TY - CONF
AB - A pseudorandom function (PRF) is a keyed function F : K × X → Y where, for a random key k ∈ K, the function F(k, ·) is indistinguishable from a uniformly random function, given black-box access. A key-homomorphic PRF has the additional feature that for any keys k, k' and any input x, we have F(k+k', x) = F(k, x)⊕F(k', x) for some group operations +,⊕ on K and Y, respectively. A constrained PRF for a family of setsS ⊆ P(X) has the property that, given any key k and set S ∈ S, one can efficiently compute a “constrained” key kS that enables evaluation of F(k, x) on all inputs x ∈ S, while the values F(k, x) for x /∈ S remain pseudorandom even given kS. In this paper we construct PRFs that are simultaneously constrained and key homomorphic, where the homomorphic property holds even for constrained keys. We first show that the multilinear map-based bit-fixing and circuit-constrained PRFs of Boneh and Waters (Asiacrypt 2013) can be modified to also be keyhomomorphic. We then show that the LWE-based key-homomorphic PRFs of Banerjee and Peikert (Crypto 2014) are essentially already prefix-constrained PRFs, using a (non-obvious) definition of constrained keys and associated group operation. Moreover, the constrained keys themselves are pseudorandom, and the constraining and evaluation functions can all be computed in low depth. As an application of key-homomorphic constrained PRFs,we construct a proxy re-encryption schemewith fine-grained access control. This scheme allows storing encrypted data on an untrusted server, where each file can be encrypted relative to some attributes, so that only parties whose constrained keys match the attributes can decrypt. Moreover, the server can re-key (arbitrary subsets of) the ciphertexts without learning anything about the plaintexts, thus permitting efficient and finegrained revocation.
AU - Banerjee, Abishek
AU - Fuchsbauer, Georg
AU - Peikert, Chris
AU - Pietrzak, Krzysztof Z
AU - Stevens, Sophie
ID - 1646
TI - Key-homomorphic constrained pseudorandom functions
VL - 9015
ER -
TY - CONF
AB - Round-optimal blind signatures are notoriously hard to construct in the standard model, especially in the malicious-signer model, where blindness must hold under adversarially chosen keys. This is substantiated by several impossibility results. The only construction that can be termed theoretically efficient, by Garg and Gupta (Eurocrypt’14), requires complexity leveraging, inducing an exponential security loss. We present a construction of practically efficient round-optimal blind signatures in the standard model. It is conceptually simple and builds on the recent structure-preserving signatures on equivalence classes (SPSEQ) from Asiacrypt’14. While the traditional notion of blindness follows from standard assumptions, we prove blindness under adversarially chosen keys under an interactive variant of DDH. However, we neither require non-uniform assumptions nor complexity leveraging. We then show how to extend our construction to partially blind signatures and to blind signatures on message vectors, which yield a construction of one-show anonymous credentials à la “anonymous credentials light” (CCS’13) in the standard model. Furthermore, we give the first SPS-EQ construction under noninteractive assumptions and show how SPS-EQ schemes imply conventional structure-preserving signatures, which allows us to apply optimality results for the latter to SPS-EQ.
AU - Fuchsbauer, Georg
AU - Hanser, Christian
AU - Slamanig, Daniel
ID - 1647
TI - Practical round-optimal blind signatures in the standard model
VL - 9216
ER -
TY - CONF
AB - Generalized Selective Decryption (GSD), introduced by Panjwani [TCC’07], is a game for a symmetric encryption scheme Enc that captures the difficulty of proving adaptive security of certain protocols, most notably the Logical Key Hierarchy (LKH) multicast encryption protocol. In the GSD game there are n keys k1,..., kn, which the adversary may adaptively corrupt (learn); moreover, it can ask for encryptions Encki (kj) of keys under other keys. The adversary’s task is to distinguish keys (which it cannot trivially compute) from random. Proving the hardness of GSD assuming only IND-CPA security of Enc is surprisingly hard. Using “complexity leveraging” loses a factor exponential in n, which makes the proof practically meaningless. We can think of the GSD game as building a graph on n vertices, where we add an edge i → j when the adversary asks for an encryption of kj under ki. If restricted to graphs of depth ℓ, Panjwani gave a reduction that loses only a factor exponential in ℓ (not n). To date, this is the only non-trivial result known for GSD. In this paper we give almost-polynomial reductions for large classes of graphs. Most importantly, we prove the security of the GSD game restricted to trees losing only a quasi-polynomial factor n3 log n+5. Trees are an important special case capturing real-world protocols like the LKH protocol. Our new bound improves upon Panjwani’s on some LKH variants proposed in the literature where the underlying tree is not balanced. Our proof builds on ideas from the “nested hybrids” technique recently introduced by Fuchsbauer et al. [Asiacrypt’14] for proving the adaptive security of constrained PRFs.
AU - Fuchsbauer, Georg
AU - Jafargholi, Zahra
AU - Pietrzak, Krzysztof Z
ID - 1648
TI - A quasipolynomial reduction for generalized selective decryption on trees
VL - 9215
ER -
TY - CONF
AB - We extend a commitment scheme based on the learning with errors over rings (RLWE) problem, and present efficient companion zeroknowledge proofs of knowledge. Our scheme maps elements from the ring (or equivalently, n elements from
AU - Benhamouda, Fabrice
AU - Krenn, Stephan
AU - Lyubashevsky, Vadim
AU - Pietrzak, Krzysztof Z
ID - 1649
TI - Efficient zero-knowledge proofs for commitments from learning with errors over rings
VL - 9326
ER -
TY - CONF
AB - We consider the task of deriving a key with high HILL entropy (i.e., being computationally indistinguishable from a key with high min-entropy) from an unpredictable source.
Previous to this work, the only known way to transform unpredictability into a key that was ϵ indistinguishable from having min-entropy was via pseudorandomness, for example by Goldreich-Levin (GL) hardcore bits. This approach has the inherent limitation that from a source with k bits of unpredictability entropy one can derive a key of length (and thus HILL entropy) at most k−2log(1/ϵ) bits. In many settings, e.g. when dealing with biometric data, such a 2log(1/ϵ) bit entropy loss in not an option. Our main technical contribution is a theorem that states that in the high entropy regime, unpredictability implies HILL entropy. Concretely, any variable K with |K|−d bits of unpredictability entropy has the same amount of so called metric entropy (against real-valued, deterministic distinguishers), which is known to imply the same amount of HILL entropy. The loss in circuit size in this argument is exponential in the entropy gap d, and thus this result only applies for small d (i.e., where the size of distinguishers considered is exponential in d).
To overcome the above restriction, we investigate if it’s possible to first “condense” unpredictability entropy and make the entropy gap small. We show that any source with k bits of unpredictability can be condensed into a source of length k with k−3 bits of unpredictability entropy. Our condenser simply “abuses" the GL construction and derives a k bit key from a source with k bits of unpredicatibily. The original GL theorem implies nothing when extracting that many bits, but we show that in this regime, GL still behaves like a “condenser" for unpredictability. This result comes with two caveats (1) the loss in circuit size is exponential in k and (2) we require that the source we start with has no HILL entropy (equivalently, one can efficiently check if a guess is correct). We leave it as an intriguing open problem to overcome these restrictions or to prove they’re inherent.
