ... --- _id: '1628' abstract: - lang: eng text: We propose a method for fabricating deformable objects with spatially varying elasticity using 3D printing. Using a single, relatively stiff printer material, our method designs an assembly of smallscale microstructures that have the effect of a softer material at the object scale, with properties depending on the microstructure used in each part of the object. We build on work in the area of metamaterials, using numerical optimization to design tiled microstructures with desired properties, but with the key difference that our method designs families of related structures that can be interpolated to smoothly vary the material properties over a wide range. To create an object with spatially varying elastic properties, we tile the object's interior with microstructures drawn from these families, generating a different microstructure for each cell using an efficient algorithm to select compatible structures for neighboring cells. We show results computed for both 2D and 3D objects, validating several 2D and 3D printed structures using standard material tests as well as demonstrating various example applications. article_number: '136' article_processing_charge: No author: - first_name: Christian full_name: Schumacher, Christian last_name: Schumacher - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Jan full_name: Rys, Jan last_name: Rys - first_name: Steve full_name: Marschner, Steve last_name: Marschner - first_name: Chiara full_name: Daraio, Chiara last_name: Daraio - first_name: Markus full_name: Gross, Markus last_name: Gross citation: ama: 'Schumacher C, Bickel B, Rys J, Marschner S, Daraio C, Gross M. Microstructures to control elasticity in 3D printing. In: Vol 34. ACM; 2015. doi:10.1145/2766926' apa: 'Schumacher, C., Bickel, B., Rys, J., Marschner, S., Daraio, C., & Gross, M. (2015). Microstructures to control elasticity in 3D printing (Vol. 34). Presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA: ACM. https://doi.org/10.1145/2766926' chicago: Schumacher, Christian, Bernd Bickel, Jan Rys, Steve Marschner, Chiara Daraio, and Markus Gross. “Microstructures to Control Elasticity in 3D Printing,” Vol. 34. ACM, 2015. https://doi.org/10.1145/2766926. ieee: 'C. Schumacher, B. Bickel, J. Rys, S. Marschner, C. Daraio, and M. Gross, “Microstructures to control elasticity in 3D printing,” presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 2015, vol. 34, no. 4.' ista: 'Schumacher C, Bickel B, Rys J, Marschner S, Daraio C, Gross M. 2015. Microstructures to control elasticity in 3D printing. SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques vol. 34, 136.' mla: Schumacher, Christian, et al. Microstructures to Control Elasticity in 3D Printing. Vol. 34, no. 4, 136, ACM, 2015, doi:10.1145/2766926. short: C. Schumacher, B. Bickel, J. Rys, S. Marschner, C. Daraio, M. Gross, in:, ACM, 2015. conference: end_date: 2015-08-13 location: Los Angeles, CA, USA name: 'SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques' start_date: 2015-08-09 date_created: 2018-12-11T11:53:07Z date_published: 2015-08-01T00:00:00Z date_updated: 2021-01-12T06:52:06Z day: '01' department: - _id: BeBi doi: 10.1145/2766926 intvolume: ' 34' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1145/2766926 month: '08' oa: 1 oa_version: Published Version publication_status: published publisher: ACM publist_id: '5529' quality_controlled: '1' scopus_import: 1 status: public title: Microstructures to control elasticity in 3D printing type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2015' ... --- _id: '1627' abstract: - lang: eng text: We present a computational tool for fabrication-oriented design of flexible rod meshes. Given a deformable surface and a set of deformed poses as input, our method automatically computes a printable rod mesh that, once manufactured, closely matches the input poses under the same boundary conditions. The core of our method is formed by an optimization scheme that adjusts the cross-sectional profiles of the rods and their rest centerline in order to best approximate the target deformations. This approach allows us to locally control the bending and stretching resistance of the surface with a single material, yielding high design flexibility and low fabrication cost. acknowledgement: This work was supported in part by grants from the Spanish Ministry of Economy (TIN2012-35840), and the European Research Council (ERC Starting Grant no. 280135 Animetrics). article_number: '138' author: - first_name: Jesús full_name: Pérez, Jesús last_name: Pérez - first_name: Bernhard full_name: Thomaszewski, Bernhard last_name: Thomaszewski - first_name: Stelian full_name: Coros, Stelian last_name: Coros - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: José full_name: Canabal, José last_name: Canabal - first_name: Robert full_name: Sumner, Robert last_name: Sumner - first_name: Miguel full_name: Otaduy, Miguel last_name: Otaduy citation: ama: 'Pérez J, Thomaszewski B, Coros S, et al. Design and fabrication of flexible rod meshes. In: Vol 34. ACM; 2015. doi:10.1145/2766998' apa: 'Pérez, J., Thomaszewski, B., Coros, S., Bickel, B., Canabal, J., Sumner, R., & Otaduy, M. (2015). Design and fabrication of flexible rod meshes (Vol. 34). Presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, United States: ACM. https://doi.org/10.1145/2766998' chicago: Pérez, Jesús, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, José Canabal, Robert Sumner, and Miguel Otaduy. “Design and Fabrication of Flexible Rod Meshes,” Vol. 34. ACM, 2015. https://doi.org/10.1145/2766998. ieee: 'J. Pérez et al., “Design and fabrication of flexible rod meshes,” presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, United States, 2015, vol. 34, no. 4.' ista: 'Pérez J, Thomaszewski B, Coros S, Bickel B, Canabal J, Sumner R, Otaduy M. 2015. Design and fabrication of flexible rod meshes. SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques vol. 34, 138.' mla: Pérez, Jesús, et al. Design and Fabrication of Flexible Rod Meshes. Vol. 34, no. 4, 138, ACM, 2015, doi:10.1145/2766998. short: J. Pérez, B. Thomaszewski, S. Coros, B. Bickel, J. Canabal, R. Sumner, M. Otaduy, in:, ACM, 2015. conference: end_date: 2015-08-13 location: Los Angeles, CA, United States name: 'SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques' start_date: 2015-08-09 date_created: 2018-12-11T11:53:07Z date_published: 2015-07-27T00:00:00Z date_updated: 2021-01-12T06:52:06Z day: '27' department: - _id: BeBi doi: 10.1145/2766998 intvolume: ' 34' issue: '4' language: - iso: eng month: '07' oa_version: None publication_status: published publisher: ACM publist_id: '5530' quality_controlled: '1' scopus_import: 1 status: public title: Design and fabrication of flexible rod meshes type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2015' ... --- _id: '1634' abstract: - lang: eng text: Simulating the delightful dynamics of soap films, bubbles, and foams has traditionally required the use of a fully three-dimensional many-phase Navier-Stokes solver, even though their visual appearance is completely dominated by the thin liquid surface. We depart from earlier work on soap bubbles and foams by noting that their dynamics are naturally described by a Lagrangian vortex sheet model in which circulation is the primary variable. This leads us to derive a novel circulation-preserving surface-only discretization of foam dynamics driven by surface tension on a non-manifold triangle mesh. We represent the surface using a mesh-based multimaterial surface tracker which supports complex bubble topology changes, and evolve the surface according to the ambient air flow induced by a scalar circulation field stored on the mesh. Surface tension forces give rise to a simple update rule for circulation, even at non-manifold Plateau borders, based on a discrete measure of signed scalar mean curvature. We further incorporate vertex constraints to enable the interaction of soap films with wires. The result is a method that is at once simple, robust, and efficient, yet able to capture an array of soap films behaviors including foam rearrangement, catenoid collapse, blowing