@inproceedings{1668,
abstract = {We revisit the security (as a pseudorandom permutation) of cascading-based constructions for block-cipher key-length extension. Previous works typically considered the extreme case where the adversary is given the entire codebook of the construction, the only complexity measure being the number qe of queries to the underlying ideal block cipher, representing adversary’s secret-key-independent computation. Here, we initiate a systematic study of the more natural case of an adversary restricted to adaptively learning a number qc of plaintext/ciphertext pairs that is less than the entire codebook. For any such qc, we aim to determine the highest number of block-cipher queries qe the adversary can issue without being able to successfully distinguish the construction (under a secret key) from a random permutation.
More concretely, we show the following results for key-length extension schemes using a block cipher with n-bit blocks and κ-bit keys:
Plain cascades of length ℓ=2r+1 are secure whenever qcqre≪2r(κ+n), qc≪2κ and qe≪22κ. The bound for r=1 also applies to two-key triple encryption (as used within Triple DES).
The r-round XOR-cascade is secure as long as qcqre≪2r(κ+n), matching an attack by Gaži (CRYPTO 2013).
We fully characterize the security of Gaži and Tessaro’s two-call },
author = {Gazi, Peter and Lee, Jooyoung and Seurin, Yannick and Steinberger, John and Tessaro, Stefano},
location = {Istanbul, Turkey},
pages = {319 -- 341},
publisher = {Springer},
title = {{Relaxing full-codebook security: A refined analysis of key-length extension schemes}},
doi = {10.1007/978-3-662-48116-5_16},
volume = {9054},
year = {2015},
}
@inproceedings{1669,
abstract = {Computational notions of entropy (a.k.a. pseudoentropy) have found many applications, including leakage-resilient cryptography, deterministic encryption or memory delegation. The most important tools to argue about pseudoentropy are chain rules, which quantify by how much (in terms of quantity and quality) the pseudoentropy of a given random variable X decreases when conditioned on some other variable Z (think for example of X as a secret key and Z as information leaked by a side-channel). In this paper we give a very simple and modular proof of the chain rule for HILL pseudoentropy, improving best known parameters. Our version allows for increasing the acceptable length of leakage in applications up to a constant factor compared to the best previous bounds. As a contribution of independent interest, we provide a comprehensive study of all known versions of the chain rule, comparing their worst-case strength and limitations.},
author = {Pietrzak, Krzysztof Z and Skórski, Maciej},
location = {Guadalajara, Mexico},
pages = {81 -- 98},
publisher = {Springer},
title = {{The chain rule for HILL pseudoentropy, revisited}},
doi = {10.1007/978-3-319-22174-8_5},
volume = {9230},
year = {2015},
}
@inproceedings{1670,
abstract = {Planning in hybrid domains poses a special challenge due to the involved mixed discrete-continuous dynamics. A recent solving approach for such domains is based on applying model checking techniques on a translation of PDDL+ planning problems to hybrid automata. However, the proposed translation is limited because must behavior is only overapproximated, and hence, processes and events are not reflected exactly. In this paper, we present the theoretical foundation of an exact PDDL+ translation. We propose a schema to convert a hybrid automaton with must transitions into an equivalent hybrid automaton featuring only may transitions.},
author = {Bogomolov, Sergiy and Magazzeni, Daniele and Minopoli, Stefano and Wehrle, Martin},
location = {Jerusalem, Israel},
pages = {42 -- 46},
publisher = {AAAI Press},
title = {{PDDL+ planning with hybrid automata: Foundations of translating must behavior}},
year = {2015},
}
@inproceedings{1671,
abstract = {This paper studies the concrete security of PRFs and MACs obtained by keying hash functions based on the sponge paradigm. One such hash function is KECCAK, selected as NIST’s new SHA-3 standard. In contrast to other approaches like HMAC, the exact security of keyed sponges is not well understood. Indeed, recent security analyses delivered concrete security bounds which are far from existing attacks. This paper aims to close this gap. We prove (nearly) exact bounds on the concrete PRF security of keyed sponges using a random permutation. These bounds are tight for the most relevant ranges of parameters, i.e., for messages of length (roughly) l ≤ min{2n/4, 2r} blocks, where n is the state size and r is the desired output length; and for l ≤ q queries (to the construction or the underlying permutation). Moreover, we also improve standard-model bounds. As an intermediate step of independent interest, we prove tight bounds on the PRF security of the truncated CBC-MAC construction, which operates as plain CBC-MAC, but only returns a prefix of the output.},
