TY - JOUR
AB - In the present note we announce a proof of a strong form of Arnold diffusion for smooth convex Hamiltonian systems. Let ${\mathbb T}^2$ be a 2-dimensional torus and B2 be the unit ball around the origin in ${\mathbb R}^2$ . Fix ρ > 0. Our main result says that for a 'generic' time-periodic perturbation of an integrable system of two degrees of freedom $H_0(p)+\varepsilon H_1(\theta,p,t),\quad \ \theta\in {\mathbb T}^2,\ p\in B^2,\ t\in {\mathbb T}={\mathbb R}/{\mathbb Z}$ , with a strictly convex H0, there exists a ρ-dense orbit (θε, pε, t)(t) in ${\mathbb T}^2 \times B^2 \times {\mathbb T}$ , namely, a ρ-neighborhood of the orbit contains ${\mathbb T}^2 \times B^2 \times {\mathbb T}$ .
Our proof is a combination of geometric and variational methods. The fundamental elements of the construction are the usage of crumpled normally hyperbolic invariant cylinders from [9], flower and simple normally hyperbolic invariant manifolds from [36] as well as their kissing property at a strong double resonance. This allows us to build a 'connected' net of three-dimensional normally hyperbolic invariant manifolds. To construct diffusing orbits along this net we employ a version of the Mather variational method [41] equipped with weak KAM theory [28], proposed by Bernard in [7].
AU - Kaloshin, Vadim
AU - Zhang, K
ID - 8498
IS - 8
JF - Nonlinearity
KW - Mathematical Physics
KW - General Physics and Astronomy
KW - Applied Mathematics
KW - Statistical and Nonlinear Physics
SN - 0951-7715
TI - Arnold diffusion for smooth convex systems of two and a half degrees of freedom
VL - 28
ER -
TY - JOUR
AB - In this note, we consider the dynamics associated to a perturbation of an integrable Hamiltonian system in action-angle coordinates in any number of degrees of freedom and we prove the following result of ``micro-diffusion'': under generic assumptions on $ h$ and $ f$, there exists an orbit of the system for which the drift of its action variables is at least of order $ \sqrt {\varepsilon }$, after a time of order $ \sqrt {\varepsilon }^{-1}$. The assumptions, which are essentially minimal, are that there exists a resonant point for $ h$ and that the corresponding averaged perturbation is non-constant. The conclusions, although very weak when compared to usual instability phenomena, are also essentially optimal within this setting.
AU - Bounemoura, Abed
AU - Kaloshin, Vadim
ID - 8495
IS - 4
JF - Proceedings of the American Mathematical Society
SN - 0002-9939
TI - A note on micro-instability for Hamiltonian systems close to integrable
VL - 144
ER -
TY - JOUR
AB - We consider the cubic defocusing nonlinear Schrödinger equation in the two dimensional torus. Fix s>1. Recently Colliander, Keel, Staffilani, Tao and Takaoka proved the existence of solutions with s-Sobolev norm growing in time.
We establish the existence of solutions with polynomial time estimates. More exactly, there is c>0 such that for any K≫1 we find a solution u and a time T such that ∥u(T)∥Hs≥K∥u(0)∥Hs. Moreover, the time T satisfies the polynomial bound 0