AU - Skórski, Maciej
AU - Golovnev, Alexander
AU - Pietrzak, Krzysztof Z
ID - 1650
TI - Condensed unpredictability
VL - 9134
ER -
TY - CONF
AB - Cryptographic e-cash allows off-line electronic transactions between a bank, users and merchants in a secure and anonymous fashion. A plethora of e-cash constructions has been proposed in the literature; however, these traditional e-cash schemes only allow coins to be transferred once between users and merchants. Ideally, we would like users to be able to transfer coins between each other multiple times before deposit, as happens with physical cash. “Transferable” e-cash schemes are the solution to this problem. Unfortunately, the currently proposed schemes are either completely impractical or do not achieve the desirable anonymity properties without compromises, such as assuming the existence of a trusted “judge” who can trace all coins and users in the system. This paper presents the first efficient and fully anonymous transferable e-cash scheme without any trusted third parties. We start by revising the security and anonymity properties of transferable e-cash to capture issues that were previously overlooked. For our construction we use the recently proposed malleable signatures by Chase et al. to allow the secure and anonymous transfer of coins, combined with a new efficient double-spending detection mechanism. Finally, we discuss an instantiation of our construction.
AU - Baldimtsi, Foteini
AU - Chase, Melissa
AU - Fuchsbauer, Georg
AU - Kohlweiss, Markulf
ID - 1651
TI - Anonymous transferable e-cash
VL - 9020
ER -
TY - CONF
AB - We develop new theoretical tools for proving lower-bounds on the (amortized) complexity of certain functions in models of parallel computation. We apply the tools to construct a class of functions with high amortized memory complexity in the parallel Random Oracle Model (pROM); a variant of the standard ROM allowing for batches of simultaneous queries. In particular we obtain a new, more robust, type of Memory-Hard Functions (MHF); a security primitive which has recently been gaining acceptance in practice as an effective means of countering brute-force attacks on security relevant functions. Along the way we also demonstrate an important shortcoming of previous definitions of MHFs and give a new definition addressing the problem. The tools we develop represent an adaptation of the powerful pebbling paradigm (initially introduced by Hewitt and Paterson [HP70] and Cook [Coo73]) to a simple and intuitive parallel setting. We define a simple pebbling game Gp over graphs which aims to abstract parallel computation in an intuitive way. As a conceptual contribution we define a measure of pebbling complexity for graphs called cumulative complexity (CC) and show how it overcomes a crucial shortcoming (in the parallel setting) exhibited by more traditional complexity measures used in the past. As a main technical contribution we give an explicit construction of a constant in-degree family of graphs whose CC in Gp approaches maximality to within a polylogarithmic factor for any graph of equal size (analogous to the graphs of Tarjan et. al. [PTC76, LT82] for sequential pebbling games). Finally, for a given graph G and related function fG, we derive a lower-bound on the amortized memory complexity of fG in the pROM in terms of the CC of G in the game Gp.
AU - Alwen, Joel F
AU - Serbinenko, Vladimir
ID - 1652
T2 - Proceedings of the 47th annual ACM symposium on Theory of computing
TI - High parallel complexity graphs and memory-hard functions
ER -
TY - CONF
AB - HMAC and its variant NMAC are the most popular approaches to deriving a MAC (and more generally, a PRF) from a cryptographic hash function. Despite nearly two decades of research, their exact security still remains far from understood in many different contexts. Indeed, recent works have re-surfaced interest for {\em generic} attacks, i.e., attacks that treat the compression function of the underlying hash function as a black box.
Generic security can be proved in a model where the underlying compression function is modeled as a random function -- yet, to date, the question of proving tight, non-trivial bounds on the generic security of HMAC/NMAC even as a PRF remains a challenging open question.
In this paper, we ask the question of whether a small modification to HMAC and NMAC can allow us to exactly characterize the security of the resulting constructions, while only incurring little penalty with respect to efficiency. To this end, we present simple variants of NMAC and HMAC, for which we prove tight bounds on the generic PRF security, expressed in terms of numbers of construction and compression function queries necessary to break the construction. All of our constructions are obtained via a (near) {\em black-box} modification of NMAC and HMAC, which can be interpreted as an initial step of key-dependent message pre-processing.
While our focus is on PRF security, a further attractive feature of our new constructions is that they clearly defeat all recent generic attacks against properties such as state recovery and universal forgery. These exploit properties of the so-called ``functional graph'' which are not directly accessible in our new constructions.
AU - Gazi, Peter
AU - Pietrzak, Krzysztof Z
AU - Tessaro, Stefano
ID - 1654
TI - Generic security of NMAC and HMAC with input whitening
VL - 9453
ER -
TY - JOUR
AB - Quantifying behaviors of robots which were generated autonomously from task-independent objective functions is an important prerequisite for objective comparisons of algorithms and movements of animals. The temporal sequence of such a behavior can be considered as a time series and hence complexity measures developed for time series are natural candidates for its quantification. The predictive information and the excess entropy are such complexity measures. They measure the amount of information the past contains about the future and thus quantify the nonrandom structure in the temporal sequence. However, when using these measures for systems with continuous states one has to deal with the fact that their values will depend on the resolution with which the systems states are observed. For deterministic systems both measures will diverge with increasing resolution. We therefore propose a new decomposition of the excess entropy in resolution dependent and resolution independent parts and discuss how they depend on the dimensionality of the dynamics, correlations and the noise level. For the practical estimation we propose to use estimates based on the correlation integral instead of the direct estimation of the mutual information based on next neighbor statistics because the latter allows less control of the scale dependencies. Using our algorithm we are able to show how autonomous learning generates behavior of increasing complexity with increasing learning duration.
AU - Martius, Georg S
AU - Olbrich, Eckehard
ID - 1655
IS - 10
JF - Entropy
TI - Quantifying emergent behavior of autonomous robots
VL - 17
ER -
TY - CONF
AB - Recently there has been a significant effort to handle quantitative properties in formal verification and synthesis. While weighted automata over finite and infinite words provide a natural and flexible framework to express quantitative properties, perhaps surprisingly, some basic system properties such as average response time cannot be expressed using weighted automata, nor in any other know decidable formalism. In this work, we introduce nested weighted automata as a natural extension of weighted automata which makes it possible to express important quantitative properties such as average response time. In nested weighted automata, a master automaton spins off and collects results from weighted slave automata, each of which computes a quantity along a finite portion of an infinite word. Nested weighted automata can be viewed as the quantitative analogue of monitor automata, which are used in run-time verification. We establish an almost complete decidability picture for the basic decision problems about nested weighted automata, and illustrate their applicability in several domains. In particular, nested weighted automata can be used to decide average response time properties.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Otop, Jan
ID - 1656
T2 - Proceedings - Symposium on Logic in Computer Science
TI - Nested weighted automata
VL - 2015-July
ER -
TY - CONF
AB - We consider Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) objectives. There exist two different views: (i) ~the expectation semantics, where the goal is to optimize the expected mean-payoff objective, and (ii) ~the satisfaction semantics, where the goal is to maximize the probability of runs such that the mean-payoff value stays above a given vector. We consider optimization with respect to both objectives at once, thus unifying the existing semantics. Precisely, the goal is to optimize the expectation while ensuring the satisfaction constraint. Our problem captures the notion of optimization with respect to strategies that are risk-averse (i.e., Ensure certain probabilistic guarantee). Our main results are as follows: First, we present algorithms for the decision problems, which are always polynomial in the size of the MDP. We also show that an approximation of the Pareto curve can be computed in time polynomial in the size of the MDP, and the approximation factor, but exponential in the number of dimensions. Second, we present a complete characterization of the strategy complexity (in terms of memory bounds and randomization) required to solve our problem.