bubbles, and double bubbles being pulled apart. article_number: '149' author: - first_name: Fang full_name: Da, Fang last_name: Da - first_name: Christopher full_name: Batty, Christopher last_name: Batty - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 - first_name: Eitan full_name: Grinspun, Eitan last_name: Grinspun citation: ama: 'Da F, Batty C, Wojtan C, Grinspun E. Double bubbles sans toil and trouble: discrete circulation-preserving vortex sheets for soap films and foams. In: Vol 34. ACM; 2015. doi:10.1145/2767003' apa: 'Da, F., Batty, C., Wojtan, C., & Grinspun, E. (2015). Double bubbles sans toil and trouble: discrete circulation-preserving vortex sheets for soap films and foams (Vol. 34). Presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, United States: ACM. https://doi.org/10.1145/2767003' chicago: 'Da, Fang, Christopher Batty, Chris Wojtan, and Eitan Grinspun. “Double Bubbles sans Toil and Trouble: Discrete Circulation-Preserving Vortex Sheets for Soap Films and Foams,” Vol. 34. ACM, 2015. https://doi.org/10.1145/2767003.' ieee: 'F. Da, C. Batty, C. Wojtan, and E. Grinspun, “Double bubbles sans toil and trouble: discrete circulation-preserving vortex sheets for soap films and foams,” presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, United States, 2015, vol. 34, no. 4.' ista: 'Da F, Batty C, Wojtan C, Grinspun E. 2015. Double bubbles sans toil and trouble: discrete circulation-preserving vortex sheets for soap films and foams. SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques vol. 34, 149.' mla: 'Da, Fang, et al. Double Bubbles sans Toil and Trouble: Discrete Circulation-Preserving Vortex Sheets for Soap Films and Foams. Vol. 34, no. 4, 149, ACM, 2015, doi:10.1145/2767003.' short: F. Da, C. Batty, C. Wojtan, E. Grinspun, in:, ACM, 2015. conference: end_date: 2015-08-13 location: Los Angeles, CA, United States name: 'SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques' start_date: 2015-08-09 date_created: 2018-12-11T11:53:09Z date_published: 2015-07-27T00:00:00Z date_updated: 2023-02-23T10:07:42Z day: '27' ddc: - '000' department: - _id: ChWo doi: 10.1145/2767003 ec_funded: 1 file: - access_level: open_access checksum: 57b07d78d2d612a8052744b37d4a71fa content_type: application/pdf creator: system date_created: 2018-12-12T10:11:14Z date_updated: 2020-07-14T12:45:07Z file_id: '4867' file_name: IST-2016-608-v1+1_doublebubbles.pdf file_size: 8973215 relation: main_file file_date_updated: 2020-07-14T12:45:07Z has_accepted_license: '1' intvolume: ' 34' issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication_status: published publisher: ACM publist_id: '5521' pubrep_id: '608' quality_controlled: '1' scopus_import: 1 status: public title: 'Double bubbles sans toil and trouble: discrete circulation-preserving vortex sheets for soap films and foams' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2015' ... --- _id: '1636' abstract: - lang: eng text: "Constraint Satisfaction Problem (CSP) is a fundamental algorithmic problem that appears in many areas of Computer Science. It can be equivalently stated as computing a homomorphism R→ΓΓ between two relational structures, e.g. between two directed graphs. Analyzing its complexity has been a prominent research direction, especially for the fixed template CSPs where the right side ΓΓ is fixed and the left side R is unconstrained.\r\n\r\nFar fewer results are known for the hybrid setting that restricts both sides simultaneously. It assumes that R belongs to a certain class of relational structures (called a structural restriction in this paper). We study which structural restrictions are effective, i.e. there exists a fixed template ΓΓ (from a certain class of languages) for which the problem is tractable when R is restricted, and NP-hard otherwise. We provide a characterization for structural restrictions that are closed under inverse homomorphisms. The criterion is based on the chromatic number of a relational structure defined in this paper; it generalizes the standard chromatic number of a graph.\r\n\r\nAs our main tool, we use the algebraic machinery developed for fixed template CSPs. To apply it to our case, we introduce a new construction called a “lifted language”. We also give a characterization for structural restrictions corresponding to minor-closed families of graphs, extend results to certain Valued CSPs (namely conservative valued languages), and state implications for (valued) CSPs with ordered variables and for the maximum weight independent set problem on some restricted families of graphs." alternative_title: - LNCS article_processing_charge: No author: - first_name: Vladimir full_name: Kolmogorov, Vladimir id: 3D50B0BA-F248-11E8-B48F-1D18A9856A87 last_name: Kolmogorov - first_name: Michal full_name: Rolinek, Michal id: 3CB3BC06-F248-11E8-B48F-1D18A9856A87 last_name: Rolinek - first_name: Rustem full_name: Takhanov, Rustem last_name: Takhanov citation: ama: 'Kolmogorov V, Rolinek M, Takhanov R. Effectiveness of structural restrictions for hybrid CSPs. In: 26th International Symposium. Vol 9472. Springer Nature; 2015:566-577. doi:10.1007/978-3-662-48971-0_48' apa: 'Kolmogorov, V., Rolinek, M., & Takhanov, R. (2015). Effectiveness of structural restrictions for hybrid CSPs. In 26th International Symposium (Vol. 9472, pp. 566–577). Nagoya, Japan: Springer Nature. https://doi.org/10.1007/978-3-662-48971-0_48' chicago: Kolmogorov, Vladimir, Michal Rolinek, and Rustem Takhanov. “Effectiveness of Structural Restrictions for Hybrid CSPs.” In 26th International Symposium, 9472:566–77. Springer Nature, 2015. https://doi.org/10.1007/978-3-662-48971-0_48. ieee: V. Kolmogorov, M. Rolinek, and R. Takhanov, “Effectiveness of structural restrictions for hybrid CSPs,” in 26th International Symposium, Nagoya, Japan, 2015, vol. 9472, pp. 566–577. ista: 'Kolmogorov V, Rolinek M, Takhanov R. 2015. Effectiveness of structural restrictions for hybrid CSPs. 26th International Symposium. ISAAC: International Symposium on Algorithms and Computation, LNCS, vol. 9472, 566–577.' mla: Kolmogorov, Vladimir, et al. “Effectiveness of Structural Restrictions for Hybrid CSPs.” 26th International Symposium, vol. 9472, Springer Nature, 2015, pp. 566–77, doi:10.1007/978-3-662-48971-0_48. short: V. Kolmogorov, M. Rolinek, R. Takhanov, in:, 26th International Symposium, Springer Nature, 2015, pp. 566–577. conference: end_date: 2015-12-11 location: Nagoya, Japan name: 'ISAAC: International Symposium on Algorithms and Computation' start_date: 2015-12-09 date_created: 2018-12-11T11:53:10Z date_published: 2015-12-01T00:00:00Z date_updated: 2022-02-01T15:12:35Z day: '01' department: - _id: VlKo doi: 10.1007/978-3-662-48971-0_48 ec_funded: 1 external_id: arxiv: - '1504.07067' intvolume: ' 9472' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1504.07067 month: '12' oa: 1 oa_version: Preprint page: 566 - 577 project: - _id: 25FBA906-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '616160' name: 'Discrete Optimization in Computer Vision: Theory and Practice' publication: 26th International Symposium publication_identifier: isbn: - 978-3-662-48970-3 publication_status: published publisher: Springer Nature publist_id: '5519' quality_controlled: '1' scopus_import: '1' status: public title: Effectiveness of structural restrictions for hybrid CSPs type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 9472 year: '2015' ... --- _id: '1632' abstract: - lang: eng text: "This paper presents a liquid simulation technique that enforces the incompressibility condition using a stream function solve instead of a pressure projection. Previous methods have used stream function techniques for the simulation of detailed single-phase flows, but a formulation for liquid simulation has proved elusive in part due to the free surface boundary conditions. In this paper, we introduce a stream function approach to liquid simulations with novel boundary conditions for free surfaces, solid obstacles, and solid-fluid coupling.