TY - JOUR AB - Spatial regulation of the plant hormone indole-3-acetic acid (IAA, or auxin) is essential for plant development. Auxin gradient establishment is mediated by polarly localized auxin transporters, including PIN-FORMED (PIN) proteins. Their localization and abundance at the plasma membrane are tightly regulated by endomembrane machinery, especially the endocytic and recycling pathways mediated by the ADP ribosylation factor guanine nucleotide exchange factor (ARF-GEF) GNOM. We assessed the role of the early secretory pathway in establishing PIN1 polarity in Arabidopsis thaliana by pharmacological and genetic approaches. We identified the compound endosidin 8 (ES8), which selectively interferes with PIN1 basal polarity without altering the polarity of apical proteins. ES8 alters the auxin distribution pattern in the root and induces a strong developmental phenotype, including reduced root length. The ARF-GEF- defective mutants gnom-like 1 ( gnl1-1) and gnom ( van7) are significantly resistant to ES8. The compound does not affect recycling or vacuolar trafficking of PIN1 but leads to its intracellular accumulation, resulting in loss of PIN1 basal polarity at the plasma membrane. Our data confirm a role for GNOM in endoplasmic reticulum (ER) - Golgi trafficking and reveal that a GNL1/GNOM-mediated early secretory pathway selectively regulates PIN1 basal polarity establishment in a manner essential for normal plant development. AU - Doyle, Siamsa AU - Haegera, Ash AU - Vain, Thomas AU - Rigala, Adeline AU - Viotti, Corrado AU - Łangowskaa, Małgorzata AU - Maa, Qian AU - Friml, Jirí AU - Raikhel, Natasha AU - Hickse, Glenn AU - Robert, Stéphanie ID - 1569 IS - 7 JF - PNAS TI - An early secretory pathway mediated by gnom-like 1 and gnom is essential for basal polarity establishment in Arabidopsis thaliana VL - 112 ER - TY - JOUR AB - Grounding autonomous behavior in the nervous system is a fundamental challenge for neuroscience. In particular, self-organized behavioral development provides more questions than answers. Are there special functional units for curiosity, motivation, and creativity? This paper argues that these features can be grounded in synaptic plasticity itself, without requiring any higher-level constructs. We propose differential extrinsic plasticity (DEP) as a new synaptic rule for self-learning systems and apply it to a number of complex robotic systems as a test case. Without specifying any purpose or goal, seemingly purposeful and adaptive rhythmic behavior is developed, displaying a certain level of sensorimotor intelligence. These surprising results require no systemspecific modifications of the DEP rule. They rather arise from the underlying mechanism of spontaneous symmetry breaking,which is due to the tight brain body environment coupling. The new synaptic rule is biologically plausible and would be an interesting target for neurobiological investigation. We also argue that this neuronal mechanism may have been a catalyst in natural evolution. AU - Der, Ralf AU - Martius, Georg S ID - 1570 IS - 45 JF - PNAS TI - Novel plasticity rule can explain the development of sensorimotor intelligence VL - 112 ER - TY - JOUR AB - Epistatic interactions can frustrate and shape evolutionary change. Indeed, phenotypes may fail to evolve when essential mutations are only accessible through positive selection if they are fixed simultaneously. How environmental variability affects such constraints is poorly understood. Here, we studied genetic constraints in fixed and fluctuating environments using the Escherichia coli lac operon as a model system for genotype-environment interactions. We found that, in different fixed environments, all trajectories that were reconstructed by applying point mutations within the transcription factor-operator interface became trapped at suboptima, where no additional improvements were possible. Paradoxically, repeated switching between these same environments allows unconstrained adaptation by continuous improvements. This evolutionary mode is explained by pervasive cross-environmental tradeoffs that reposition the peaks in such a way that trapped genotypes can repeatedly climb ascending slopes and hence, escape adaptive stasis. Using a Markov approach, we developed a mathematical framework to quantify the landscape-crossing rates and show that this ratchet-like adaptive mechanism is robust in a wide spectrum of fluctuating environments. Overall, this study shows that genetic constraints can be overcome by environmental change and that crossenvironmental tradeoffs do not necessarily impede but also, can facilitate adaptive evolution. Because tradeoffs and environmental variability are ubiquitous in nature, we speculate this evolutionary mode to be of general relevance. AU - De Vos, Marjon AU - Dawid, Alexandre AU - Šunderlíková, Vanda AU - Tans, Sander ID - 1571 IS - 48 JF - PNAS TI - Breaking evolutionary constraint with a tradeoff ratchet VL - 112 ER - TY - JOUR AB - We consider the quantum ferromagnetic Heisenberg model in three dimensions, for all spins S ≥ 1/2. We rigorously prove the validity of the spin-wave approximation for the excitation spectrum, at the level of the first non-trivial contribution to the free energy at low temperatures. Our proof comes with explicit, constructive upper and lower bounds on the error term. It uses in an essential way the bosonic formulation of the model in terms of the Holstein-Primakoff representation. In this language, the model describes interacting bosons with a hard-core on-site repulsion and a nearest-neighbor attraction. This attractive interaction makes the lower bound on the free energy particularly tricky: the key idea there is to prove a differential inequality for the two-particle density, which is thereby shown to be smaller than the probability density of a suitably weighted two-particle random process on the lattice. AU - Correggi, Michele AU - Giuliani, Alessandro AU - Seiringer, Robert ID - 1572 IS - 1 JF - Communications in Mathematical Physics TI - Validity of the spin-wave approximation for the free energy of the Heisenberg ferromagnet VL - 339 ER - TY - JOUR AB - We present a new, simpler