author = {Gazi, Peter and Pietrzak, Krzysztof Z and Tessaro, Stefano},
location = {Santa Barbara, CA, United States},
pages = {368 -- 387},
publisher = {Springer},
title = {{The exact PRF security of truncation: Tight bounds for keyed sponges and truncated CBC}},
doi = {10.1007/978-3-662-47989-6_18},
volume = {9215},
year = {2015},
}
@inproceedings{1672,
abstract = {Composable notions of incoercibility aim to forbid a coercer from using anything beyond the coerced parties’ inputs and outputs to catch them when they try to deceive him. Existing definitions are restricted to weak coercion types, and/or are not universally composable. Furthermore, they often make too strong assumptions on the knowledge of coerced parties—e.g., they assume they known the identities and/or the strategies of other coerced parties, or those of corrupted parties— which makes them unsuitable for applications of incoercibility such as e-voting, where colluding adversarial parties may attempt to coerce honest voters, e.g., by offering them money for a promised vote, and use their own view to check that the voter keeps his end of the bargain. In this work we put forward the first universally composable notion of incoercible multi-party computation, which satisfies the above intuition and does not assume collusions among coerced parties or knowledge of the corrupted set. We define natural notions of UC incoercibility corresponding to standard coercion-types, i.e., receipt-freeness and resistance to full-active coercion. Importantly, our suggested notion has the unique property that it builds on top of the well studied UC framework by Canetti instead of modifying it. This guarantees backwards compatibility, and allows us to inherit results from the rich UC literature. We then present MPC protocols which realize our notions of UC incoercibility given access to an arguably minimal setup—namely honestly generate tamper-proof hardware performing a very simple cryptographic operation—e.g., a smart card. This is, to our knowledge, the first proposed construction of an MPC protocol (for more than two parties) that is incoercibly secure and universally composable, and therefore the first construction of a universally composable receipt-free e-voting protocol.},
author = {Alwen, Joel F and Ostrovsky, Rafail and Zhou, Hongsheng and Zikas, Vassilis},
location = {Santa Barbara, CA, United States},
pages = {763 -- 780},
publisher = {Springer},
title = {{Incoercible multi-party computation and universally composable receipt-free voting}},
doi = {10.1007/978-3-662-48000-7_37},
volume = {9216},
year = {2015},
}
@article{1673,
abstract = {When a new mutant arises in a population, there is a probability it outcompetes the residents and fixes. The structure of the population can affect this fixation probability. Suppressing population structures reduce the difference between two competing variants, while amplifying population structures enhance the difference. Suppressors are ubiquitous and easy to construct, but amplifiers for the large population limit are more elusive and only a few examples have been discovered. Whether or not a population structure is an amplifier of selection depends on the probability distribution for the placement of the invading mutant. First, we prove that there exist only bounded amplifiers for adversarial placement-that is, for arbitrary initial conditions. Next, we show that the Star population structure, which is known to amplify for mutants placed uniformly at random, does not amplify for mutants that arise through reproduction and are therefore placed proportional to the temperatures of the vertices. Finally, we construct population structures that amplify for all mutational events that arise through reproduction, uniformly at random, or through some combination of the two. },
author = {Adlam, Ben and Chatterjee, Krishnendu and Nowak, Martin},
journal = {Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences},
number = {2181},
publisher = {Royal Society of London},
title = {{Amplifiers of selection}},
doi = {10.1098/rspa.2015.0114},
volume = {471},
year = {2015},
}
@article{1674,
abstract = {We consider N × N random matrices of the form H = W + V where W is a real symmetric Wigner matrix and V a random or deterministic, real, diagonal matrix whose entries are independent of W. We assume subexponential decay for the matrix entries of W and we choose V so that the eigenvalues of W and V are typically of the same order. For a large class of diagonal matrices V, we show that the rescaled distribution of the extremal eigenvalues is given by the Tracy-Widom distribution F1 in the limit of large N. Our proofs also apply to the complex Hermitian setting, i.e. when W is a complex Hermitian Wigner matrix.},