AU - Chatterjee, Krishnendu
AU - Komárková, Zuzana
AU - Kretinsky, Jan
ID - 1657
TI - Unifying two views on multiple mean-payoff objectives in Markov decision processes
ER -
TY - CONF
AB - Continuous-time Markov chain (CTMC) models have become a central tool for understanding the dynamics of complex reaction networks and the importance of stochasticity in the underlying biochemical processes. When such models are employed to answer questions in applications, in order to ensure that the model provides a sufficiently accurate representation of the real system, it is of vital importance that the model parameters are inferred from real measured data. This, however, is often a formidable task and all of the existing methods fail in one case or the other, usually because the underlying CTMC model is high-dimensional and computationally difficult to analyze. The parameter inference methods that tend to scale best in the dimension of the CTMC are based on so-called moment closure approximations. However, there exists a large number of different moment closure approximations and it is typically hard to say a priori which of the approximations is the most suitable for the inference procedure. Here, we propose a moment-based parameter inference method that automatically chooses the most appropriate moment closure method. Accordingly, contrary to existing methods, the user is not required to be experienced in moment closure techniques. In addition to that, our method adaptively changes the approximation during the parameter inference to ensure that always the best approximation is used, even in cases where different approximations are best in different regions of the parameter space.
AU - Bogomolov, Sergiy
AU - Henzinger, Thomas A
AU - Podelski, Andreas
AU - Ruess, Jakob
AU - Schilling, Christian
ID - 1658
TI - Adaptive moment closure for parameter inference of biochemical reaction networks
VL - 9308
ER -
TY - CONF
AB - The target discounted-sum problem is the following: Given a rational discount factor 0 < λ < 1 and three rational values a, b, and t, does there exist a finite or an infinite sequence w ε(a, b)∗ or w ε(a, b)w, such that Σ|w| i=0 w(i)λi equals t? The problem turns out to relate to many fields of mathematics and computer science, and its decidability question is surprisingly hard to solve. We solve the finite version of the problem, and show the hardness of the infinite version, linking it to various areas and open problems in mathematics and computer science: β-expansions, discounted-sum automata, piecewise affine maps, and generalizations of the Cantor set. We provide some partial results to the infinite version, among which are solutions to its restriction to eventually-periodic sequences and to the cases that λ λ 1/2 or λ = 1/n, for every n ε N. We use our results for solving some open problems on discounted-sum automata, among which are the exact-value problem for nondeterministic automata over finite words and the universality and inclusion problems for functional automata.
AU - Boker, Udi
AU - Henzinger, Thomas A
AU - Otop, Jan
ID - 1659
SN - 1043-6871
T2 - LICS
TI - The target discounted-sum problem
ER -
TY - CONF
AB - We study the pattern frequency vector for runs in probabilistic Vector Addition Systems with States (pVASS). Intuitively, each configuration of a given pVASS is assigned one of finitely many patterns, and every run can thus be seen as an infinite sequence of these patterns. The pattern frequency vector assigns to each run the limit of pattern frequencies computed for longer and longer prefixes of the run. If the limit does not exist, then the vector is undefined. We show that for one-counter pVASS, the pattern frequency vector is defined and takes one of finitely many values for almost all runs. Further, these values and their associated probabilities can be approximated up to an arbitrarily small relative error in polynomial time. For stable two-counter pVASS, we show the same result, but we do not provide any upper complexity bound. As a byproduct of our study, we discover counterexamples falsifying some classical results about stochastic Petri nets published in the 80s.
AU - Brázdil, Tomáš
AU - Kiefer, Stefan
AU - Kučera, Antonín
AU - Novotny, Petr
ID - 1660
TI - Long-run average behaviour of probabilistic vector addition systems
ER -
TY - CONF
AB - The computation of the winning set for one-pair Streett objectives and for k-pair Streett objectives in (standard) graphs as well as in game graphs are central problems in computer-aided verification, with application to the verification of closed systems with strong fairness conditions, the verification of open systems, checking interface compatibility, well-formed ness of specifications, and the synthesis of reactive systems. We give faster algorithms for the computation of the winning set for (1) one-pair Streett objectives (aka parity-3 problem) in game graphs and (2) for k-pair Streett objectives in graphs. For both problems this represents the first improvement in asymptotic running time in 15 years.
AU - Chatterjee, Krishnendu
AU - Henzinger, Monika
AU - Loitzenbauer, Veronika
ID - 1661
T2 - Proceedings - Symposium on Logic in Computer Science
TI - Improved algorithms for one-pair and k-pair Streett objectives
VL - 2015-July
ER -
TY - JOUR
AB - CREB-binding protein (CBP) and p300 are transcriptional coactivators involved in numerous biological processes that affect cell growth, transformation, differentiation, and development. In this study, we provide evidence of the involvement of homeodomain-interacting protein kinase 2 (HIPK2) in the regulation of CBP activity. We show that HIPK2 interacts with and phosphorylates several regions of CBP. We demonstrate that serines 2361, 2363, 2371, 2376, and 2381 are responsible for the HIPK2-induced mobility shift of CBP C-terminal activation domain. Moreover, we show that HIPK2 strongly potentiates the transcriptional activity of CBP. However, our data suggest that HIPK2 activates CBP mainly by counteracting the repressive action of cell cycle regulatory domain 1 (CRD1), located between amino acids 977 and 1076, independently of CBP phosphorylation. Our findings thus highlight a complex regulation of CBP activity by HIPK2, which might be relevant for the control of specific sets of target genes involved in cellular proliferation, differentiation and apoptosis.
AU - Kovács, Krisztián
AU - Steinmann, Myriam
AU - Halfon, Olivier
AU - Magistretti, Pierre
AU - Cardinaux, Jean
ID - 1663
IS - 11
JF - Cellular Signalling
TI - Complex regulation of CREB-binding protein by homeodomain-interacting protein kinase 2
VL - 27
ER -
TY - JOUR
AB - Over a century of research into the origin of turbulence in wall-bounded shear flows has resulted in a puzzling picture in which turbulence appears in a variety of different states competing with laminar background flow. At moderate flow speeds, turbulence is confined to localized patches; it is only at higher speeds that the entire flow becomes turbulent. The origin of the different states encountered during this transition, the front dynamics of the turbulent regions and the transformation to full turbulence have yet to be explained. By combining experiments, theory and computer simulations, here we uncover a bifurcation scenario that explains the transformation to fully turbulent pipe flow and describe the front dynamics of the different states encountered in the process. Key to resolving this problem is the interpretation of the flow as a bistable system with nonlinear propagation (advection) of turbulent fronts. These findings bridge the gap between our understanding of the onset of turbulence and fully turbulent flows.
