TY - JOUR AB - This paper presents a numerical study of a Capillary Pumped Loop evaporator. A two-dimensional unsteady mathematical model of a flat evaporator is developed to simulate heat and mass transfer in unsaturated porous wick with phase change. The liquid-vapor phase change inside the porous wick is described by Langmuir's law. The governing equations are solved by the Finite Element Method. The results are presented then for a sintered nickel wick and methanol as a working fluid. The heat flux required to the transition from the all-liquid wick to the vapor-liquid wick is calculated. The dynamic and thermodynamic behavior of the working fluid in the capillary structure are discussed in this paper. AU - Boubaker, Riadh AU - Platel, Vincent AU - Bergès, Alexis AU - Bancelin, Mathieu AU - Hannezo, Edouard B ID - 924 JF - Applied Thermal Engineering TI - Dynamic model of heat and mass transfer in an unsaturated porous wick of capillary pumped loop VL - 76 ER - TY - JOUR AB - An essential question of morphogenesis is how patterns arise without preexisting positional information, as inspired by Turing. In the past few years, cytoskeletal flows in the cell cortex have been identified as a key mechanism of molecular patterning at the subcellular level. Theoretical and in vitro studies have suggested that biological polymers such as actomyosin gels have the property to self-organize, but the applicability of this concept in an in vivo setting remains unclear. Here, we report that the regular spacing pattern of supracellular actin rings in the Drosophila tracheal tubule is governed by a self-organizing principle. We propose a simple biophysical model where pattern formation arises from the interplay of myosin contractility and actin turnover. We validate the hypotheses of the model using photobleaching experiments and report that the formation of actin rings is contractility dependent. Moreover, genetic and pharmacological perturbations of the physical properties of the actomyosin gel modify the spacing of the pattern, as the model predicted. In addition, our model posited a role of cortical friction in stabilizing the spacing pattern of actin rings. Consistently, genetic depletion of apical extracellular matrix caused strikingly dynamic movements of actin rings, mirroring our model prediction of a transition from steady to chaotic actin patterns at low cortical friction. Our results therefore demonstrate quantitatively that a hydrodynamical instability of the actin cortex can trigger regular pattern formation and drive morphogenesis in an in vivo setting. AU - Hannezo, Edouard B AU - Dong, Bo AU - Recho, Pierre AU - Joanny, Jean AU - Hayashi, Shigeo ID - 929 IS - 28 JF - PNAS TI - Cortical instability drives periodic supracellular actin pattern formation in epithelial tubes VL - 112 ER - TY - JOUR AB - Although collective cell motion plays an important role, for example during wound healing, embryogenesis, or cancer progression, the fundamental rules governing this motion are still not well understood, in particular at high cell density. We study here the motion of human bronchial epithelial cells within a monolayer, over long times. We observe that, as the monolayer ages, the cells slow down monotonously, while the velocity correlation length first increases as the cells slow down but eventually decreases at the slowest motions. By comparing experiments, analytic model, and detailed particle-based simulations, we shed light on this biological amorphous solidification process, demonstrating that the observed dynamics can be explained as a consequence of the combined maturation and strengthening of cell-cell and cell-substrate adhesions. Surprisingly, the increase of cell surface density due to proliferation is only secondary in this process. This analysis is confirmed with two other cell types. The very general relations between the mean cell velocity and velocity correlation lengths, which apply for aggregates of self-propelled particles, as well as motile cells, can possibly be used to discriminate between various parameter changes in vivo, from noninvasive microscopy data. AU - García, Simón AU - Hannezo, Edouard B AU - Elgeti, Jens AU - Joanny, Jean AU - Silberzan, Pascal AU - Gov, Nir ID - 933 IS - 50 JF - PNAS TI - Physics of active jamming during collective cellular motion in a monolayer VL - 112 ER - TY - JOUR AB - Genomic imprinting, an inherently epigenetic phenomenon defined by parent of origin-dependent gene expression, is observed in mammals and flowering plants. Genome-scale surveys of imprinted expression and the underlying differential epigenetic marks have led to the discovery of hundreds of imprinted plant genes and confirmed DNA and histone methylation as key regulators of plant imprinting. However, the biological roles of the vast majority of imprinted plant genes are unknown, and the evolutionary forces shaping plant imprinting remain rather opaque. Here, we review the mechanisms of plant genomic imprinting and discuss theories of imprinting evolution and biological significance in light of recent findings. AU - Rodrigues, Jessica A. AU - Zilberman, Daniel ID - 9532 IS - 24 JF - Genes and Development SN - 0890-9369 TI - Evolution and function of genomic imprinting in plants VL - 29 ER - TY - JOUR AB - The size dependence of the strength of nano- and micron-sized crystals is studied using a new simulation approach in which the dynamics of the density functions of dislocations are modeled. Since any quantity of dislocations can be represented by a density, this approach can handle large