author = {Lee, Jioon and Schnelli, Kevin},
journal = {Reviews in Mathematical Physics},
number = {8},
publisher = {World Scientific Publishing},
title = {{Edge universality for deformed Wigner matrices}},
doi = {10.1142/S0129055X1550018X},
volume = {27},
year = {2015},
}
@inproceedings{1675,
abstract = {Proofs of work (PoW) have been suggested by Dwork and Naor (Crypto’92) as protection to a shared resource. The basic idea is to ask the service requestor to dedicate some non-trivial amount of computational work to every request. The original applications included prevention of spam and protection against denial of service attacks. More recently, PoWs have been used to prevent double spending in the Bitcoin digital currency system. In this work, we put forward an alternative concept for PoWs - so-called proofs of space (PoS), where a service requestor must dedicate a significant amount of disk space as opposed to computation. We construct secure PoS schemes in the random oracle model (with one additional mild assumption required for the proof to go through), using graphs with high “pebbling complexity” and Merkle hash-trees. We discuss some applications, including follow-up work where a decentralized digital currency scheme called Spacecoin is constructed that uses PoS (instead of wasteful PoW like in Bitcoin) to prevent double spending. The main technical contribution of this work is the construction of (directed, loop-free) graphs on N vertices with in-degree O(log logN) such that even if one places Θ(N) pebbles on the nodes of the graph, there’s a constant fraction of nodes that needs Θ(N) steps to be pebbled (where in every step one can put a pebble on a node if all its parents have a pebble).},
author = {Dziembowski, Stefan and Faust, Sebastian and Kolmogorov, Vladimir and Pietrzak, Krzysztof Z},
location = {Santa Barbara, CA, United States},
pages = {585 -- 605},
publisher = {Springer},
title = {{Proofs of space}},
doi = {10.1007/978-3-662-48000-7_29},
volume = {9216},
year = {2015},
}
@article{1676,
author = {Sixt, Michael K and Raz, Erez},
journal = {Current Opinion in Cell Biology},
number = {10},
pages = {4 -- 6},
publisher = {Elsevier},
title = {{Editorial overview: Cell adhesion and migration}},
doi = {10.1016/j.ceb.2015.09.004},
volume = {36},
year = {2015},
}
@article{1677,
abstract = {We consider real symmetric and complex Hermitian random matrices with the additional symmetry hxy = hN-y,N-x. The matrix elements are independent (up to the fourfold symmetry) and not necessarily identically distributed. This ensemble naturally arises as the Fourier transform of a Gaussian orthogonal ensemble. Italso occurs as the flip matrix model - an approximation of the two-dimensional Anderson model at small disorder. We show that the density of states converges to the Wigner semicircle law despite the new symmetry type. We also prove the local version of the semicircle law on the optimal scale.},
author = {Alt, Johannes},
journal = {Journal of Mathematical Physics},
number = {10},
publisher = {American Institute of Physics},
title = {{The local semicircle law for random matrices with a fourfold symmetry}},
doi = {10.1063/1.4932606},
volume = {56},
year = {2015},
}
@article{1678,
abstract = {High-throughput live-cell screens are intricate elements of systems biology studies and drug discovery pipelines. Here, we demonstrate an optogenetics-assisted method that avoids the need for chemical activators and reporters, reduces the number of operational steps and increases information content in a cell-based small-molecule screen against human protein kinases, including an orphan receptor tyrosine kinase. This blueprint for all-optical screening can be adapted to many drug targets and cellular processes.},
author = {Inglés Prieto, Álvaro and Gschaider-Reichhart, Eva and Muellner, Markus and Nowak, Matthias and Nijman, Sebastian and Grusch, Michael and Janovjak, Harald L},
journal = {Nature Chemical Biology},
number = {12},
pages = {952 -- 954},
publisher = {Nature Publishing Group},
title = {{Light-assisted small-molecule screening against protein kinases}},
doi = {10.1038/nchembio.1933},
volume = {11},
year = {2015},
}
@article{1679,
author = {Lemoult, Grégoire M and Maier, Philipp and Hof, Björn},
journal = {Physics of Fluids},
number = {9},
publisher = {American Institute of Physics},
title = {{Taylor's Forest}},
doi = {10.1063/1.4930850},
volume = {27},
year = {2015},
}
@article{1680,