AU - Barkley, Dwight
AU - Song, Baofang
AU - Vasudevan, Mukund
AU - Lemoult, Grégoire M
AU - Avila, Marc
AU - Hof, Björn
ID - 1664
IS - 7574
JF - Nature
TI - The rise of fully turbulent flow
VL - 526
ER -
TY - JOUR
AB - Which genetic alterations drive tumorigenesis and how they evolve over the course of disease and therapy are central questions in cancer biology. Here we identify 44 recurrently mutated genes and 11 recurrent somatic copy number variations through whole-exome sequencing of 538 chronic lymphocytic leukaemia (CLL) and matched germline DNA samples, 278 of which were collected in a prospective clinical trial. These include previously unrecognized putative cancer drivers (RPS15, IKZF3), and collectively identify RNA processing and export, MYC activity, and MAPK signalling as central pathways involved in CLL. Clonality analysis of this large data set further enabled reconstruction of temporal relationships between driver events. Direct comparison between matched pre-treatment and relapse samples from 59 patients demonstrated highly frequent clonal evolution. Thus, large sequencing data sets of clinically informative samples enable the discovery of novel genes associated with cancer, the network of relationships between the driver events, and their impact on disease relapse and clinical outcome.
AU - Landau, Dan
AU - Tausch, Eugen
AU - Taylor Weiner, Amaro
AU - Stewart, Chip
AU - Reiter, Johannes
AU - Bahlo, Jasmin
AU - Kluth, Sandra
AU - Božić, Ivana
AU - Lawrence, Michael
AU - Böttcher, Sebastian
AU - Carter, Scott
AU - Cibulskis, Kristian
AU - Mertens, Daniel
AU - Sougnez, Carrie
AU - Rosenberg, Mara
AU - Hess, Julian
AU - Edelmann, Jennifer
AU - Kless, Sabrina
AU - Kneba, Michael
AU - Ritgen, Matthias
AU - Fink, Anna
AU - Fischer, Kirsten
AU - Gabriel, Stacey
AU - Lander, Eric
AU - Nowak, Martin
AU - Döhner, Hartmut
AU - Hallek, Michael
AU - Neuberg, Donna
AU - Getz, Gad
AU - Stilgenbauer, Stephan
AU - Wu, Catherine
ID - 1665
IS - 7574
JF - Nature
TI - Mutations driving CLL and their evolution in progression and relapse
VL - 526
ER -
TY - JOUR
AB - Evolution of gene regulation is crucial for our understanding of the phenotypic differences between species, populations and individuals. Sequence-specific binding of transcription factors to the regulatory regions on the DNA is a key regulatory mechanism that determines gene expression and hence heritable phenotypic variation. We use a biophysical model for directional selection on gene expression to estimate the rates of gain and loss of transcription factor binding sites (TFBS) in finite populations under both point and insertion/deletion mutations. Our results show that these rates are typically slow for a single TFBS in an isolated DNA region, unless the selection is extremely strong. These rates decrease drastically with increasing TFBS length or increasingly specific protein-DNA interactions, making the evolution of sites longer than ∼ 10 bp unlikely on typical eukaryotic speciation timescales. Similarly, evolution converges to the stationary distribution of binding sequences very slowly, making the equilibrium assumption questionable. The availability of longer regulatory sequences in which multiple binding sites can evolve simultaneously, the presence of “pre-sites” or partially decayed old sites in the initial sequence, and biophysical cooperativity between transcription factors, can all facilitate gain of TFBS and reconcile theoretical calculations with timescales inferred from comparative genomics.
AU - Tugrul, Murat
AU - Paixao, Tiago
AU - Barton, Nicholas H
AU - Tkacik, Gasper
ID - 1666
IS - 11
JF - PLoS Genetics
TI - Dynamics of transcription factor binding site evolution
VL - 11
ER -
TY - CONF
AB - We consider parametric version of fixed-delay continuoustime Markov chains (or equivalently deterministic and stochastic Petri nets, DSPN) where fixed-delay transitions are specified by parameters, rather than concrete values. Our goal is to synthesize values of these parameters that, for a given cost function, minimise expected total cost incurred before reaching a given set of target states. We show that under mild assumptions, optimal values of parameters can be effectively approximated using translation to a Markov decision process (MDP) whose actions correspond to discretized values of these parameters. To this end we identify and overcome several interesting phenomena arising in systems with fixed delays.
AU - Brázdil, Tomáš
AU - Korenčiak, L'Uboš
AU - Krčál, Jan
AU - Novotny, Petr
AU - Řehák, Vojtěch
ID - 1667
TI - Optimizing performance of continuous-time stochastic systems using timeout synthesis
VL - 9259
ER -
TY - CONF
AB - We revisit the security (as a pseudorandom permutation) of cascading-based constructions for block-cipher key-length extension. Previous works typically considered the extreme case where the adversary is given the entire codebook of the construction, the only complexity measure being the number qe of queries to the underlying ideal block cipher, representing adversary’s secret-key-independent computation. Here, we initiate a systematic study of the more natural case of an adversary restricted to adaptively learning a number qc of plaintext/ciphertext pairs that is less than the entire codebook. For any such qc, we aim to determine the highest number of block-cipher queries qe the adversary can issue without being able to successfully distinguish the construction (under a secret key) from a random permutation.
More concretely, we show the following results for key-length extension schemes using a block cipher with n-bit blocks and κ-bit keys:
Plain cascades of length ℓ=2r+1 are secure whenever qcqre≪2r(κ+n), qc≪2κ and qe≪22κ. The bound for r=1 also applies to two-key triple encryption (as used within Triple DES).
The r-round XOR-cascade is secure as long as qcqre≪2r(κ+n), matching an attack by Gaži (CRYPTO 2013).
We fully characterize the security of Gaži and Tessaro’s two-call
AU - Gazi, Peter
AU - Lee, Jooyoung
AU - Seurin, Yannick
AU - Steinberger, John
AU - Tessaro, Stefano
ID - 1668
TI - Relaxing full-codebook security: A refined analysis of key-length extension schemes
VL - 9054
ER -
TY - CONF
AB - Computational notions of entropy (a.k.a. pseudoentropy) have found many applications, including leakage-resilient cryptography, deterministic encryption or memory delegation. The most important tools to argue about pseudoentropy are chain rules, which quantify by how much (in terms of quantity and quality) the pseudoentropy of a given random variable X decreases when conditioned on some other variable Z (think for example of X as a secret key and Z as information leaked by a side-channel). In this paper we give a very simple and modular proof of the chain rule for HILL pseudoentropy, improving best known parameters. Our version allows for increasing the acceptable length of leakage in applications up to a constant factor compared to the best previous bounds. As a contribution of independent interest, we provide a comprehensive study of all known versions of the chain rule, comparing their worst-case strength and limitations.
AU - Pietrzak, Krzysztof Z
AU - Skórski, Maciej
ID - 1669
TI - The chain rule for HILL pseudoentropy, revisited
VL - 9230
ER -
TY - CONF
AB - Planning in hybrid domains poses a special challenge due to the involved mixed discrete-continuous dynamics. A recent solving approach for such domains is based on applying model checking techniques on a translation of PDDL+ planning problems to hybrid automata. However, the proposed translation is limited because must behavior is only overapproximated, and hence, processes and events are not reflected exactly. In this paper, we present the theoretical foundation of an exact PDDL+ translation. We propose a schema to convert a hybrid automaton with must transitions into an equivalent hybrid automaton featuring only may transitions.
