@article{11074, author = {Hatch, Emily M. and HETZER, Martin W}, issn = {0960-9822}, journal = {Current Biology}, keywords = {General Agricultural and Biological Sciences, General Biochemistry, Genetics and Molecular Biology}, number = {10}, pages = {PR397--R399}, publisher = {Elsevier}, title = {{Chromothripsis}}, doi = {10.1016/j.cub.2015.02.033}, volume = {25}, year = {2015}, } @article{11519, abstract = {Faint Lyα emitters become increasingly rarer toward the reionization epoch (z ∼ 6–7). However, observations from a very large (∼5 deg2) Lyα narrow-band survey at z = 6.6 show that this is not the case for the most luminous emitters, capable of ionizing their own local bubbles. Here we present follow-up observations of the two most luminous Lyα candidates in the COSMOS field: “MASOSA” and “CR7.” We used X-SHOOTER, SINFONI, and FORS2 on the Very Large Telescope, and DEIMOS on Keck, to confirm both candidates beyond any doubt. We find redshifts of z = 6.541 and z = 6.604 for “MASOSA” and “CR7,” respectively. MASOSA has a strong detection in Lyα with a line width of 386 ± 30 km s−1 (FWHM) and with very high EW0 (>200 Å), but undetected in the continuum, implying very low stellar mass and a likely young, metal-poor stellar population. “CR7,” with an observed Lyα luminosity of 1043.92±0.05 erg s−1 is the most luminous Lyα emitter ever found at z > 6 and is spatially extended (∼16 kpc). “CR7” reveals a narrow Lyα line with 266 ± 15 km s−1 FWHM, being detected in the near-infrared (NIR) (rest-frame UV; β = −2.3 ± 0.1) and in IRAC/Spitzer. We detect a narrow He II 1640 Å emission line (6σ, FWHM = 130 ± 30 km s−1 ) in CR7 which can explain the clear excess seen in the J-band photometry (EW0 ∼ 80 Å). We find no other emission lines from the UV to the NIR in our X-SHOOTER spectra (He II/O III] 1663 Å > 3 and He II/C III] 1908 Å > 2.5). We conclude that CR7 is best explained by a combination of a PopIII-like population, which dominates the rest-frame UV and the nebular emission, and a more normal stellar population, which presumably dominates the mass. Hubble Space Telescope/WFC3 observations show that the light is indeed spatially separated between a very blue component, coincident with Lyα and He II emission, and two red components (∼5 kpc away), which dominate the mass. Our findings are consistent with theoretical predictions of a PopIII wave, with PopIII star formation migrating away from the original sites of star formation.}, author = {Sobral, David and Matthee, Jorryt J and Darvish, Behnam and Schaerer, Daniel and Mobasher, Bahram and Röttgering, Huub and Santos, Sérgio and Hemmati, Shoubaneh}, issn = {1538-4357}, journal = {The Astrophysical Journal}, keywords = {Space and Planetary Science, Astronomy and Astrophysics, dark ages, reionization, first stars – early universe – galaxies: evolution}, number = {2}, pages = {139}, publisher = {IOP Publishing}, title = {{Evidence for PopIII-like stellar populations in the most luminous Lyα emitters at the epoch of reionisation: Spectroscopic confirmation}}, doi = {10.1088/0004-637X/808/2/139}, volume = {808}, year = {2015}, } @article{11580, abstract = {We present results from the largest contiguous narrow-band survey in the near-infrared. We have used the wide-field infrared camera/Canada–France–Hawaii Telescope and the lowOH2 filter (1.187 ± 0.005 μm) to survey ≈10 deg2 of contiguous extragalactic sky in the SA22 field. A total of ∼6000 candidate emission-line galaxies are found. We use deep ugrizJK data to obtain robust photometric redshifts. We combine our data with the High-redshift(Z) Emission Line Survey (HiZELS), explore spectroscopic surveys (VVDS, VIPERS) and obtain our own spectroscopic follow-up with KMOS, FMOS and MOSFIRE to derive large samples of high-redshift emission-line selected galaxies: 3471 Hα emitters at z = 0.8, 1343 [O III] + Hβ emitters at z = 1.4 and 572 [O II] emitters at z = 2.2. We probe comoving volumes of >106 Mpc3 and find significant overdensities, including an 8.5σ (spectroscopically confirmed) overdensity of Hα emitters at z = 0.81. We derive Hα, [O III] + Hβ and [O II] luminosity functions at z = 0.8, 1.4, 2.2, respectively, and present implications for future surveys such as Euclid. Our uniquely large volumes/areas allow us to subdivide the samples in thousands of randomized combinations of areas and provide a robust empirical measurement of sample/cosmic variance. We show that surveys for star-forming/emission-line galaxies at a depth similar to ours can only overcome cosmic-variance (errors <10 per cent) if they are based on volumes >5 × 105 Mpc3; errors on L* and ϕ* due to sample (cosmic) variance on surveys probing ∼104 and ∼105 Mpc3 are typically very high: ∼300 and ∼40–60 per cent, respectively.}, author = {Sobral, D. and Matthee, Jorryt J and Best, P. N. and Smail, I. and Khostovan, A. A. and Milvang-Jensen, B. and Kim, J.