abstract = {We consider the satisfiability problem for modal logic over first-order definable classes of frames.We confirm the conjecture from Hemaspaandra and Schnoor [2008] that modal logic is decidable over classes definable by universal Horn formulae. We provide a full classification of Horn formulae with respect to the complexity of the corresponding satisfiability problem. It turns out, that except for the trivial case of inconsistent formulae, local satisfiability is eitherNP-complete or PSPACE-complete, and global satisfiability is NP-complete, PSPACE-complete, or ExpTime-complete. We also show that the finite satisfiability problem for modal logic over Horn definable classes of frames is decidable. On the negative side, we show undecidability of two related problems. First, we exhibit a simple universal three-variable formula defining the class of frames over which modal logic is undecidable. Second, we consider the satisfiability problem of bimodal logic over Horn definable classes of frames, and also present a formula leading to undecidability.},
author = {Michaliszyn, Jakub and Otop, Jan and Kieroňski, Emanuel},
journal = {ACM Transactions on Computational Logic},
number = {1},
publisher = {ACM},
title = {{On the decidability of elementary modal logics}},
doi = {10.1145/2817825},
volume = {17},
year = {2015},
}
@article{1681,
abstract = {In many social situations, individuals endeavor to find the single best possible partner, but are constrained to evaluate the candidates in sequence. Examples include the search for mates, economic partnerships, or any other long-term ties where the choice to interact involves two parties. Surprisingly, however, previous theoretical work on mutual choice problems focuses on finding equilibrium solutions, while ignoring the evolutionary dynamics of decisions. Empirically, this may be of high importance, as some equilibrium solutions can never be reached unless the population undergoes radical changes and a sufficient number of individuals change their decisions simultaneously. To address this question, we apply a mutual choice sequential search problem in an evolutionary game-theoretical model that allows one to find solutions that are favored by evolution. As an example, we study the influence of sequential search on the evolutionary dynamics of cooperation. For this, we focus on the classic snowdrift game and the prisoner’s dilemma game.},
author = {Priklopil, Tadeas and Chatterjee, Krishnendu},
journal = {Games},
number = {4},
pages = {413 -- 437},
publisher = {Multidisciplinary Digital Publishing Institute},
title = {{Evolution of decisions in population games with sequentially searching individuals}},
doi = {10.3390/g6040413},
volume = {6},
year = {2015},
}
@article{1682,
abstract = {We study the problem of robust satisfiability of systems of nonlinear equations, namely, whether for a given continuous function f:K→ ℝn on a finite simplicial complex K and α > 0, it holds that each function g: K → ℝn such that ||g - f || ∞ < α, has a root in K. Via a reduction to the extension problem of maps into a sphere, we particularly show that this problem is decidable in polynomial time for every fixed n, assuming dimK ≤ 2n - 3. This is a substantial extension of previous computational applications of topological degree and related concepts in numerical and interval analysis. Via a reverse reduction, we prove that the problem is undecidable when dim K > 2n - 2, where the threshold comes from the stable range in homotopy theory. For the lucidity of our exposition, we focus on the setting when f is simplexwise linear. Such functions can approximate general continuous functions, and thus we get approximation schemes and undecidability of the robust satisfiability in other possible settings.},
author = {Franek, Peter and Krcál, Marek},
journal = {Journal of the ACM},
number = {4},
publisher = {ACM},
title = {{Robust satisfiability of systems of equations}},
doi = {10.1145/2751524},
volume = {62},
year = {2015},
}
@article{1683,
abstract = {The 1 MDa, 45-subunit proton-pumping NADH-ubiquinone oxidoreductase (complex I) is the largest complex of the mitochondrial electron transport chain. The molecular mechanism of complex I is central to the metabolism of cells, but has yet to be fully characterized. The last two years have seen steady progress towards this goal with the first atomic-resolution structure of the entire bacterial complex I, a 5 Å cryo-electron microscopy map of bovine mitochondrial complex I and a ∼3.8 Å resolution X-ray crystallographic study of mitochondrial complex I from yeast Yarrowia lipotytica. In this review we will discuss what we have learned from these studies and what remains to be elucidated.},
author = {Letts, Jame A and Sazanov, Leonid A},
journal = {Current Opinion in Structural Biology},
number = {8},
pages = {135 -- 145},
publisher = {Elsevier},
title = {{Gaining mass: The structure of respiratory complex I-from bacterial towards mitochondrial versions}},
doi = {10.1016/j.sbi.2015.08.008},