AU - Bogomolov, Sergiy
AU - Magazzeni, Daniele
AU - Minopoli, Stefano
AU - Wehrle, Martin
ID - 1670
TI - PDDL+ planning with hybrid automata: Foundations of translating must behavior
ER -
TY - CONF
AB - This paper studies the concrete security of PRFs and MACs obtained by keying hash functions based on the sponge paradigm. One such hash function is KECCAK, selected as NIST’s new SHA-3 standard. In contrast to other approaches like HMAC, the exact security of keyed sponges is not well understood. Indeed, recent security analyses delivered concrete security bounds which are far from existing attacks. This paper aims to close this gap. We prove (nearly) exact bounds on the concrete PRF security of keyed sponges using a random permutation. These bounds are tight for the most relevant ranges of parameters, i.e., for messages of length (roughly) l ≤ min{2n/4, 2r} blocks, where n is the state size and r is the desired output length; and for l ≤ q queries (to the construction or the underlying permutation). Moreover, we also improve standard-model bounds. As an intermediate step of independent interest, we prove tight bounds on the PRF security of the truncated CBC-MAC construction, which operates as plain CBC-MAC, but only returns a prefix of the output.
AU - Gazi, Peter
AU - Pietrzak, Krzysztof Z
AU - Tessaro, Stefano
ID - 1671
TI - The exact PRF security of truncation: Tight bounds for keyed sponges and truncated CBC
VL - 9215
ER -
TY - CONF
AB - Composable notions of incoercibility aim to forbid a coercer from using anything beyond the coerced parties’ inputs and outputs to catch them when they try to deceive him. Existing definitions are restricted to weak coercion types, and/or are not universally composable. Furthermore, they often make too strong assumptions on the knowledge of coerced parties—e.g., they assume they known the identities and/or the strategies of other coerced parties, or those of corrupted parties— which makes them unsuitable for applications of incoercibility such as e-voting, where colluding adversarial parties may attempt to coerce honest voters, e.g., by offering them money for a promised vote, and use their own view to check that the voter keeps his end of the bargain. In this work we put forward the first universally composable notion of incoercible multi-party computation, which satisfies the above intuition and does not assume collusions among coerced parties or knowledge of the corrupted set. We define natural notions of UC incoercibility corresponding to standard coercion-types, i.e., receipt-freeness and resistance to full-active coercion. Importantly, our suggested notion has the unique property that it builds on top of the well studied UC framework by Canetti instead of modifying it. This guarantees backwards compatibility, and allows us to inherit results from the rich UC literature. We then present MPC protocols which realize our notions of UC incoercibility given access to an arguably minimal setup—namely honestly generate tamper-proof hardware performing a very simple cryptographic operation—e.g., a smart card. This is, to our knowledge, the first proposed construction of an MPC protocol (for more than two parties) that is incoercibly secure and universally composable, and therefore the first construction of a universally composable receipt-free e-voting protocol.
AU - Alwen, Joel F
AU - Ostrovsky, Rafail
AU - Zhou, Hongsheng
AU - Zikas, Vassilis
ID - 1672
TI - Incoercible multi-party computation and universally composable receipt-free voting
VL - 9216
ER -
TY - JOUR
AB - When a new mutant arises in a population, there is a probability it outcompetes the residents and fixes. The structure of the population can affect this fixation probability. Suppressing population structures reduce the difference between two competing variants, while amplifying population structures enhance the difference. Suppressors are ubiquitous and easy to construct, but amplifiers for the large population limit are more elusive and only a few examples have been discovered. Whether or not a population structure is an amplifier of selection depends on the probability distribution for the placement of the invading mutant. First, we prove that there exist only bounded amplifiers for adversarial placement-that is, for arbitrary initial conditions. Next, we show that the Star population structure, which is known to amplify for mutants placed uniformly at random, does not amplify for mutants that arise through reproduction and are therefore placed proportional to the temperatures of the vertices. Finally, we construct population structures that amplify for all mutational events that arise through reproduction, uniformly at random, or through some combination of the two.
AU - Adlam, Ben
AU - Chatterjee, Krishnendu
AU - Nowak, Martin
ID - 1673
IS - 2181
JF - Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
TI - Amplifiers of selection
VL - 471
ER -
TY - JOUR
AB - We consider N × N random matrices of the form H = W + V where W is a real symmetric Wigner matrix and V a random or deterministic, real, diagonal matrix whose entries are independent of W. We assume subexponential decay for the matrix entries of W and we choose V so that the eigenvalues of W and V are typically of the same order. For a large class of diagonal matrices V, we show that the rescaled distribution of the extremal eigenvalues is given by the Tracy-Widom distribution F1 in the limit of large N. Our proofs also apply to the complex Hermitian setting, i.e. when W is a complex Hermitian Wigner matrix.
AU - Lee, Jioon
AU - Schnelli, Kevin
ID - 1674
IS - 8
JF - Reviews in Mathematical Physics
TI - Edge universality for deformed Wigner matrices
VL - 27
ER -
TY - CONF
AB - Proofs of work (PoW) have been suggested by Dwork and Naor (Crypto’92) as protection to a shared resource. The basic idea is to ask the service requestor to dedicate some non-trivial amount of computational work to every request. The original applications included prevention of spam and protection against denial of service attacks. More recently, PoWs have been used to prevent double spending in the Bitcoin digital currency system. In this work, we put forward an alternative concept for PoWs - so-called proofs of space (PoS), where a service requestor must dedicate a significant amount of disk space as opposed to computation. We construct secure PoS schemes in the random oracle model (with one additional mild assumption required for the proof to go through), using graphs with high “pebbling complexity” and Merkle hash-trees. We discuss some applications, including follow-up work where a decentralized digital currency scheme called Spacecoin is constructed that uses PoS (instead of wasteful PoW like in Bitcoin) to prevent double spending. The main technical contribution of this work is the construction of (directed, loop-free) graphs on N vertices with in-degree O(log logN) such that even if one places Θ(N) pebbles on the nodes of the graph, there’s a constant fraction of nodes that needs Θ(N) steps to be pebbled (where in every step one can put a pebble on a node if all its parents have a pebble).
AU - Dziembowski, Stefan
AU - Faust, Sebastian
AU - Kolmogorov, Vladimir
AU - Pietrzak, Krzysztof Z
ID - 1675
TI - Proofs of space
VL - 9216
ER -
TY - JOUR
AU - Sixt, Michael K
AU - Raz, Erez
ID - 1676
IS - 10
JF - Current Opinion in Cell Biology
TI - Editorial overview: Cell adhesion and migration
VL - 36
ER -
TY - JOUR
AB - We consider real symmetric and complex Hermitian random matrices with the additional symmetry hxy = hN-y,N-x. The matrix elements are independent (up to the fourfold symmetry) and not necessarily identically distributed. This ensemble naturally arises as the Fourier transform of a Gaussian orthogonal ensemble. Italso occurs as the flip matrix model - an approximation of the two-dimensional Anderson model at small disorder. We show that the density of states converges to the Wigner semicircle law despite the new symmetry type. We also prove the local version of the semicircle law on the optimal scale.
