@article{2035, abstract = {Considering a continuous self-map and the induced endomorphism on homology, we study the eigenvalues and eigenspaces of the latter. Taking a filtration of representations, we define the persistence of the eigenspaces, effectively introducing a hierarchical organization of the map. The algorithm that computes this information for a finite sample is proved to be stable, and to give the correct answer for a sufficiently dense sample. Results computed with an implementation of the algorithm provide evidence of its practical utility. }, author = {Edelsbrunner, Herbert and Jablonski, Grzegorz and Mrozek, Marian}, journal = {Foundations of Computational Mathematics}, number = {5}, pages = {1213 -- 1244}, publisher = {Springer}, title = {{The persistent homology of a self-map}}, doi = {10.1007/s10208-014-9223-y}, volume = {15}, year = {2015}, } @article{2034, abstract = {Opacity is a generic security property, that has been defined on (non-probabilistic) transition systems and later on Markov chains with labels. For a secret predicate, given as a subset of runs, and a function describing the view of an external observer, the value of interest for opacity is a measure of the set of runs disclosing the secret. We extend this definition to the richer framework of Markov decision processes, where non-deterministicchoice is combined with probabilistic transitions, and we study related decidability problems with partial or complete observation hypotheses for the schedulers. We prove that all questions are decidable with complete observation and ω-regular secrets. With partial observation, we prove that all quantitative questions are undecidable but the question whether a system is almost surely non-opaquebecomes decidable for a restricted class of ω-regular secrets, as well as for all ω-regular secrets under finite-memory schedulers.}, author = {Bérard, Béatrice and Chatterjee, Krishnendu and Sznajder, Nathalie}, journal = { Information Processing Letters}, number = {1}, pages = {52 -- 59}, publisher = {Elsevier}, title = {{Probabilistic opacity for Markov decision processes}}, doi = {10.1016/j.ipl.2014.09.001}, volume = {115}, year = {2015}, } @article{2085, abstract = {We study the spectrum of a large system of N identical bosons interacting via a two-body potential with strength 1/N. In this mean-field regime, Bogoliubov's theory predicts that the spectrum of the N-particle Hamiltonian can be approximated by that of an effective quadratic Hamiltonian acting on Fock space, which describes the fluctuations around a condensed state. Recently, Bogoliubov's theory has been justified rigorously in the case that the low-energy eigenvectors of the N-particle Hamiltonian display complete condensation in the unique minimizer of the corresponding Hartree functional. In this paper, we shall justify Bogoliubov's theory for the high-energy part of the spectrum of the N-particle Hamiltonian corresponding to (non-linear) excited states of the Hartree functional. Moreover, we shall extend the existing results on the excitation spectrum to the case of non-uniqueness and/or degeneracy of the Hartree minimizer. In particular, the latter covers the case of rotating Bose gases, when the rotation speed is large enough to break the symmetry and to produce multiple quantized vortices in the Hartree minimizer. }, author = {Nam, Phan and Seiringer, Robert}, journal = {Archive for Rational Mechanics and Analysis}, number = {2}, pages = {381 -- 417}, publisher = {Springer}, title = {{Collective excitations of Bose gases in the mean-field regime}}, doi = {10.1007/s00205-014-0781-6}, volume = {215}, year = {2015}, } @article{2166, abstract = {We consider the spectral statistics of large random band matrices on mesoscopic energy scales. We show that the correlation function of the local eigenvalue density exhibits a universal power law behaviour that differs from the Wigner-Dyson- Mehta statistics. This law had been predicted in the physics literature by Altshuler and Shklovskii in (Zh Eksp Teor Fiz (Sov Phys JETP) 91(64):220(127), 1986); it describes the correlations of the eigenvalue density in general metallic sampleswith weak disorder. Our result rigorously establishes the Altshuler-Shklovskii formulas for band matrices. In two dimensions, where the leading term vanishes owing to an algebraic cancellation, we identify the first non-vanishing term and show that it differs substantially from the prediction of Kravtsov and Lerner in (Phys Rev Lett 74:2563-2566, 1995). The proof is given in the current paper and its companion (Ann. H. Poincaré. arXiv:1309.5107, 2014). }, author = {Erdös, László and Knowles, Antti}, journal = {Communications in Mathematical Physics}, number = {3}, pages = {1365 -- 1416}, publisher = {Springer}, title = {{The Altshuler-Shklovskii formulas for random band matrices I: the unimodular case}}, doi = {10.1007/s00220-014-2119-5}, volume = {333}, year = {2015}, } @article{1832, abstract = {Linearizability of concurrent data structures is usually proved by monolithic simulation arguments relying on the identification of the so-called linearization points. Regrettably, such proofs, whether manual or automatic, are often complicated and scale poorly to advanced non-blocking concurrency patterns, such as helping and optimistic updates. In response, we propose a more modular way of checking linearizability of concurrent queue algorithms that does not involve identifying linearization points. We reduce the task of proving linearizability with respect to the queue specification to establishing four basic properties, each of which can be proved independently by simpler arguments. As a demonstration of our approach, we verify the Herlihy and Wing queue, an algorithm that is challenging to verify by a simulation proof. }, author = {Chakraborty, Soham and Henzinger, Thomas A and Sezgin, Ali and Vafeiadis, Viktor}, journal = {Logical Methods in Computer Science}, number = {1}, publisher = {International Federation of Computational Logic}, title = {{Aspect-oriented linearizability proofs}}, doi = {10.2168/LMCS-11(1:20)2015}, volume = {11}, year = {2015}, }