\r\n\r\nAlthough our approach increases the dimension of the linear system necessary to enforce incompressibility, it provides interesting and surprising benefits. First, the resulting flow is guaranteed to be divergence-free regardless of the accuracy of the solve. Second, our free-surface boundary conditions guarantee divergence-free motion even in the un-simulated air phase, which enables two-phase flow simulation by only computing a single phase. We implemented this method using a variant of FLIP simulation which only samples particles within a narrow band of the liquid surface, and we illustrate the effectiveness of our method for detailed two-phase flow simulations with complex boundaries, detailed bubble interactions, and two-way solid-fluid coupling." acknowledgement: The first author was supported by a JSPS Postdoctoral Fellowship for Research Abroad. This work was also supported by the ERC projects ERC-2014-StG-637014 realFlow and ERC-2014- StG-638176 BigSplash. alternative_title: - ACM Transactions on Graphics article_number: '53' author: - first_name: Ryoichi full_name: Ando, Ryoichi last_name: Ando - first_name: Nils full_name: Thuerey, Nils last_name: Thuerey - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: 'Ando R, Thuerey N, Wojtan C. A stream function solver for liquid simulations. In: Vol 34. ACM; 2015. doi:10.1145/2766935' apa: 'Ando, R., Thuerey, N., & Wojtan, C. (2015). A stream function solver for liquid simulations (Vol. 34). Presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA: ACM. https://doi.org/10.1145/2766935' chicago: Ando, Ryoichi, Nils Thuerey, and Chris Wojtan. “A Stream Function Solver for Liquid Simulations,” Vol. 34. ACM, 2015. https://doi.org/10.1145/2766935. ieee: 'R. Ando, N. Thuerey, and C. Wojtan, “A stream function solver for liquid simulations,” presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 2015, vol. 34, no. 4.' ista: 'Ando R, Thuerey N, Wojtan C. 2015. A stream function solver for liquid simulations. SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, ACM Transactions on Graphics, vol. 34, 53.' mla: Ando, Ryoichi, et al. A Stream Function Solver for Liquid Simulations. Vol. 34, no. 4, 53, ACM, 2015, doi:10.1145/2766935. short: R. Ando, N. Thuerey, C. Wojtan, in:, ACM, 2015. conference: end_date: 2015-08-13 location: Los Angeles, CA, USA name: 'SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques' start_date: 2015-08-09 date_created: 2018-12-11T11:53:09Z date_published: 2015-07-27T00:00:00Z date_updated: 2023-02-23T10:07:37Z day: '27' ddc: - '000' department: - _id: ChWo doi: 10.1145/2766935 file: - access_level: open_access checksum: 7a9afdfaba9209157ce19376e15bc90b content_type: application/pdf creator: system date_created: 2018-12-12T10:11:52Z date_updated: 2020-07-14T12:45:07Z file_id: '4909' file_name: IST-2016-610-v1+1_vecpotential.pdf file_size: 21831121 relation: main_file file_date_updated: 2020-07-14T12:45:07Z has_accepted_license: '1' intvolume: ' 34' issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version publication_status: published publisher: ACM publist_id: '5523' pubrep_id: '610' quality_controlled: '1' scopus_import: 1 status: public title: A stream function solver for liquid simulations type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2015' ... --- _id: '1630' abstract: - lang: eng text: We present a method to learn and propagate shape placements in 2D polygonal scenes from a few examples provided by a user. The placement of a shape is modeled as an oriented bounding box. Simple geometric relationships between this bounding box and nearby scene polygons define a feature set for the placement. The feature sets of all example placements are then used to learn a probabilistic model over all possible placements and scenes. With this model, we can generate a new set of placements with similar geometric relationships in any given scene. We introduce extensions that enable propagation and generation of shapes in 3D scenes, as well as the application of a learned modeling session to large scenes without additional user interaction. These concepts allow us to generate complex scenes with thousands of objects with relatively little user interaction. acknowledgement: This publication is based upon work supported by the KAUST Office of Competitive Research Funds (OCRF) under Award No. 62140401, the KAUST Visual Computing Center and the Austrian Science Fund (FWF) projects DEEP PICTURES (no. P24352-N23) and Data-Driven Procedural Modeling of Interiors (no. P24600-N23). article_number: '108' author: - first_name: Paul full_name: Guerrero, Paul last_name: Guerrero - first_name: Stefan full_name: Jeschke, Stefan id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke - first_name: Michael full_name: Wimmer, Michael last_name: Wimmer - first_name: Peter full_name: Wonka, Peter last_name: Wonka citation: ama: 'Guerrero P, Jeschke S, Wimmer M, Wonka P. Learning shape placements by example. In: Vol 34. ACM; 2015. doi:10.1145/2766933' apa: 'Guerrero, P., Jeschke, S., Wimmer, M., & Wonka, P. (2015). Learning shape placements by example (Vol. 34). Presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, United States: ACM. https://doi.org/10.1145/2766933' chicago: Guerrero, Paul, Stefan Jeschke, Michael Wimmer, and Peter Wonka. “Learning Shape Placements by Example,” Vol. 34. ACM, 2015. https://doi.org/10.1145/2766933. ieee: 'P. Guerrero, S. Jeschke, M. Wimmer, and P. Wonka, “Learning shape placements by example,” presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, United States, 2015, vol. 34, no. 4.' ista: 'Guerrero P, Jeschke S, Wimmer M, Wonka P. 2015. Learning shape placements by example. SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques vol. 34, 108.' mla: Guerrero, Paul, et al. Learning Shape Placements by Example. Vol. 34, no. 4, 108, ACM, 2015, doi:10.1145/2766933. short: P. Guerrero, S. Jeschke, M. Wimmer, P. Wonka, in:, ACM, 2015. conference: end_date: 2015-08-13 location: Los Angeles, CA, United States name: 'SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques' start_date: 2015-08-09 date_created: 2018-12-11T11:53:08Z date_published: 2015-07-27T00:00:00Z date_updated: 2021-01-12T06:52:07Z day: '27' ddc: - '000' department: - _id: ChWo doi: 10.1145/2766933 file: - access_level: open_access checksum: 8b05a51e372c9b0b5af9a00098a9538b content_type: application/pdf creator: system date_created: 2018-12-12T10:07:49Z date_updated: 2020-07-14T12:45:07Z file_id: '4647' file_name: IST-2016-576-v1+1_guerrero-2015-lsp-paper.pdf file_size: 11902290 relation: main_file file_date_updated: 2020-07-14T12:45:07Z has_accepted_license: '1' intvolume: ' 34' issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version project: - _id: 25357BD2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 24352-N23 name: 'Deep Pictures: Creating Visual and Haptic Vector Images' publication_status: published publisher: ACM publist_id: '5525' pubrep_id: '576' quality_controlled: '1' scopus_import: 1 status: public title: Learning shape placements by example type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2015' ... --- _id: '1640' abstract: - lang: eng text: Auxin and cytokinin are key endogenous regulators of plant development. Although cytokinin-mediated modulation of auxin distribution is a developmentally crucial hormonal interaction, its molecular basis is largely unknown. Here we show a direct regulatory link between cytokinin signalling and the auxin transport machinery uncovering a mechanistic framework for cytokinin-auxin cross-talk. We show that the CYTOKININ RESPONSE FACTORS (CRFs), transcription factors downstream of cytokinin perception, transcriptionally control genes encoding PIN-FORMED (PIN) auxin transporters at a specific PIN CYTOKININ RESPONSE ELEMENT (PCRE) domain. Removal of this cis-regulatory element effectively uncouples PIN transcription from the CRF-mediated cytokinin regulation and attenuates plant cytokinin sensitivity. We propose that CRFs represent a missing cross-talk component that fine-tunes auxin transport capacity downstream of cytokinin signalling to control plant development. acknowledged_ssus: - _id: Bio - _id: LifeSc acknowledgement: This work was supported by the European Research Council Starting Independent Research grant (ERC-2007-Stg-207362-HCPO to E.B., M.S., C.C.), by the Ghent University Multidisciplinary Research Partnership ‘Biotechnology for a Sustainable Economy’ no.01MRB510W, by the Research Foundation—Flanders (grant 3G033711 to J.