AU - Alt, Johannes
ID - 1677
IS - 10
JF - Journal of Mathematical Physics
TI - The local semicircle law for random matrices with a fourfold symmetry
VL - 56
ER -
TY - JOUR
AB - High-throughput live-cell screens are intricate elements of systems biology studies and drug discovery pipelines. Here, we demonstrate an optogenetics-assisted method that avoids the need for chemical activators and reporters, reduces the number of operational steps and increases information content in a cell-based small-molecule screen against human protein kinases, including an orphan receptor tyrosine kinase. This blueprint for all-optical screening can be adapted to many drug targets and cellular processes.
AU - Inglés Prieto, Álvaro
AU - Gschaider-Reichhart, Eva
AU - Muellner, Markus
AU - Nowak, Matthias
AU - Nijman, Sebastian
AU - Grusch, Michael
AU - Janovjak, Harald L
ID - 1678
IS - 12
JF - Nature Chemical Biology
TI - Light-assisted small-molecule screening against protein kinases
VL - 11
ER -
TY - JOUR
AU - Lemoult, Grégoire M
AU - Maier, Philipp
AU - Hof, Björn
ID - 1679
IS - 9
JF - Physics of Fluids
TI - Taylor's Forest
VL - 27
ER -
TY - JOUR
AB - We consider the satisfiability problem for modal logic over first-order definable classes of frames.We confirm the conjecture from Hemaspaandra and Schnoor [2008] that modal logic is decidable over classes definable by universal Horn formulae. We provide a full classification of Horn formulae with respect to the complexity of the corresponding satisfiability problem. It turns out, that except for the trivial case of inconsistent formulae, local satisfiability is eitherNP-complete or PSPACE-complete, and global satisfiability is NP-complete, PSPACE-complete, or ExpTime-complete. We also show that the finite satisfiability problem for modal logic over Horn definable classes of frames is decidable. On the negative side, we show undecidability of two related problems. First, we exhibit a simple universal three-variable formula defining the class of frames over which modal logic is undecidable. Second, we consider the satisfiability problem of bimodal logic over Horn definable classes of frames, and also present a formula leading to undecidability.
AU - Michaliszyn, Jakub
AU - Otop, Jan
AU - Kieroňski, Emanuel
ID - 1680
IS - 1
JF - ACM Transactions on Computational Logic
TI - On the decidability of elementary modal logics
VL - 17
ER -
TY - JOUR
AB - In many social situations, individuals endeavor to find the single best possible partner, but are constrained to evaluate the candidates in sequence. Examples include the search for mates, economic partnerships, or any other long-term ties where the choice to interact involves two parties. Surprisingly, however, previous theoretical work on mutual choice problems focuses on finding equilibrium solutions, while ignoring the evolutionary dynamics of decisions. Empirically, this may be of high importance, as some equilibrium solutions can never be reached unless the population undergoes radical changes and a sufficient number of individuals change their decisions simultaneously. To address this question, we apply a mutual choice sequential search problem in an evolutionary game-theoretical model that allows one to find solutions that are favored by evolution. As an example, we study the influence of sequential search on the evolutionary dynamics of cooperation. For this, we focus on the classic snowdrift game and the prisoner’s dilemma game.
AU - Priklopil, Tadeas
AU - Chatterjee, Krishnendu
ID - 1681
IS - 4
JF - Games
TI - Evolution of decisions in population games with sequentially searching individuals
VL - 6
ER -
TY - JOUR
AB - We study the problem of robust satisfiability of systems of nonlinear equations, namely, whether for a given continuous function f:K→ ℝn on a finite simplicial complex K and α > 0, it holds that each function g: K → ℝn such that ||g - f || ∞ < α, has a root in K. Via a reduction to the extension problem of maps into a sphere, we particularly show that this problem is decidable in polynomial time for every fixed n, assuming dimK ≤ 2n - 3. This is a substantial extension of previous computational applications of topological degree and related concepts in numerical and interval analysis. Via a reverse reduction, we prove that the problem is undecidable when dim K > 2n - 2, where the threshold comes from the stable range in homotopy theory. For the lucidity of our exposition, we focus on the setting when f is simplexwise linear. Such functions can approximate general continuous functions, and thus we get approximation schemes and undecidability of the robust satisfiability in other possible settings.
AU - Franek, Peter
AU - Krcál, Marek
ID - 1682
IS - 4
JF - Journal of the ACM
TI - Robust satisfiability of systems of equations
VL - 62
ER -
TY - JOUR
AB - The 1 MDa, 45-subunit proton-pumping NADH-ubiquinone oxidoreductase (complex I) is the largest complex of the mitochondrial electron transport chain. The molecular mechanism of complex I is central to the metabolism of cells, but has yet to be fully characterized. The last two years have seen steady progress towards this goal with the first atomic-resolution structure of the entire bacterial complex I, a 5 Å cryo-electron microscopy map of bovine mitochondrial complex I and a ∼3.8 Å resolution X-ray crystallographic study of mitochondrial complex I from yeast Yarrowia lipotytica. In this review we will discuss what we have learned from these studies and what remains to be elucidated.
AU - Letts, Jame A
AU - Sazanov, Leonid A
ID - 1683
IS - 8
JF - Current Opinion in Structural Biology
TI - Gaining mass: The structure of respiratory complex I-from bacterial towards mitochondrial versions
VL - 33
ER -
TY - JOUR
AB - Many species groups, including mammals and many insects, determine sex using heteromorphic sex chromosomes. Diptera flies, which include the model Drosophila melanogaster, generally have XY sex chromosomes and a conserved karyotype consisting of six chromosomal arms (five large rods and a small dot), but superficially similar karyotypes may conceal the true extent of sex chromosome variation. Here, we use whole-genome analysis in 37 fly species belonging to 22 different families of Diptera and uncover tremendous hidden diversity in sex chromosome karyotypes among flies. We identify over a dozen different sex chromosome configurations, and the small dot chromosome is repeatedly used as the sex chromosome, which presumably reflects the ancestral karyotype of higher Diptera. However, we identify species with undifferentiated sex chromosomes, others in which a different chromosome replaced the dot as a sex chromosome or in which up to three chromosomal elements became incorporated into the sex chromosomes, and others yet with female heterogamety (ZW sex chromosomes). Transcriptome analysis shows that dosage compensation has evolved multiple times in flies, consistently through up-regulation of the single X in males. However, X chromosomes generally show a deficiency of genes with male-biased expression, possibly reflecting sex-specific selective pressures. These species thus provide a rich resource to study sex chromosome biology in a comparative manner and show that similar selective forces have shaped the unique evolution of sex chromosomes in diverse fly taxa.
AU - Vicoso, Beatriz
AU - Bachtrog, Doris
ID - 1684
IS - 4
JF - PLoS Biology
TI - Numerous transitions of sex chromosomes in Diptera
VL - 13
ER -
TY - CONF
AB - Given a graph G cellularly embedded on a surface Σ of genus g, a cut graph is a subgraph of G such that cutting Σ along G yields a topological disk. We provide a fixed parameter tractable approximation scheme for the problem of computing the shortest cut graph, that is, for any ε > 0, we show how to compute a (1 + ε) approximation of the shortest cut graph in time f(ε, g)n3.