systems containing large quantities of dislocations, which may handicap discrete dislocation dynamics schemes due to the excessive computation time involved. For this reason, pillar sizes spanning a large range, from the sub-micron to micron regimes, can be simulated. The simulation results reveal the power-law relationship between strength and specimen size up to a certain size, beyond which the strength varies much more slowly with size. For specimens smaller than ~4000b, their strength is found to be controlled by the dislocation depletion condition, in which the total dislocation density remains almost constant throughout the loading process. In specimens larger than ~4000b, the initial dislocation distribution is of critical importance since the presence of dislocation entanglements is found to obstruct deformation in the neighboring regions within a distance of ~2000b. This length scale suggests that the effects of dense dislocation clusters are greater in intermediate-sized specimens (e.g. 4000b and 8000b) than in larger specimens (e.g. 16 000b), according to the weakest-link concept. AU - Leung, P S S AU - Leung, H S AU - Cheng, Bingqing AU - Ngan, A H W ID - 9684 IS - 3 JF - Modelling and Simulation in Materials Science and Engineering SN - 0965-0393 TI - Size dependence of yield strength simulated by a dislocation-density function dynamics approach VL - 23 ER - TY - JOUR AB - Deposits of misfolded proteins in the human brain are associated with the development of many neurodegenerative diseases. Recent studies show that these proteins have common traits even at the monomer level. Among them, a polyglutamine region that is present in huntingtin is known to exhibit a correlation between the length of the chain and the severity as well as the earliness of the onset of Huntington disease. Here, we apply bias exchange molecular dynamics to generate structures of polyglutamine expansions of several lengths and characterize the resulting independent conformations. We compare the properties of these conformations to those of the standard proteins, as well as to other homopolymeric tracts. We find that, similar to the previously studied polyvaline chains, the set of possible transient folds is much broader than the set of known-to-date folds, although the conformations have different structures. We show that the mechanical stability is not related to any simple geometrical characteristics of the structures. We demonstrate that long polyglutamine expansions result in higher mechanical stability than the shorter ones. They also have a longer life span and are substantially more prone to form knotted structures. The knotted region has an average length of 35 residues, similar to the typical threshold for most polyglutamine-related diseases. Similarly, changes in shape and mechanical stability appear once the total length of the peptide exceeds this threshold of 35 glutamine residues. We suggest that knotted conformers may also harm the cellular machinery and thus lead to disease. AU - Gómez Sicilia, Àngel AU - Sikora, Mateusz K AU - Cieplak, Marek AU - Carrión Vázquez, Mariano ID - 1566 IS - 10 JF - PLoS Computational Biology TI - An exploration of the universe of polyglutamine structures VL - 11 ER - TY - GEN AU - Tugrul, Murat AU - Paixao, Tiago AU - Barton, Nicholas H AU - Tkačik, Gašper ID - 9712 TI - Other fitness models for comparison & for interacting TFBSs ER - TY - GEN AU - Gómez Sicilia, Àngel AU - Sikora, Mateusz K AU - Cieplak, Marek AU - Carrión Vázquez, Mariano ID - 9714 TI - An exploration of the universe of polyglutamine structures - submission to PLOS journals ER - TY - GEN AU - Trubenova, Barbora AU - Novak, Sebastian AU - Hager, Reinmar ID - 9715 TI - Mathematical inference of the results ER - TY - JOUR AB - The fitness effects of symbionts on their hosts can be context-dependent, with usually benign symbionts causing detrimental effects when their hosts are stressed, or typically parasitic symbionts providing protection towards their hosts (e.g. against pathogen infection). Here, we studied the novel association between the invasive garden ant Lasius neglectus and its fungal ectosymbiont Laboulbenia formicarum for potential costs and benefits. We tested ants with different Laboulbenia levels for their survival and immunity under resource limitation and exposure to the obligate killing entomopathogen Metarhizium brunneum. While survival of L. neglectus workers under starvation was significantly decreased with increasing Laboulbenia levels, host survival under Metarhizium exposure increased with higher levels of the ectosymbiont, suggesting a symbiont-mediated anti-pathogen protection, which seems to be driven mechanistically by both improved sanitary behaviours and an upregulated immune system. Ants with high Laboulbenia levels showed significantly longer self-grooming and elevated expression of immune genes relevant for wound repair and antifungal responses (β-1,3-glucan binding protein, Prophenoloxidase), compared with ants carrying low Laboulbenia levels. This suggests that the ectosymbiont Laboulbenia formicarum weakens its ant host by either direct resource exploitation or the costs of an upregulated behavioural and immunological response, which, however, provides a prophylactic protection upon later exposure to pathogens. AU - Konrad, Matthias AU - Grasse, Anna V AU - Tragust, Simon AU - Cremer, Sylvia ID - 1993 IS - 1799 JF - Proceedings of the Royal Society of London Series B Biological Sciences SN - 0962-8452 TI - Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host VL - 282 ER -