-A.O.), by the Austrian Science Fund (FWF01_I1774S) to K.Ö.,E.B., and by the Interuniversity Attraction Poles Programme (IUAP P7/29 ‘MARS’) initiated by the Belgian Science Policy Office. I.D.C. and S.V. are post-doctoral fellows of the Research Foundation—Flanders (FWO). This research was supported by the Scientific Service Units (SSU) of IST-Austria through resources provided by the Bioimaging Facility (BIF), the Life Science Facility (LSF). article_number: '8717' author: - first_name: Mária full_name: Šimášková, Mária last_name: Šimášková - first_name: José full_name: O'Brien, José last_name: O'Brien - first_name: Mamoona full_name: Khan-Djamei, Mamoona id: 391B5BBC-F248-11E8-B48F-1D18A9856A87 last_name: Khan-Djamei - first_name: Giel full_name: Van Noorden, Giel last_name: Van Noorden - first_name: Krisztina full_name: Ötvös, Krisztina id: 29B901B0-F248-11E8-B48F-1D18A9856A87 last_name: Ötvös orcid: 0000-0002-5503-4983 - first_name: Anne full_name: Vieten, Anne last_name: Vieten - first_name: Inge full_name: De Clercq, Inge last_name: De Clercq - first_name: Johanna full_name: Van Haperen, Johanna last_name: Van Haperen - first_name: Candela full_name: Cuesta, Candela id: 33A3C818-F248-11E8-B48F-1D18A9856A87 last_name: Cuesta orcid: 0000-0003-1923-2410 - first_name: Klára full_name: Hoyerová, Klára last_name: Hoyerová - first_name: Steffen full_name: Vanneste, Steffen last_name: Vanneste - first_name: Peter full_name: Marhavy, Peter id: 3F45B078-F248-11E8-B48F-1D18A9856A87 last_name: Marhavy orcid: 0000-0001-5227-5741 - first_name: Krzysztof T full_name: Wabnik, Krzysztof T id: 4DE369A4-F248-11E8-B48F-1D18A9856A87 last_name: Wabnik orcid: 0000-0001-7263-0560 - first_name: Frank full_name: Van Breusegem, Frank last_name: Van Breusegem - first_name: Moritz full_name: Nowack, Moritz last_name: Nowack - first_name: Angus full_name: Murphy, Angus last_name: Murphy - first_name: Jiřĺ full_name: Friml, Jiřĺ id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Dolf full_name: Weijers, Dolf last_name: Weijers - first_name: Tom full_name: Beeckman, Tom last_name: Beeckman - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 citation: ama: Šimášková M, O’Brien J, Khan-Djamei M, et al. Cytokinin response factors regulate PIN-FORMED auxin transporters. Nature Communications. 2015;6. doi:10.1038/ncomms9717 apa: Šimášková, M., O’Brien, J., Khan-Djamei, M., Van Noorden, G., Ötvös, K., Vieten, A., … Benková, E. (2015). Cytokinin response factors regulate PIN-FORMED auxin transporters. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/ncomms9717 chicago: Šimášková, Mária, José O’Brien, Mamoona Khan-Djamei, Giel Van Noorden, Krisztina Ötvös, Anne Vieten, Inge De Clercq, et al. “Cytokinin Response Factors Regulate PIN-FORMED Auxin Transporters.” Nature Communications. Nature Publishing Group, 2015. https://doi.org/10.1038/ncomms9717. ieee: M. Šimášková et al., “Cytokinin response factors regulate PIN-FORMED auxin transporters,” Nature Communications, vol. 6. Nature Publishing Group, 2015. ista: Šimášková M, O’Brien J, Khan-Djamei M, Van Noorden G, Ötvös K, Vieten A, De Clercq I, Van Haperen J, Cuesta C, Hoyerová K, Vanneste S, Marhavý P, Wabnik KT, Van Breusegem F, Nowack M, Murphy A, Friml J, Weijers D, Beeckman T, Benková E. 2015. Cytokinin response factors regulate PIN-FORMED auxin transporters. Nature Communications. 6, 8717. mla: Šimášková, Mária, et al. “Cytokinin Response Factors Regulate PIN-FORMED Auxin Transporters.” Nature Communications, vol. 6, 8717, Nature Publishing Group, 2015, doi:10.1038/ncomms9717. short: M. Šimášková, J. O’Brien, M. Khan-Djamei, G. Van Noorden, K. Ötvös, A. Vieten, I. De Clercq, J. Van Haperen, C. Cuesta, K. Hoyerová, S. Vanneste, P. Marhavý, K.T. Wabnik, F. Van Breusegem, M. Nowack, A. Murphy, J. Friml, D. Weijers, T. Beeckman, E. Benková, Nature Communications 6 (2015). date_created: 2018-12-11T11:53:12Z date_published: 2015-01-01T00:00:00Z date_updated: 2021-01-12T06:52:11Z day: '01' ddc: - '580' department: - _id: EvBe - _id: JiFr doi: 10.1038/ncomms9717 ec_funded: 1 file: - access_level: open_access checksum: c2c84bca37401435fedf76bad0ba0579 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:36Z date_updated: 2020-07-14T12:45:08Z file_id: '5358' file_name: IST-2018-1020-v1+1_Simaskova_et_al_NatCom_2015.pdf file_size: 1471217 relation: main_file file_date_updated: 2020-07-14T12:45:08Z has_accepted_license: '1' intvolume: ' 6' language: - iso: eng month: '01' oa: 1 oa_version: Submitted Version project: - _id: 253FCA6A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '207362' name: Hormonal cross-talk in plant organogenesis - _id: 2542D156-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 1774-B16 name: Hormone cross-talk drives nutrient dependent plant development publication: Nature Communications publication_status: published publisher: Nature Publishing Group publist_id: '5513' pubrep_id: '1020' quality_controlled: '1' scopus_import: 1 status: public title: Cytokinin response factors regulate PIN-FORMED auxin transporters type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2015' ... --- _id: '1642' abstract: - lang: eng text: The Hanani-Tutte theorem is a classical result proved for the first time in the 1930s that characterizes planar graphs as graphs that admit a drawing in the plane in which every pair of edges not sharing a vertex cross an even number of times. We generalize this result to clustered graphs with two disjoint clusters, and show that a straightforward extension to flat clustered graphs with three or more disjoint clusters is not possible. For general clustered graphs we show a variant of the Hanani-Tutte theorem in the case when each cluster induces a connected subgraph. Di Battista and Frati proved that clustered planarity of embedded clustered graphs whose every face is incident to at most five vertices can be tested in polynomial time. We give a new and short proof of this result, using the matroid intersection algorithm. acknowledgement: e research leading to these results has received funding fromthe People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme(FP7/2007-2013) under REA grant agreement no [291734], and ESF Eurogiga project GraDR as GAˇCRGIG/11/E023. article_number: 'P4.24 ' article_processing_charge: No article_type: original author: - first_name: Radoslav full_name: Fulek, Radoslav id: 39F3FFE4-F248-11E8-B48F-1D18A9856A87 last_name: Fulek orcid: 0000-0001-8485-1774 - first_name: Jan full_name: Kynčl, Jan last_name: Kynčl - first_name: Igor full_name: Malinovič, Igor last_name: Malinovič - first_name: Dömötör full_name: Pálvölgyi, Dömötör last_name: Pálvölgyi citation: ama: Fulek R, Kynčl J, Malinovič I, Pálvölgyi D. Clustered planarity testing revisited. Electronic Journal of Combinatorics. 2015;22(4). doi:10.37236/5002 apa: Fulek, R., Kynčl, J., Malinovič, I., & Pálvölgyi, D. (2015). Clustered planarity testing revisited. Electronic Journal of Combinatorics. Electronic Journal of Combinatorics. https://doi.org/10.37236/5002 chicago: Fulek, Radoslav, Jan Kynčl, Igor Malinovič, and Dömötör Pálvölgyi. “Clustered Planarity Testing Revisited.” Electronic Journal of Combinatorics. Electronic Journal of Combinatorics, 2015. https://doi.org/10.37236/5002. ieee: R. Fulek, J. Kynčl, I. Malinovič, and D. Pálvölgyi, “Clustered planarity testing revisited,” Electronic Journal of Combinatorics, vol. 22, no. 4. Electronic Journal of Combinatorics, 2015. ista: Fulek R, Kynčl J, Malinovič I, Pálvölgyi D. 2015. Clustered planarity testing revisited. Electronic Journal of Combinatorics. 