TY - GEN AB - To prevent epidemics, insect societies have evolved collective disease defences that are highly effective at curing exposed individuals and limiting disease transmission to healthy group members. Grooming is an important sanitary behaviour—either performed towards oneself (self-grooming) or towards others (allogrooming)—to remove infectious agents from the body surface of exposed individuals, but at the risk of disease contraction by the groomer. We use garden ants (Lasius neglectus) and the fungal pathogen Metarhizium as a model system to study how pathogen presence affects self-grooming and allogrooming between exposed and healthy individuals. We develop an epidemiological SIS model to explore how experimentally observed grooming patterns affect disease spread within the colony, thereby providing a direct link between the expression and direction of sanitary behaviours, and their effects on colony-level epidemiology. We find that fungus-exposed ants increase self-grooming, while simultaneously decreasing allogrooming. This behavioural modulation seems universally adaptive and is predicted to contain disease spread in a great variety of host–pathogen systems. In contrast, allogrooming directed towards pathogen-exposed individuals might both increase and decrease disease risk. Our model reveals that the effect of allogrooming depends on the balance between pathogen infectiousness and efficiency of social host defences, which are likely to vary across host–pathogen systems. AU - Theis, Fabian AU - Ugelvig, Line V AU - Marr, Carsten AU - Cremer, Sylvia ID - 9721 TI - Data from: Opposing effects of allogrooming on disease transmission in ant societies ER - TY - GEN AU - Friedlander, Tamar AU - Mayo, Avraham E. AU - Tlusty, Tsvi AU - Alon, Uri ID - 9718 TI - Supporting information text ER - TY - JOUR AB - We present a software platform for reconstructing and analyzing the growth of a plant root system from a time-series of 3D voxelized shapes. It aligns the shapes with each other, constructs a geometric graph representation together with the function that records the time of growth, and organizes the branches into a hierarchy that reflects the order of creation. The software includes the automatic computation of structural and dynamic traits for each root in the system enabling the quantification of growth on fine-scale. These are important advances in plant phenotyping with applications to the study of genetic and environmental influences on growth. AU - Symonova, Olga AU - Topp, Christopher AU - Edelsbrunner, Herbert ID - 1793 IS - 6 JF - PLoS One TI - DynamicRoots: A software platform for the reconstruction and analysis of growing plant roots VL - 10 ER - TY - GEN AU - Symonova, Olga AU - Topp, Christopher AU - Edelsbrunner, Herbert ID - 9737 TI - Root traits computed by DynamicRoots for the maize root shown in fig 2 ER - TY - JOUR AB - Bow-tie or hourglass structure is a common architectural feature found in many biological systems. A bow-tie in a multi-layered structure occurs when intermediate layers have much fewer components than the input and output layers. Examples include metabolism where a handful of building blocks mediate between multiple input nutrients and multiple output biomass components, and signaling networks where information from numerous receptor types passes through a small set of signaling pathways to regulate multiple output genes. Little is known, however, about how bow-tie architectures evolve. Here, we address the evolution of bow-tie architectures using simulations of multi-layered systems evolving to fulfill a given input-output goal. We find that bow-ties spontaneously evolve when the information in the evolutionary goal can be compressed. Mathematically speaking, bow-ties evolve when the rank of the input-output matrix describing the evolutionary goal is deficient. The maximal compression possible (the rank of the goal) determines the size of the narrowest part of the network—that is the bow-tie. A further requirement is that a process is active to reduce the number of links in the network, such as product-rule mutations, otherwise a non-bow-tie solution is found in the evolutionary simulations. This offers a mechanism to understand a common architectural principle of biological systems, and a way to quantitate the effective rank of the goals under which they evolved. AU - Friedlander, Tamar AU - Mayo, Avraham AU - Tlusty, Tsvi AU - Alon, Uri ID - 1827 IS - 3 JF - PLoS Computational Biology TI - Evolution of bow-tie architectures in biology VL - 11 ER - TY - JOUR AB - Background: Indirect genetic effects (IGEs) occur when genes expressed in one individual alter the expression of traits in social partners. Previous studies focused on the evolutionary consequences and evolutionary dynamics of IGEs, using equilibrium solutions to predict phenotypes in subsequent generations. However, whether or not such steady states may be reached may depend on the dynamics of interactions themselves. Results: In our