proof of the unconditional uniqueness of solutions to the cubic Gross-Pitaevskii hierarchy in ℝ3. One of the main tools in our analysis is the quantum de Finetti theorem. Our uniqueness result is equivalent to the one established in the celebrated works of Erdos, Schlein, and Yau. AU - Chen, Thomas AU - Hainzl, Christian AU - Pavlović, Nataša AU - Seiringer, Robert ID - 1573 IS - 10 JF - Communications on Pure and Applied Mathematics TI - Unconditional uniqueness for the cubic gross pitaevskii hierarchy via quantum de finetti VL - 68 ER - TY - JOUR AB - Synapsins (Syns) are an evolutionarily conserved family of presynaptic proteins crucial for the fine-tuning of synaptic function. A large amount of experimental evidences has shown that Syns are involved in the development of epileptic phenotypes and several mutations in Syn genes have been associated with epilepsy in humans and animal models. Syn mutations induce alterations in circuitry and neurotransmitter release, differentially affecting excitatory and inhibitory synapses, thus causing an excitation/inhibition imbalance in network excitability toward hyperexcitability that may be a determinant with regard to the development of epilepsy. Another approach to investigate epileptogenic mechanisms is to understand how silencing Syn affects the cellular behavior of single neurons and is associated with the hyperexcitable phenotypes observed in epilepsy. Here, we examined the functional effects of antisense-RNA inhibition of Syn expression on individually identified and isolated serotonergic cells of the Helix land snail. We found that Helix synapsin silencing increases cell excitability characterized by a slightly depolarized resting membrane potential, decreases the rheobase, reduces the threshold for action potential (AP) firing and increases the mean and instantaneous firing rates, with respect to control cells. The observed increase of Ca2+ and BK currents in Syn-silenced cells seems to be related to changes in the shape of the AP waveform. These currents sustain the faster spiking in Syn-deficient cells by increasing the after hyperpolarization and limiting the Na+ and Ca2+ channel inactivation during repetitive firing. This in turn speeds up the depolarization phase by reaching the AP threshold faster. Our results provide evidence that Syn silencing increases intrinsic cell excitability associated with increased Ca2+ and Ca2+-dependent BK currents in the absence of excitatory or inhibitory inputs. AU - Brenes, Oscar AU - Vandael, David H AU - Carbone, Emilio AU - Montarolo, Pier AU - Ghirardi, Mirella ID - 1580 JF - Neuroscience TI - Knock-down of synapsin alters cell excitability and action potential waveform by potentiating BK and voltage gated Ca2 currents in Helix serotonergic neurons VL - 311 ER - TY - JOUR AB - Contrary to the pattern seen in mammalian sex chromosomes, where most Y-linked genes have X-linked homologs, the Drosophila X and Y chromosomes appear to be unrelated. Most of the Y-linked genes have autosomal paralogs, so autosome-to-Y transposition must be the main source of Drosophila Y-linked genes. Here we show how these genes were acquired. We found a previously unidentified gene (flagrante delicto Y, FDY) that originated from a recent duplication of the autosomal gene vig2 to the Y chromosome of Drosophila melanogaster. Four contiguous genes were duplicated along with vig2, but they became pseudogenes through the accumulation of deletions and transposable element insertions, whereas FDY remained functional, acquired testis-specific expression, and now accounts for ∼20% of the vig2-like mRNA in testis. FDY is absent in the closest relatives of D. melanogaster, and DNA sequence divergence indicates that the duplication to the Y chromosome occurred ∼2 million years ago. Thus, FDY provides a snapshot of the early stages of the establishment of a Y-linked gene and demonstrates how the Drosophila Y has been accumulating autosomal genes. AU - Carvalho, Antonio AU - Vicoso, Beatriz AU - Russo, Claudia AU - Swenor, Bonnielin AU - Clark, Andrew ID - 1577 IS - 40 JF - PNAS TI - Birth of a new gene on the Y chromosome of Drosophila melanogaster VL - 112 ER - TY - JOUR AB - We show that the Galois group of any Schubert problem involving lines in projective space contains the alternating group. This constitutes the largest family of enumerative problems whose Galois groups have been largely determined. Using a criterion of Vakil and a special position argument due to Schubert, our result follows from a particular inequality among Kostka numbers of two-rowed tableaux. In most cases, a combinatorial injection proves the inequality. For the remaining cases, we use the Weyl integral formulas to obtain an integral formula for these Kostka numbers. This rewrites the inequality as an integral, which we estimate to establish the inequality. AU - Brooks, Christopher AU - Martin Del Campo Sanchez, Abraham AU - Sottile, Frank ID - 1579 IS - 6 JF - Transactions of the American Mathematical Society TI - Galois groups of Schubert problems of lines are at least alternating VL - 367 ER - TY - JOUR AB - We prove that the dual of the digital Voronoi diagram constructed by flooding the plane from the data points gives a geometrically and topologically correct dual triangulation. This provides the proof of correctness for recently developed GPU algorithms that outperform traditional CPU algorithms for constructing two-dimensional Delaunay triangulations. AU - Cao, Thanhtung AU - Edelsbrunner, Herbert AU - Tan, Tiowseng ID - 1578 IS - 7 JF - Computational Geometry TI - Triangulations from topologically correct digital Voronoi diagrams VL - 48 ER - TY - JOUR AB - In animal embryos, morphogen gradients determine tissue patterning and morphogenesis. Shyer et al. provide evidence that, during vertebrate gut formation, tissue folding generates graded activity of signals required for subsequent steps of gut growth and differentiation, thereby revealing an intriguing link between tissue morphogenesis and morphogen gradient formation. AU - Bollenbach, Mark Tobias AU - Heisenberg, Carl-Philipp J ID - 1581 IS - 3 JF - Cell TI - Gradients are shaping up VL - 161 ER -