22(4), P4.24. mla: Fulek, Radoslav, et al. “Clustered Planarity Testing Revisited.” Electronic Journal of Combinatorics, vol. 22, no. 4, P4.24, Electronic Journal of Combinatorics, 2015, doi:10.37236/5002. short: R. Fulek, J. Kynčl, I. Malinovič, D. Pálvölgyi, Electronic Journal of Combinatorics 22 (2015). date_created: 2018-12-11T11:53:12Z date_published: 2015-11-13T00:00:00Z date_updated: 2023-02-21T16:03:02Z day: '13' ddc: - '514' - '516' department: - _id: UlWa doi: 10.37236/5002 ec_funded: 1 external_id: arxiv: - '1305.4519' file: - access_level: open_access checksum: 40b5920b49ee736694f59f39588ee206 content_type: application/pdf creator: system date_created: 2018-12-12T10:15:03Z date_updated: 2020-07-14T12:45:08Z file_id: '5120' file_name: IST-2016-714-v1+1_5002-15499-3-PB.pdf file_size: 443655 relation: main_file file_date_updated: 2020-07-14T12:45:08Z has_accepted_license: '1' intvolume: ' 22' issue: '4' language: - iso: eng month: '11' oa: 1 oa_version: Published Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Electronic Journal of Combinatorics publication_identifier: eissn: - 1077-8926 publication_status: published publisher: Electronic Journal of Combinatorics publist_id: '5511' pubrep_id: '714' quality_controlled: '1' related_material: record: - id: '10793' relation: earlier_version status: public scopus_import: '1' status: public title: Clustered planarity testing revisited type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 22 year: '2015' ... --- _id: '1639' abstract: - lang: eng text: In this paper the optimal transport and the metamorphosis perspectives are combined. For a pair of given input images geodesic paths in the space of images are defined as minimizers of a resulting path energy. To this end, the underlying Riemannian metric measures the rate of transport cost and the rate of viscous dissipation. Furthermore, the model is capable to deal with strongly varying image contrast and explicitly allows for sources and sinks in the transport equations which are incorporated in the metric related to the metamorphosis approach by Trouvé and Younes. In the non-viscous case with source term existence of geodesic paths is proven in the space of measures. The proposed model is explored on the range from merely optimal transport to strongly dissipative dynamics. For this model a robust and effective variational time discretization of geodesic paths is proposed. This requires to minimize a discrete path energy consisting of a sum of consecutive image matching functionals. These functionals are defined on corresponding pairs of intensity functions and on associated pairwise matching deformations. Existence of time discrete geodesics is demonstrated. Furthermore, a finite element implementation is proposed and applied to instructive test cases and to real images. In the non-viscous case this is compared to the algorithm proposed by Benamou and Brenier including a discretization of the source term. Finally, the model is generalized to define discrete weighted barycentres with applications to textures and objects. acknowledgement: The authors acknowledge support of the Collaborative Research Centre 1060 funded by the German Science foundation. This work is further supported by the King Abdullah University for Science and Technology (KAUST) Award No. KUK-I1-007-43 and the EPSRC grant Nr. EP/M00483X/1. author: - first_name: Jan full_name: Maas, Jan id: 4C5696CE-F248-11E8-B48F-1D18A9856A87 last_name: Maas orcid: 0000-0002-0845-1338 - first_name: Martin full_name: Rumpf, Martin last_name: Rumpf - first_name: Carola full_name: Schönlieb, Carola last_name: Schönlieb - first_name: Stefan full_name: Simon, Stefan last_name: Simon citation: ama: 'Maas J, Rumpf M, Schönlieb C, Simon S. A generalized model for optimal transport of images including dissipation and density modulation. ESAIM: Mathematical Modelling and Numerical Analysis. 2015;49(6):1745-1769. doi:10.1051/m2an/2015043' apa: 'Maas, J., Rumpf, M., Schönlieb, C., & Simon, S. (2015). A generalized model for optimal transport of images including dissipation and density modulation. ESAIM: Mathematical Modelling and Numerical Analysis. EDP Sciences. https://doi.org/10.1051/m2an/2015043' chicago: 'Maas, Jan, Martin Rumpf, Carola Schönlieb, and Stefan Simon. “A Generalized Model for Optimal Transport of Images Including Dissipation and Density Modulation.” ESAIM: Mathematical Modelling and Numerical Analysis. EDP Sciences, 2015. https://doi.org/10.1051/m2an/2015043.' ieee: 'J. Maas, M. Rumpf, C. Schönlieb, and S. Simon, “A generalized model for optimal transport of images including dissipation and density modulation,” ESAIM: Mathematical Modelling and Numerical Analysis, vol. 49, no. 6. EDP Sciences, pp. 1745–1769, 2015.' ista: 'Maas J, Rumpf M, Schönlieb C, Simon S. 2015. A generalized model for optimal transport of images including dissipation and density modulation. ESAIM: Mathematical Modelling and Numerical Analysis. 49(6), 1745–1769.' mla: 'Maas, Jan, et al. “A Generalized Model for Optimal Transport of Images Including Dissipation and Density Modulation.” ESAIM: Mathematical Modelling and Numerical Analysis, vol. 49, no. 6, EDP Sciences, 2015, pp. 1745–69, doi:10.1051/m2an/2015043.' short: 'J. Maas, M. Rumpf, C. Schönlieb, S. Simon, ESAIM: Mathematical Modelling and Numerical Analysis 49 (2015) 1745–1769.' date_created: 2018-12-11T11:53:11Z date_published: 2015-11-01T00:00:00Z date_updated: 2021-01-12T06:52:10Z day: '01' department: - _id: JaMa doi: 10.1051/m2an/2015043 external_id: arxiv: - '1504.01988' intvolume: ' 49' issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1504.01988 month: '11' oa: 1 oa_version: Preprint page: 1745 - 1769 publication: 'ESAIM: Mathematical Modelling and Numerical Analysis' publication_status: published publisher: EDP Sciences publist_id: '5514' quality_controlled: '1' scopus_import: 1 status: public title: A generalized model for optimal transport of images including dissipation and density modulation type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 49 year: '2015' ... --- _id: '1638' abstract: - lang: eng text: The mitochondrial respiratory chain, also known as the electron transport chain (ETC), is crucial to life, and energy production in the form of ATP is the main mitochondrial function. Three proton-translocating enzymes of the ETC, namely complexes I, III and IV, generate proton motive force, which in turn drives ATP synthase (complex V). The atomic structures and basic mechanisms of most respiratory complexes have previously been established, with the exception of complex I, the largest complex in the ETC. Recently, the crystal structure of the entire complex I was solved using a bacterial enzyme. The structure provided novel insights into the core architecture of the complex, the electron transfer and proton translocation pathways, as well as the mechanism that couples these two processes. author: - first_name: Leonid A full_name: Sazanov, Leonid A id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 citation: ama: 'Sazanov LA. A giant molecular proton pump: structure and mechanism of respiratory complex I. Nature Reviews Molecular Cell Biology. 2015;16(6):375-388. doi:10.1038/nrm3997' apa: 'Sazanov, L. A. (2015). A giant molecular proton pump: structure and mechanism of respiratory complex I. Nature Reviews Molecular Cell Biology. Nature Publishing Group. https://doi.org/10.1038/nrm3997' chicago: 'Sazanov, Leonid A. “A Giant Molecular Proton Pump: Structure and Mechanism of Respiratory Complex I.” Nature Reviews Molecular Cell Biology. Nature Publishing Group, 2015. https://doi.org/10.1038/nrm3997.' ieee: 'L. A. Sazanov, “A giant molecular proton pump: structure and mechanism of respiratory complex I,” Nature Reviews Molecular Cell Biology, vol. 16, no. 6. Nature Publishing Group, pp. 375–388, 2015.' ista: 'Sazanov LA. 2015. A giant molecular proton pump: structure and mechanism of respiratory complex I. Nature Reviews Molecular Cell Biology. 