Our techniques first rely on the computation of a spanner for the problem using the technique of brick decompositions, to reduce the problem to the case of bounded tree-width. Then, to solve the bounded tree-width case, we introduce a variant of the surface-cut decomposition of Rué, Sau and Thilikos, which may be of independent interest.
AU - Cohen Addad, Vincent
AU - De Mesmay, Arnaud N
ID - 1685
TI - A fixed parameter tractable approximation scheme for the optimal cut graph of a surface
VL - 9294
ER -
TY - JOUR
AU - Kiermaier, Eva
AU - Sixt, Michael K
ID - 1686
IS - 6252
JF - Science
TI - Fragmented communication between immune cells: Neutrophils blaze a trail with migratory cues for T cells to follow to sites of infection
VL - 349
ER -
TY - JOUR
AB - Guided cell movement is essential for development and integrity of animals and crucially involved in cellular immune responses. Leukocytes are professional migratory cells that can navigate through most types of tissues and sense a wide range of directional cues. The responses of these cells to attractants have been mainly explored in tissue culture settings. How leukocytes make directional decisions in situ, within the challenging environment of a tissue maze, is less understood. Here we review recent advances in how leukocytes sense chemical cues in complex tissue settings and make links with paradigms of directed migration in development and Dictyostelium discoideum amoebae.
AU - Sarris, Milka
AU - Sixt, Michael K
ID - 1687
IS - 10
JF - Current Opinion in Cell Biology
TI - Navigating in tissue mazes: Chemoattractant interpretation in complex environments
VL - 36
ER -
TY - JOUR
AB - We estimate the selection constant in the following geometric selection theorem by Pach: For every positive integer d, there is a constant (Formula presented.) such that whenever (Formula presented.) are n-element subsets of (Formula presented.), we can find a point (Formula presented.) and subsets (Formula presented.) for every i∈[d+1], each of size at least cdn, such that p belongs to all rainbowd-simplices determined by (Formula presented.) simplices with one vertex in each Yi. We show a super-exponentially decreasing upper bound (Formula presented.). The ideas used in the proof of the upper bound also help us to prove Pach’s theorem with (Formula presented.), which is a lower bound doubly exponentially decreasing in d (up to some polynomial in the exponent). For comparison, Pach’s original approach yields a triply exponentially decreasing lower bound. On the other hand, Fox, Pach, and Suk recently obtained a hypergraph density result implying a proof of Pach’s theorem with (Formula presented.). In our construction for the upper bound, we use the fact that the minimum solid angle of every d-simplex is super-exponentially small. This fact was previously unknown and might be of independent interest. For the lower bound, we improve the ‘separation’ part of the argument by showing that in one of the key steps only d+1 separations are necessary, compared to 2d separations in the original proof. We also provide a measure version of Pach’s theorem.
AU - Karasev, Roman
AU - Kynčl, Jan
AU - Paták, Pavel
AU - Patakova, Zuzana
AU - Tancer, Martin
ID - 1688
IS - 3
JF - Discrete & Computational Geometry
TI - Bounds for Pach's selection theorem and for the minimum solid angle in a simplex
VL - 54
ER -
TY - CONF
AB - We consider the problem of computing the set of initial states of a dynamical system such that there exists a control strategy to ensure that the trajectories satisfy a temporal logic specification with probability 1 (almost-surely). We focus on discrete-time, stochastic linear dynamics and specifications given as formulas of the Generalized Reactivity(1) fragment of Linear Temporal Logic over linear predicates in the states of the system. We propose a solution based on iterative abstraction-refinement, and turn-based 2-player probabilistic games. While the theoretical guarantee of our algorithm after any finite number of iterations is only a partial solution, we show that if our algorithm terminates, then the result is the set of satisfying initial states. Moreover, for any (partial) solution our algorithm synthesizes witness control strategies to ensure almost-sure satisfaction of the temporal logic specification. We demonstrate our approach on an illustrative case study.
AU - Svoreňová, Mária
AU - Kretinsky, Jan
AU - Chmelik, Martin
AU - Chatterjee, Krishnendu
AU - Cěrná, Ivana
AU - Belta, Cǎlin
ID - 1689
T2 - Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control
TI - Temporal logic control for stochastic linear systems using abstraction refinement of probabilistic games
ER -
TY - CONF
AB - A number of powerful and scalable hybrid systems model checkers have recently emerged. Although all of them honor roughly the same hybrid systems semantics, they have drastically different model description languages. This situation (a) makes it difficult to quickly evaluate a specific hybrid automaton model using the different tools, (b) obstructs comparisons of reachability approaches, and (c) impedes the widespread application of research results that perform model modification and could benefit many of the tools. In this paper, we present Hyst, a Hybrid Source Transformer. Hyst is a source-to-source translation tool, currently taking input in the SpaceEx model format, and translating to the formats of HyCreate, Flow∗, or dReach. Internally, the tool supports generic model-to-model transformation passes that serve to both ease the translation and potentially improve reachability results for the supported tools. Although these model transformation passes could be implemented within each tool, the Hyst approach provides a single place for model modification, generating modified input sources for the unmodified target tools. Our evaluation demonstrates Hyst is capable of automatically translating benchmarks in several classes (including affine and nonlinear hybrid automata) to the input formats of several tools. Additionally, we illustrate a general model transformation pass based on pseudo-invariants implemented in Hyst that illustrates the reachability improvement.
AU - Bak, Stanley
AU - Bogomolov, Sergiy
AU - Johnson, Taylor
ID - 1690
TI - HYST: A source transformation and translation tool for hybrid automaton models
ER -
TY - CONF
AB - We consider a case study of the problem of deploying an autonomous air vehicle in a partially observable, dynamic, indoor environment from a specification given as a linear temporal logic (LTL) formula over regions of interest. We model the motion and sensing capabilities of the vehicle as a partially observable Markov decision process (POMDP). We adapt recent results for solving POMDPs with parity objectives to generate a control policy. We also extend the existing framework with a policy minimization technique to obtain a better implementable policy, while preserving its correctness. The proposed techniques are illustrated in an experimental setup involving an autonomous quadrotor performing surveillance in a dynamic environment.
AU - Svoreňová, Mária
AU - Chmelik, Martin
AU - Leahy, Kevin
AU - Eniser, Hasan
AU - Chatterjee, Krishnendu
AU - Cěrná, Ivana
AU - Belta, Cǎlin
ID - 1691
T2 - Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control
TI - Temporal logic motion planning using POMDPs with parity objectives: Case study paper
ER -
TY - CONF
AB - Computing an approximation of the reachable states of a hybrid system is a challenge, mainly because overapproximating the solutions of ODEs with a finite number of sets does not scale well. Using template polyhedra can greatly reduce the computational complexity, since it replaces complex operations on sets with a small number of optimization problems. However, the use of templates may make the over-approximation too conservative. Spurious transitions, which are falsely considered reachable, are particularly detrimental to performance and accuracy, and may exacerbate the state explosion problem. In this paper, we examine how spurious transitions can be avoided with minimal computational effort. To this end, detecting spurious transitions is reduced to the well-known problem of showing that two convex sets are disjoint by finding a hyperplane that separates them. We generalize this to owpipes by considering hyperplanes that evolve with time in correspondence to the dynamics of the system. The approach is implemented in the model checker SpaceEx and demonstrated on examples.