-W. and Stott, J. and Calhau, J. and Nayyeri, H. and Mobasher, B.}, issn = {1365-2966}, journal = {Monthly Notices of the Royal Astronomical Society}, keywords = {Space and Planetary Science, Astronomy and Astrophysics, galaxies: evolution, galaxies: formation, galaxies: luminosity function, mass function, cosmology: observations, early Universe, large-scale structure of Universe}, number = {3}, pages = {2303--2323}, publisher = {Oxford University Press}, title = {{CF-HiZELS, an ∼10 deg2 emission-line survey with spectroscopic follow-up: Hα, [O III] + Hβ and [O II] luminosity functions at z = 0.8, 1.4 and 2.2 }}, doi = {10.1093/mnras/stv1076}, volume = {451}, year = {2015}, } @article{11581, abstract = {Using wide-field narrow-band surveys, we provide a new measurement of the z = 6.6 Lymanα emitter (LAE) luminosity function (LF), which constraints the bright end for the first time. We use a combination of archival narrow-band NB921 data in UDS and new NB921 measurements in SA22 and COSMOS/UltraVISTA, all observed with the Subaru telescope, with a total area of ∼5 deg2. We exclude lower redshift interlopers by using broad-band optical and near-infrared photometry and also exclude three supernovae with data split over multiple epochs. Combining the UDS and COSMOS samples, we find no evolution of the bright end of the Lyα LF between z = 5.7 and 6.6, which is supported by spectroscopic follow-up, and conclude that sources with Himiko-like luminosity are not as rare as previously thought, with number densities of ∼1.5 × 10−5 Mpc−3. Combined with our wide-field SA22 measurements, our results indicate a non-Schechter-like bright end of the LF at z = 6.6 and a different evolution of observed faint and bright LAEs, overcoming cosmic variance. This differential evolution is also seen in the spectroscopic follow-up of UV-selected galaxies and is now also confirmed for LAEs, and we argue that it may be an effect of reionization. Using a toy model, we show that such differential evolution of the LF is expected, since brighter sources are able to ionize their surroundings earlier, such that Lyα photons are able to escape. Our targets are excellent candidates for detailed follow-up studies and provide the possibility to give a unique view on the earliest stages in the formation of galaxies and reionization process.}, author = {Matthee, Jorryt J and Sobral, David and Santos, Sérgio and Röttgering, Huub and Darvish, Behnam and Mobasher, Bahram}, issn = {1365-2966}, journal = {Monthly Notices of the Royal Astronomical Society}, keywords = {Space and Planetary Science, Astronomy and Astrophysics}, number = {1}, pages = {400--417}, publisher = {Oxford University Press}, title = {{Identification of the brightest Lyα emitters at z = 6.6: implications for the evolution of the luminosity function in the reionization era}}, doi = {10.1093/mnras/stv947}, volume = {451}, year = {2015}, } @article{11579, abstract = {CR7 is the brightest z = 6.6 Ly α emitter (LAE) known to date, and spectroscopic follow-up by Sobral et al. suggests that CR7 might host Population (Pop) III stars. We examine this interpretation using cosmological hydrodynamical simulations. Several simulated galaxies show the same ‘Pop III wave’ pattern observed in CR7. However, to reproduce the extreme CR7 Ly α/He II1640 line luminosities (⁠Lα/HeII⁠) a top-heavy initial mass function and a massive ( ≳ 107 M⊙) Pop III burst with age ≲ 2 Myr are required. Assuming that the observed properties of Ly α and He II emission are typical for Pop III, we predict that in the COSMOS/UDS/SA22 fields, 14 out of the 30 LAEs at z = 6.6 with Lα > 1043.3 erg s−1 should also host Pop III stars producing an observable LHeII≳1042.7ergs−1⁠. As an alternate explanation, we explore the possibility that CR7 is instead powered by accretion on to a direct collapse black hole. Our model predicts Lα, LHeII⁠, and X-ray luminosities that are in agreement with the observations. In any case, the observed properties of CR7 indicate that this galaxy is most likely powered by sources formed from pristine gas. We propose that further X-ray observations can distinguish between the two above scenarios.}, author = {Pallottini, A. and Ferrara, A. and Pacucci, F. and Gallerani, S. and Salvadori, S. and Schneider, R. and Schaerer, D. and Sobral, D. and Matthee, Jorryt J}, issn = {1365-2966}, journal = {Monthly Notices of the Royal Astronomical Society}, keywords = {Space and Planetary Science, Astronomy and Astrophysics, black hole physics, stars: Population III, galaxies: high-redshift}, number = {3}, pages = {2465--2470}, publisher = {Oxford University Press}, title = {{The brightest Lyα emitter: Pop III or black hole?}}, doi = {10.1093/mnras/stv1795}, volume = {453}, year = {2015}, }