16(6), 375–388.' mla: 'Sazanov, Leonid A. “A Giant Molecular Proton Pump: Structure and Mechanism of Respiratory Complex I.” Nature Reviews Molecular Cell Biology, vol. 16, no. 6, Nature Publishing Group, 2015, pp. 375–88, doi:10.1038/nrm3997.' short: L.A. Sazanov, Nature Reviews Molecular Cell Biology 16 (2015) 375–388. date_created: 2018-12-11T11:53:11Z date_published: 2015-05-22T00:00:00Z date_updated: 2021-01-12T06:52:10Z day: '22' department: - _id: LeSa doi: 10.1038/nrm3997 intvolume: ' 16' issue: '6' language: - iso: eng month: '05' oa_version: None page: 375 - 388 publication: Nature Reviews Molecular Cell Biology publication_status: published publisher: Nature Publishing Group publist_id: '5517' quality_controlled: '1' scopus_import: 1 status: public title: 'A giant molecular proton pump: structure and mechanism of respiratory complex I' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 16 year: '2015' ... --- _id: '1646' abstract: - lang: eng text: 'A pseudorandom function (PRF) is a keyed function F : K × X → Y where, for a random key k ∈ K, the function F(k, ·) is indistinguishable from a uniformly random function, given black-box access. A key-homomorphic PRF has the additional feature that for any keys k, k'' and any input x, we have F(k+k'', x) = F(k, x)⊕F(k'', x) for some group operations +,⊕ on K and Y, respectively. A constrained PRF for a family of setsS ⊆ P(X) has the property that, given any key k and set S ∈ S, one can efficiently compute a “constrained” key kS that enables evaluation of F(k, x) on all inputs x ∈ S, while the values F(k, x) for x /∈ S remain pseudorandom even given kS. In this paper we construct PRFs that are simultaneously constrained and key homomorphic, where the homomorphic property holds even for constrained keys. We first show that the multilinear map-based bit-fixing and circuit-constrained PRFs of Boneh and Waters (Asiacrypt 2013) can be modified to also be keyhomomorphic. We then show that the LWE-based key-homomorphic PRFs of Banerjee and Peikert (Crypto 2014) are essentially already prefix-constrained PRFs, using a (non-obvious) definition of constrained keys and associated group operation. Moreover, the constrained keys themselves are pseudorandom, and the constraining and evaluation functions can all be computed in low depth. As an application of key-homomorphic constrained PRFs,we construct a proxy re-encryption schemewith fine-grained access control. This scheme allows storing encrypted data on an untrusted server, where each file can be encrypted relative to some attributes, so that only parties whose constrained keys match the attributes can decrypt. Moreover, the server can re-key (arbitrary subsets of) the ciphertexts without learning anything about the plaintexts, thus permitting efficient and finegrained revocation.' alternative_title: - LNCS article_processing_charge: No author: - first_name: Abishek full_name: Banerjee, Abishek last_name: Banerjee - first_name: Georg full_name: Fuchsbauer, Georg id: 46B4C3EE-F248-11E8-B48F-1D18A9856A87 last_name: Fuchsbauer - first_name: Chris full_name: Peikert, Chris last_name: Peikert - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 - first_name: Sophie full_name: Stevens, Sophie last_name: Stevens citation: ama: 'Banerjee A, Fuchsbauer G, Peikert C, Pietrzak KZ, Stevens S. Key-homomorphic constrained pseudorandom functions. In: 12th Theory of Cryptography Conference. Vol 9015. Springer Nature; 2015:31-60. doi:10.1007/978-3-662-46497-7_2' apa: 'Banerjee, A., Fuchsbauer, G., Peikert, C., Pietrzak, K. Z., & Stevens, S. (2015). Key-homomorphic constrained pseudorandom functions. In 12th Theory of Cryptography Conference (Vol. 9015, pp. 31–60). Warsaw, Poland: Springer Nature. https://doi.org/10.1007/978-3-662-46497-7_2' chicago: Banerjee, Abishek, Georg Fuchsbauer, Chris Peikert, Krzysztof Z Pietrzak, and Sophie Stevens. “Key-Homomorphic Constrained Pseudorandom Functions.” In 12th Theory of Cryptography Conference, 9015:31–60. Springer Nature, 2015. https://doi.org/10.1007/978-3-662-46497-7_2. ieee: A. Banerjee, G. Fuchsbauer, C. Peikert, K. Z. Pietrzak, and S. Stevens, “Key-homomorphic constrained pseudorandom functions,” in 12th Theory of Cryptography Conference, Warsaw, Poland, 2015, vol. 9015, pp. 31–60. ista: 'Banerjee A, Fuchsbauer G, Peikert C, Pietrzak KZ, Stevens S. 2015. Key-homomorphic constrained pseudorandom functions. 12th Theory of Cryptography Conference. TCC: Theory of Cryptography Conference, LNCS, vol. 9015, 31–60.' mla: Banerjee, Abishek, et al. “Key-Homomorphic Constrained Pseudorandom Functions.” 12th Theory of Cryptography Conference, vol. 9015, Springer Nature, 2015, pp. 31–60, doi:10.1007/978-3-662-46497-7_2. short: A. Banerjee, G. Fuchsbauer, C. Peikert, K.Z. Pietrzak, S. Stevens, in:, 12th Theory of Cryptography Conference, Springer Nature, 2015, pp. 31–60. conference: end_date: 2015-03-25 location: Warsaw, Poland name: 'TCC: Theory of Cryptography Conference' start_date: 2015-03-23 date_created: 2018-12-11T11:53:14Z date_published: 2015-03-01T00:00:00Z date_updated: 2022-02-03T08:41:46Z day: '01' ddc: - '000' - '004' department: - _id: KrPi doi: 10.1007/978-3-662-46497-7_2 ec_funded: 1 file: - access_level: open_access checksum: 3c5093bda5783c89beaacabf1aa0e60e content_type: application/pdf creator: system date_created: 2018-12-12T10:15:17Z date_updated: 2020-07-14T12:45:08Z file_id: '5136' file_name: IST-2016-679-v1+1_180.pdf file_size: 450665 relation: main_file file_date_updated: 2020-07-14T12:45:08Z has_accepted_license: '1' intvolume: ' 9015' language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2015/180 month: '03' oa: 1 oa_version: Submitted Version page: 31 - 60 project: - _id: 258C570E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '259668' name: Provable Security for Physical Cryptography publication: 12th Theory of Cryptography Conference publication_identifier: isbn: - 978-3-662-46496-0 publication_status: published publisher: Springer Nature publist_id: '5505' pubrep_id: '679' quality_controlled: '1' scopus_import: '1' status: public title: Key-homomorphic constrained pseudorandom functions type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 9015 year: '2015' ... --- _id: '1648' abstract: - lang: eng text: Generalized Selective Decryption (GSD), introduced by Panjwani [TCC’07], is a game for a symmetric encryption scheme Enc that captures the difficulty of proving adaptive security of certain protocols, most notably the Logical Key Hierarchy (LKH) multicast encryption protocol. In the GSD game there are n keys k1,..., kn, which the adversary may adaptively corrupt (learn); moreover, it can ask for encryptions Encki (kj) of keys under other keys. The adversary’s task is to distinguish keys (which it cannot trivially compute) from random. Proving the hardness of GSD assuming only IND-CPA security of Enc is surprisingly hard. Using “complexity leveraging” loses a factor exponential in n, which makes the proof practically meaningless. We can think of the GSD game as building a graph on n vertices, where we add an edge i → j when the adversary asks for an encryption of kj under ki. If restricted to graphs of depth ℓ, Panjwani gave a reduction that loses only a factor exponential in ℓ (not n). To date, this is the only non-trivial result known for GSD. In this paper we give almost-polynomial reductions for large classes of graphs. Most importantly, we prove the security of the GSD game restricted to trees losing only a quasi-polynomial factor n3 log n+5. Trees are an important special case capturing real-world protocols like the LKH protocol. Our new bound improves upon Panjwani’s on some LKH variants proposed in the literature where the underlying tree is not balanced. Our proof builds on ideas from the “nested hybrids” technique recently introduced by Fuchsbauer et al. [Asiacrypt’14] for proving the adaptive security of constrained PRFs. alternative_title: - LNCS author: - first_name: Georg full_name: Fuchsbauer, Georg id: 46B4C3EE-F248-11E8-B48F-1D18A9856A87 last_name: Fuchsbauer - first_name: Zahra full_name: Jafargholi, Zahra last_name: Jafargholi - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 citation: ama: 'Fuchsbauer G, Jafargholi Z, Pietrzak KZ. A quasipolynomial reduction for generalized selective decryption on trees. In: Vol 9215. Springer; 2015:601-620. doi:10.1007/978-3-662-47989-6_29' apa: 'Fuchsbauer, G., Jafargholi, Z., & Pietrzak, K. Z. (2015). A quasipolynomial reduction for generalized selective decryption on trees (Vol. 9215, pp. 601–620). Presented at the CRYPTO: International Cryptology Conference, Santa Barbara, CA, USA: Springer. https://doi.org/10.1007/978-3-662-47989-6_29' chicago: Fuchsbauer, Georg, Zahra Jafargholi, and Krzysztof Z Pietrzak. “A Quasipolynomial Reduction for