AU - Frehse, Goran
AU - Bogomolov, Sergiy
AU - Greitschus, Marius
AU - Strump, Thomas
AU - Podelski, Andreas
ID - 1692
SN - 978-1-4503-3433-4
T2 - Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control
TI - Eliminating spurious transitions in reachability with support functions
ER -
TY - JOUR
AB - Quantum interference between energetically close states is theoretically investigated, with the state structure being observed via laser spectroscopy. In this work, we focus on hyperfine states of selected hydrogenic muonic isotopes, and on how quantum interference affects the measured Lamb shift. The process of photon excitation and subsequent photon decay is implemented within the framework of nonrelativistic second-order perturbation theory. Due to its experimental interest, calculations are performed for muonic hydrogen, deuterium, and helium-3. We restrict our analysis to the case of photon scattering by incident linear polarized photons and the polarization of the scattered photons not being observed. We conclude that while quantum interference effects can be safely neglected in muonic hydrogen and helium-3, in the case of muonic deuterium there are resonances with close proximity, where quantum interference effects can induce shifts up to a few percent of the linewidth, assuming a pointlike detector. However, by taking into account the geometry of the setup used by the CREMA collaboration, this effect is reduced to less than 0.2% of the linewidth in all possible cases, which makes it irrelevant at the present level of accuracy. © 2015 American Physical Society.
AU - Amaro, Pedro
AU - Franke, Beatrice
AU - Krauth, Julian
AU - Diepold, Marc
AU - Fratini, Filippo
AU - Safari, Laleh
AU - Machado, Jorge
AU - Antognini, Aldo
AU - Kottmann, Franz
AU - Indelicato, Paul
AU - Pohl, Randolf
AU - Santos, José
ID - 1693
IS - 2
JF - Physical Review A
TI - Quantum interference effects in laser spectroscopy of muonic hydrogen, deuterium, and helium-3
VL - 92
ER -
TY - JOUR
AB -
We introduce quantitative timed refinement and timed simulation (directed) metrics, incorporating zenoness checks, for timed systems. These metrics assign positive real numbers which quantify the timing mismatches between two timed systems, amongst non-zeno runs. We quantify timing mismatches in three ways: (1) the maximal timing mismatch that can arise, (2) the “steady-state” maximal timing mismatches, where initial transient timing mismatches are ignored; and (3) the (long-run) average timing mismatches amongst two systems. These three kinds of mismatches constitute three important types of timing differences. Our event times are the global times, measured from the start of the system execution, not just the time durations of individual steps. We present algorithms over timed automata for computing the three quantitative simulation distances to within any desired degree of accuracy. In order to compute the values of the quantitative simulation distances, we use a game theoretic formulation. We introduce two new kinds of objectives for two player games on finite-state game graphs: (1) eventual debit-sum level objectives, and (2) average debit-sum level objectives. We present algorithms for computing the optimal values for these objectives in graph games, and then use these algorithms to compute the values of the timed simulation distances over timed automata.
AU - Chatterjee, Krishnendu
AU - Prabhu, Vinayak
ID - 1694
IS - 9
JF - IEEE Transactions on Automatic Control
TI - Quantitative temporal simulation and refinement distances for timed systems
VL - 60
ER -
TY - JOUR
AB - We give a comprehensive introduction into a diagrammatic method that allows for the evaluation of Gutzwiller wave functions in finite spatial dimensions. We discuss in detail some numerical schemes that turned out to be useful in the real-space evaluation of the diagrams. The method is applied to the problem of d-wave superconductivity in a two-dimensional single-band Hubbard model. Here, we discuss in particular the role of long-range contributions in our diagrammatic expansion. We further reconsider our previous analysis on the kinetic energy gain in the superconducting state.
AU - Kaczmarczyk, Jan
AU - Schickling, Tobias
AU - Bünemann, Jörg
ID - 1695
IS - 9
JF - Physica Status Solidi (B): Basic Solid State Physics
TI - Evaluation techniques for Gutzwiller wave functions in finite dimensions
VL - 252
ER -
TY - JOUR
AB - The recently proposed diagrammatic expansion (DE) technique for the full Gutzwiller wave function (GWF) is applied to the Anderson lattice model. This approach allows for a systematic evaluation of the expectation values with full Gutzwiller wave function in finite-dimensional systems. It introduces results extending in an essential manner those obtained by means of the standard Gutzwiller approximation (GA), which is variationally exact only in infinite dimensions. Within the DE-GWF approach we discuss the principal paramagnetic properties and their relevance to heavy-fermion systems. We demonstrate the formation of an effective, narrow f band originating from atomic f-electron states and subsequently interpret this behavior as a direct itineracy of f electrons; it represents a combined effect of both the hybridization and the correlations induced by the Coulomb repulsive interaction. Such a feature is absent on the level of GA, which is equivalent to the zeroth order of our expansion. Formation of the hybridization- and electron-concentration-dependent narrow f band rationalizes the common assumption of such dispersion of f levels in the phenomenological modeling of the band structure of CeCoIn5. Moreover, it is shown that the emerging f-electron direct itineracy leads in a natural manner to three physically distinct regimes within a single model that are frequently discussed for 4f- or 5f-electron compounds as separate model situations. We identify these regimes as (i) the mixed-valence regime, (ii) Kondo/almost-Kondo insulating regime, and (iii) the Kondo-lattice limit when the f-electron occupancy is very close to the f-state half filling, ⟨nˆf⟩→1. The nonstandard features of the emerging correlated quantum liquid state are stressed.
AU - Wysokiński, Marcin
AU - Kaczmarczyk, Jan
AU - Spałek, Jozef
ID - 1696
IS - 12
JF - Physical Review B
TI - Gutzwiller wave function solution for Anderson lattice model: Emerging universal regimes of heavy quasiparticle states
VL - 92
ER -
TY - JOUR
AB - Motion tracking is a challenge the visual system has to solve by reading out the retinal population. It is still unclear how the information from different neurons can be combined together to estimate the position of an object. Here we recorded a large population of ganglion cells in a dense patch of salamander and guinea pig retinas while displaying a bar moving diffusively. We show that the bar’s position can be reconstructed from retinal activity with a precision in the hyperacuity regime using a linear decoder acting on 100+ cells. We then took advantage of this unprecedented precision to explore the spatial structure of the retina’s population code. The classical view would have suggested that the firing rates of the cells form a moving hill of activity tracking the bar’s position. Instead, we found that most ganglion cells in the salamander fired sparsely and idiosyncratically, so that their neural image did not track the bar. Furthermore, ganglion cell activity spanned an area much larger than predicted by their receptive fields, with cells coding for motion far in their surround. As a result, population redundancy was high, and we could find multiple, disjoint subsets of neurons that encoded the trajectory with high precision. This organization allows for diverse collections of ganglion cells to represent high-accuracy motion information in a form easily read out by downstream neural circuits.
AU - Marre, Olivier
AU - Botella Soler, Vicente
AU - Simmons, Kristina
AU - Mora, Thierry
AU - Tkacik, Gasper
AU - Berry, Michael
ID - 1697
IS - 7
JF - PLoS Computational Biology
TI - High accuracy decoding of dynamical motion from a large retinal population
VL - 11
ER -