study, we focus on the dynamics of social interactions and indirect genetic effects and investigate how they modify phenotypes over time. Unlike previous IGE studies, we do not analyse evolutionary dynamics; rather we consider within-individual phenotypic changes, also referred to as phenotypic plasticity. We analyse iterative interactions, when individuals interact in a series of discontinuous events, and investigate the stability of steady state solutions and the dependence on model parameters, such as population size, strength, and the nature of interactions. We show that for interactions where a feedback loop occurs, the possible parameter space of interaction strength is fairly limited, affecting the evolutionary consequences of IGEs. We discuss the implications of our results for current IGE model predictions and their limitations. AU - Trubenova, Barbora AU - Novak, Sebastian AU - Hager, Reinmar ID - 1809 IS - 5 JF - PLoS One TI - Indirect genetic effects and the dynamics of social interactions VL - 10 ER - TY - GEN AU - Trubenova, Barbora AU - Novak, Sebastian AU - Hager, Reinmar ID - 9772 TI - Description of the agent based simulations ER - TY - GEN AU - Friedlander, Tamar AU - Mayo, Avraham E. AU - Tlusty, Tsvi AU - Alon, Uri ID - 9773 TI - Evolutionary simulation code ER - TY - JOUR AB - The tunability of topological surface states and controllable opening of the Dirac gap are of fundamental and practical interest in the field of topological materials. In the newly discovered topological crystalline insulators (TCIs), theory predicts that the Dirac node is protected by a crystalline symmetry and that the surface state electrons can acquire a mass if this symmetry is broken. Recent studies have detected signatures of a spontaneously generated Dirac gap in TCIs; however, the mechanism of mass formation remains elusive. In this work, we present scanning tunnelling microscopy (STM) measurements of the TCI Pb 1â'x Sn x Se for a wide range of alloy compositions spanning the topological and non-topological regimes. The STM topographies reveal a symmetry-breaking distortion on the surface, which imparts mass to the otherwise massless Dirac electrons-a mechanism analogous to the long sought-after Higgs mechanism in particle physics. Interestingly, the measured Dirac gap decreases on approaching the trivial phase, whereas the magnitude of the distortion remains nearly constant. Our data and calculations reveal that the penetration depth of Dirac surface states controls the magnitude of the Dirac mass. At the limit of the critical composition, the penetration depth is predicted to go to infinity, resulting in zero mass, consistent with our measurements. Finally, we discover the existence of surface states in the non-topological regime, which have the characteristics of gapped, double-branched Dirac fermions and could be exploited in realizing superconductivity in these materials. AU - Zeljkovic, Ilija AU - Okada, Yoshinori AU - Maksym Serbyn AU - Sankar, Raman AU - Walkup, Daniel AU - Zhou, Wenwen AU - Liu, Junwei AU - Chang, Guoqing AU - Wang, Yungjui AU - Hasan, Md Z AU - Chou, Fangcheng AU - Lin, Hsin AU - Bansil, Arun AU - Fu, Liang AU - Madhavan, Vidya ID - 981 IS - 3 JF - Nature Materials TI - Dirac mass generation from crystal symmetry breaking on the surfaces of topological crystalline insulators VL - 14 ER - TY - JOUR AB - We propose a new approach to probing ergodicity and its breakdown in one-dimensional quantum manybody systems based on their response to a local perturbation. We study the distribution of matrix elements of a local operator between the system's eigenstates, finding a qualitatively different behavior in the manybody localized (MBL) and ergodic phases. To characterize how strongly a local perturbation modifies the eigenstates, we introduce the parameter g(L) = (In (Vnm/δ)) which represents the disorder-averaged ratio of a typical matrix element of a local operator V to energy level spacing δ this parameter is reminiscent of the Thouless conductance in the single-particle localization. We show that the parameter g(L) decreases with system size L in the MBL phase and grows in the ergodic phase. We surmise that the delocalization transition occurs when g(L) is independent of system size, g(L)=gc ~ 1. We illustrate our approach by studying the many-body localization transition and resolving the many-body mobility edge in a disordered one-dimensional XXZ spin-1=2 chain using exact diagonalization and time-evolving block-decimation methods. Our criterion for the MBL transition gives insights into microscopic details of transition. Its direct physical consequences, in particular, logarithmically slow transport at the transition and extensive entanglement entropy of the eigenstates, are consistent with recent renormalization-group predictions. AU - Maksym Serbyn AU - Papić, Zlatko AU - Abanin, Dmitry A ID - 982 IS - 4 JF - Physical Review X TI - Criterion for many-body localization-delocalization phase transition VL - 5 ER -