Generalized Selective Decryption on Trees,” 9215:601–20. Springer, 2015. https://doi.org/10.1007/978-3-662-47989-6_29. ieee: 'G. Fuchsbauer, Z. Jafargholi, and K. Z. Pietrzak, “A quasipolynomial reduction for generalized selective decryption on trees,” presented at the CRYPTO: International Cryptology Conference, Santa Barbara, CA, USA, 2015, vol. 9215, pp. 601–620.' ista: 'Fuchsbauer G, Jafargholi Z, Pietrzak KZ. 2015. A quasipolynomial reduction for generalized selective decryption on trees. CRYPTO: International Cryptology Conference, LNCS, vol. 9215, 601–620.' mla: Fuchsbauer, Georg, et al. A Quasipolynomial Reduction for Generalized Selective Decryption on Trees. Vol. 9215, Springer, 2015, pp. 601–20, doi:10.1007/978-3-662-47989-6_29. short: G. Fuchsbauer, Z. Jafargholi, K.Z. Pietrzak, in:, Springer, 2015, pp. 601–620. conference: end_date: 2015-08-20 location: Santa Barbara, CA, USA name: 'CRYPTO: International Cryptology Conference' start_date: 2015-08-16 date_created: 2018-12-11T11:53:14Z date_published: 2015-08-01T00:00:00Z date_updated: 2021-01-12T06:52:14Z day: '01' ddc: - '004' department: - _id: KrPi doi: 10.1007/978-3-662-47989-6_29 ec_funded: 1 file: - access_level: open_access checksum: 99b76b3263d5082554d0a9cbdeca3a22 content_type: application/pdf creator: system date_created: 2018-12-12T10:13:31Z date_updated: 2020-07-14T12:45:08Z file_id: '5015' file_name: IST-2016-674-v1+1_389.pdf file_size: 505618 relation: main_file file_date_updated: 2020-07-14T12:45:08Z has_accepted_license: '1' intvolume: ' 9215' language: - iso: eng month: '08' oa: 1 oa_version: Submitted Version page: 601 - 620 project: - _id: 258C570E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '259668' name: Provable Security for Physical Cryptography publication_status: published publisher: Springer publist_id: '5502' pubrep_id: '674' quality_controlled: '1' scopus_import: 1 status: public title: A quasipolynomial reduction for generalized selective decryption on trees tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 9215 year: '2015' ... --- _id: '1649' abstract: - lang: eng text: 'We extend a commitment scheme based on the learning with errors over rings (RLWE) problem, and present efficient companion zeroknowledge proofs of knowledge. Our scheme maps elements from the ring (or equivalently, n elements from ' alternative_title: - LNCS author: - first_name: Fabrice full_name: Benhamouda, Fabrice last_name: Benhamouda - first_name: Stephan full_name: Krenn, Stephan last_name: Krenn - first_name: Vadim full_name: Lyubashevsky, Vadim last_name: Lyubashevsky - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 citation: ama: Benhamouda F, Krenn S, Lyubashevsky V, Pietrzak KZ. Efficient zero-knowledge proofs for commitments from learning with errors over rings. 2015;9326:305-325. doi:10.1007/978-3-319-24174-6_16 apa: 'Benhamouda, F., Krenn, S., Lyubashevsky, V., & Pietrzak, K. Z. (2015). Efficient zero-knowledge proofs for commitments from learning with errors over rings. Presented at the ESORICS: European Symposium on Research in Computer Security, Vienna, Austria: Springer. https://doi.org/10.1007/978-3-319-24174-6_16' chicago: Benhamouda, Fabrice, Stephan Krenn, Vadim Lyubashevsky, and Krzysztof Z Pietrzak. “Efficient Zero-Knowledge Proofs for Commitments from Learning with Errors over Rings.” Lecture Notes in Computer Science. Springer, 2015. https://doi.org/10.1007/978-3-319-24174-6_16. ieee: F. Benhamouda, S. Krenn, V. Lyubashevsky, and K. Z. Pietrzak, “Efficient zero-knowledge proofs for commitments from learning with errors over rings,” vol. 9326. Springer, pp. 305–325, 2015. ista: Benhamouda F, Krenn S, Lyubashevsky V, Pietrzak KZ. 2015. Efficient zero-knowledge proofs for commitments from learning with errors over rings. 9326, 305–325. mla: Benhamouda, Fabrice, et al. Efficient Zero-Knowledge Proofs for Commitments from Learning with Errors over Rings. Vol. 9326, Springer, 2015, pp. 305–25, doi:10.1007/978-3-319-24174-6_16. short: F. Benhamouda, S. Krenn, V. Lyubashevsky, K.Z. Pietrzak, 9326 (2015) 305–325. conference: end_date: 2015-09-25 location: Vienna, Austria name: 'ESORICS: European Symposium on Research in Computer Security' start_date: 2015-09-21 date_created: 2018-12-11T11:53:15Z date_published: 2015-01-01T00:00:00Z date_updated: 2021-01-12T06:52:14Z day: '01' ddc: - '000' - '004' department: - _id: KrPi doi: 10.1007/978-3-319-24174-6_16 ec_funded: 1 file: - access_level: open_access checksum: 6eac4a485b2aa644b2d3f753ed0b280b content_type: application/pdf creator: system date_created: 2018-12-12T10:11:28Z date_updated: 2020-07-14T12:45:08Z file_id: '4883' file_name: IST-2016-678-v1+1_889.pdf file_size: 494239 relation: main_file file_date_updated: 2020-07-14T12:45:08Z has_accepted_license: '1' intvolume: ' 9326' language: - iso: eng license: https://creativecommons.org/licenses/by-nc/4.0/ month: '01' oa: 1 oa_version: Published Version page: 305 - 325 project: - _id: 258C570E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '259668' name: Provable Security for Physical Cryptography publication_status: published publisher: Springer publist_id: '5501' pubrep_id: '678' quality_controlled: '1' scopus_import: 1 series_title: Lecture Notes in Computer Science status: public title: Efficient zero-knowledge proofs for commitments from learning with errors over rings tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 9326 year: '2015' ... --- _id: '1644' abstract: - lang: eng text: Increasing the computational complexity of evaluating a hash function, both for the honest users as well as for an adversary, is a useful technique employed for example in password-based cryptographic schemes to impede brute-force attacks, and also in so-called proofs of work (used in protocols like Bitcoin) to show that a certain amount of computation was performed by a legitimate user. A natural approach to adjust the complexity of a hash function is to iterate it c times, for some parameter c, in the hope that any query to the scheme requires c evaluations of the underlying hash function. However, results by Dodis et al. (Crypto 2012) imply that plain iteration falls short of achieving this goal, and designing schemes which provably have such a desirable property remained an open problem. This paper formalizes explicitly what it means for a given scheme to amplify the query complexity of a hash function. In the random oracle model, the goal of a secure query-complexity amplifier (QCA) scheme is captured as transforming, in the sense of indifferentiability, a random oracle allowing R queries (for the adversary) into one provably allowing only r < R queries. Turned around, this means that making r queries to the scheme requires at least R queries to the actual random oracle. Second, a new scheme, called collision-free iteration, is proposed and proven to achieve c-fold QCA for both the honest parties and the adversary, for any fixed parameter c. alternative_title: - LNCS author: - first_name: Grégory full_name: Demay, Grégory last_name: Demay - first_name: Peter full_name: Gazi, Peter id: 3E0BFE38-F248-11E8-B48F-1D18A9856A87 last_name: Gazi - first_name: Ueli full_name: Maurer, Ueli last_name: Maurer - first_name: Björn full_name: Tackmann, Björn last_name: Tackmann citation: ama: 'Demay G, Gazi P, Maurer U, Tackmann B. Query-complexity amplification for random oracles. In: Vol 9063. Springer; 2015:159-180. doi:10.1007/978-3-319-17470-9_10' apa: 'Demay, G., Gazi, P., Maurer, U., & Tackmann, B. (2015). Query-complexity amplification for random oracles (Vol. 9063, pp. 159–180). Presented at the ICITS: International Conference on Information Theoretic Security, Lugano, Switzerland: Springer. https://doi.org/10.1007/978-3-319-17470-9_10' chicago: Demay, Grégory, Peter Gazi, Ueli Maurer, and Björn Tackmann. “Query-Complexity Amplification for Random Oracles,” 9063:159–80. Springer, 2015. https://doi.org/10.1007/978-3-319-17470-9_10. ieee: 'G. Demay, P. Gazi, U. Maurer, and B. Tackmann, “Query-complexity amplification for random oracles,” presented at the ICITS: International Conference on Information Theoretic Security, Lugano, Switzerland, 2015, vol. 9063, pp. 159–180.' ista: 'Demay G, Gazi P, Maurer U, Tackmann B. 2015. Query-complexity amplification for random oracles. ICITS: International Conference on Information Theoretic Security, LNCS, vol. 9063, 159–180.' mla: Demay, Grégory, et al. Query-Complexity Amplification for Random Oracles. Vol. 9063, Springer, 2015, pp. 159–80, doi:10.1007/978-3-319-17470-9_10. short: G. Demay, P. Gazi, U. Maurer, B. Tackmann, in:, Springer, 2015, pp. 159–180. conference: end_date: 2015-05-05 location: Lugano, Switzerland name: 'ICITS: International Conference on Information Theoretic Security' start_date: 2015-05-02 date_created: 2018-12-11T11:53:13Z date_published: 2015-01-01T00:00:00Z date_updated: 2021-01-12T06:52:13Z day: '01' department: - _id: KrPi doi: 10.1007/978-3-319-17470-9_10 ec_funded: 1 intvolume: ' 9063' language: - iso: eng main_file_link: - open_access: '1' url: http://eprint.iacr.org/2015/315 month: '01' oa: 1 oa_version: Submitted Version page: 159 - 180 project: - _id: 258C570E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '259668' name: Provable Security for Physical Cryptography publication_status: published publisher: Springer publist_id: '5507' quality_controlled: '1' scopus_import: 1 status: public title: Query-complexity amplification for random oracles type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 9063 year: '2015' ... --- _id: '1647' abstract: - lang: eng text: Round-optimal blind signatures are notoriously hard to construct in the standard model, especially in the malicious-signer model, where blindness must hold under adversarially chosen keys. This is substantiated by several impossibility results. The only construction that can be termed theoretically efficient, by Garg and Gupta (Eurocrypt’14), requires complexity leveraging, inducing an exponential security loss. We present a construction of practically efficient round-optimal blind signatures in the standard model. It is conceptually simple and builds on the recent structure-preserving signatures on equivalence classes (SPSEQ) from Asiacrypt’14. While the traditional notion of blindness follows from standard assumptions, we prove blindness under adversarially chosen keys under an interactive variant of DDH. However, we neither require non-uniform assumptions nor complexity leveraging. We then show how to extend our construction to partially blind signatures and to blind signatures on message vectors, which yield a construction of one-show anonymous credentials à la “anonymous credentials light” (CCS’13) in the standard model. Furthermore, we give the first SPS-EQ construction under noninteractive assumptions and show how SPS-EQ schemes imply conventional structure-preserving signatures, which allows us to apply optimality results for the latter to SPS-EQ. alternative_title: - LNCS article_processing_charge: No author: - first_name: Georg full_name: Fuchsbauer, Georg id: 46B4C3EE-F248-11E8-B48F-1D18A9856A87 last_name: Fuchsbauer - first_name: Christian full_name: Hanser, Christian last_name: Hanser - first_name: Daniel full_name: Slamanig, Daniel last_name: Slamanig citation: ama: 'Fuchsbauer G, Hanser C, Slamanig D. Practical round-optimal blind signatures in the standard model. In: Vol 9216. Springer; 2015:233-253. doi:10.1007/978-3-662-48000-7_12' apa: 'Fuchsbauer, G., Hanser, C., & Slamanig, D. (2015). Practical round-optimal blind signatures in the standard model (Vol. 9216, pp. 233–253). Presented at the CRYPTO: International Cryptology Conference, Santa Barbara, CA, United States: Springer. https://doi.org/10.1007/978-3-662-48000-7_12' chicago: Fuchsbauer, Georg, Christian Hanser, and Daniel Slamanig. “Practical Round-Optimal Blind Signatures in the Standard Model,” 9216:233–53. Springer, 2015. https://doi.org/10.1007/978-3-662-48000-7_12. ieee: 'G. Fuchsbauer, C. Hanser, and D. Slamanig, “Practical round-optimal blind signatures in the standard model,” presented at the CRYPTO: International Cryptology Conference, Santa Barbara, CA, United States, 2015, vol. 9216, pp. 233–253.' ista: 'Fuchsbauer G, Hanser C, Slamanig D. 2015. Practical round-optimal blind signatures in the standard model. CRYPTO: International Cryptology Conference, LNCS, vol. 9216, 233–253.' mla: Fuchsbauer, Georg, et al. Practical Round-Optimal Blind Signatures in the Standard Model. Vol. 9216, Springer, 2015, pp. 233–53, doi:10.1007/978-3-662-48000-7_12. short: G. Fuchsbauer, C. Hanser, D. Slamanig, in:, Springer, 2015, pp. 233–253. conference: end_date: 2015-08-20 location: Santa Barbara, CA, United States name: 'CRYPTO: International Cryptology Conference' start_date: 2015-08-16 date_created: 2018-12-11T11:53:14Z date_published: 2015-08-01T00:00:00Z date_updated: 2023-02-21T16:44:51Z day: '01' department: - _id: KrPi doi: 10.1007/978-3-662-48000-7_12 ec_funded: 1 intvolume: ' 9216' language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2015/626.pdf month: '08' oa: 1 oa_version: Submitted Version page: 233 - 253 project: - _id: 258C570E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '259668' name: Provable Security for Physical Cryptography publication_status: published publisher: Springer publist_id: '5503' quality_controlled: '1' related_material: record: - id: '1225' relation: later_version status: public scopus_import: 1 status: public title: Practical round-optimal blind signatures in the standard model type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 9216 year: '2015' ... --- _id: '1645' abstract: - lang: eng text: Secret-key constructions are often proved secure in a model where one or more underlying components are replaced by an idealized oracle accessible to the attacker. This model gives rise to information-theoretic security analyses, and several advances have been made in this area over the last few years. This paper provides a systematic overview of what is achievable in this model, and how existing works fit into this view. article_number: '7133163' author: - first_name: Peter full_name: Gazi, Peter id: 3E0BFE38-F248-11E8-B48F-1D18A9856A87 last_name: Gazi - first_name: Stefano full_name: Tessaro, Stefano last_name: Tessaro citation: ama: 'Gazi P, Tessaro S. Secret-key cryptography from ideal primitives: A systematic verview. In: 2015 IEEE Information Theory Workshop. IEEE; 2015. doi:10.1109/ITW.2015.7133163' apa: 'Gazi, P., & Tessaro, S. (2015). Secret-key cryptography from ideal primitives: A systematic verview. In 2015 IEEE Information Theory Workshop. Jerusalem, Israel: IEEE. https://doi.org/10.1109/ITW.2015.7133163' chicago: 'Gazi, Peter, and Stefano Tessaro. “Secret-Key Cryptography from Ideal Primitives: A Systematic Verview.” In 2015 IEEE Information Theory Workshop. IEEE, 2015. https://doi.org/10.1109/ITW.2015.7133163.' ieee: 'P. Gazi and S. Tessaro, “Secret-key cryptography from ideal primitives: A systematic verview,” in 2015 IEEE Information Theory Workshop, Jerusalem, Israel, 2015.' ista: 'Gazi P, Tessaro S. 2015. Secret-key cryptography from ideal primitives: A systematic verview. 2015 IEEE Information Theory Workshop. ITW 2015: IEEE Information Theory Workshop, 7133163.' mla: 'Gazi, Peter, and Stefano Tessaro. “Secret-Key Cryptography from Ideal Primitives: A Systematic Verview.” 2015 IEEE Information Theory Workshop, 7133163, IEEE, 2015, doi:10.1109/ITW.2015.7133163.' short: P. Gazi, S. Tessaro, in:, 2015 IEEE Information Theory Workshop, IEEE, 2015. conference: end_date: 2015-05-01 location: Jerusalem, Israel name: 'ITW 2015: IEEE Information Theory Workshop' start_date: 2015-04-26 date_created: 2018-12-11T11:53:13Z date_published: 2015-06-24T00:00:00Z date_updated: 2021-01-12T06:52:13Z day: '24' department: - _id: KrPi doi: 10.1109/ITW.2015.7133163 ec_funded: 1 language: - iso: eng month: '06' oa_version: None project: - _id: 258C570E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '259668' name: Provable Security for Physical Cryptography publication: 2015 IEEE Information Theory Workshop publication_status: published publisher: IEEE publist_id: '5506' quality_controlled: '1' scopus_import: 1 status: public title: 'Secret-key cryptography from ideal primitives: A systematic verview' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2015' ...