volume = {33},
year = {2015},
}
@article{1684,
abstract = {Many species groups, including mammals and many insects, determine sex using heteromorphic sex chromosomes. Diptera flies, which include the model Drosophila melanogaster, generally have XY sex chromosomes and a conserved karyotype consisting of six chromosomal arms (five large rods and a small dot), but superficially similar karyotypes may conceal the true extent of sex chromosome variation. Here, we use whole-genome analysis in 37 fly species belonging to 22 different families of Diptera and uncover tremendous hidden diversity in sex chromosome karyotypes among flies. We identify over a dozen different sex chromosome configurations, and the small dot chromosome is repeatedly used as the sex chromosome, which presumably reflects the ancestral karyotype of higher Diptera. However, we identify species with undifferentiated sex chromosomes, others in which a different chromosome replaced the dot as a sex chromosome or in which up to three chromosomal elements became incorporated into the sex chromosomes, and others yet with female heterogamety (ZW sex chromosomes). Transcriptome analysis shows that dosage compensation has evolved multiple times in flies, consistently through up-regulation of the single X in males. However, X chromosomes generally show a deficiency of genes with male-biased expression, possibly reflecting sex-specific selective pressures. These species thus provide a rich resource to study sex chromosome biology in a comparative manner and show that similar selective forces have shaped the unique evolution of sex chromosomes in diverse fly taxa.},
author = {Vicoso, Beatriz and Bachtrog, Doris},
journal = {PLoS Biology},
number = {4},
publisher = {Public Library of Science},
title = {{Numerous transitions of sex chromosomes in Diptera}},
doi = {10.1371/journal.pbio.1002078},
volume = {13},
year = {2015},
}
@inproceedings{1685,
abstract = {Given a graph G cellularly embedded on a surface Σ of genus g, a cut graph is a subgraph of G such that cutting Σ along G yields a topological disk. We provide a fixed parameter tractable approximation scheme for the problem of computing the shortest cut graph, that is, for any ε > 0, we show how to compute a (1 + ε) approximation of the shortest cut graph in time f(ε, g)n3.
Our techniques first rely on the computation of a spanner for the problem using the technique of brick decompositions, to reduce the problem to the case of bounded tree-width. Then, to solve the bounded tree-width case, we introduce a variant of the surface-cut decomposition of Rué, Sau and Thilikos, which may be of independent interest.},
author = {Cohen Addad, Vincent and De Mesmay, Arnaud N},
location = {Patras, Greece},
pages = {386 -- 398},
publisher = {Springer},
title = {{A fixed parameter tractable approximation scheme for the optimal cut graph of a surface}},
doi = {10.1007/978-3-662-48350-3_33},
volume = {9294},
year = {2015},
}
@article{1106,
abstract = {Circumferential skin creases Kunze type (CSC-KT) is a specific congenital entity with an unknown genetic cause. The disease phenotype comprises characteristic circumferential skin creases accompanied by intellectual disability, a cleft palate, short stature, and dysmorphic features. Here, we report that mutations in either MAPRE2 or TUBB underlie the genetic origin of this syndrome. MAPRE2 encodes a member of the microtubule end-binding family of proteins that bind to the guanosine triphosphate cap at growing microtubule plus ends, and TUBB encodes a β-tubulin isotype that is expressed abundantly in the developing brain. Functional analyses of the TUBB mutants show multiple defects in the chaperone-dependent tubulin heterodimer folding and assembly pathway that leads to a compromised yield of native heterodimers. The TUBB mutations also have an impact on microtubule dynamics. For MAPRE2, we show that the mutations result in enhanced MAPRE2 binding to microtubules, implying an increased dwell time at microtubule plus ends. Further, in vivo analysis of MAPRE2 mutations in a zebrafish model of craniofacial development shows that the variants most likely perturb the patterning of branchial arches, either through excessive activity (under a recessive paradigm) or through haploinsufficiency (dominant de novo paradigm). Taken together, our data add CSC-KT to the growing list of tubulinopathies and highlight how multiple inheritance paradigms can affect dosage-sensitive biological systems so as to result in the same clinical defect.},
author = {Isrie, Mala and Breuss, Martin and Tian, Guoling and Hansen, Andi H and Cristofoli, Francesca and Morandell, Jasmin and Kupchinsky, Zachari A and Sifrim, Alejandro and Rodriguez Rodriguez, Celia and Dapena, Elena P and Doonanco, Kurston and Leonard, Norma and Tinsa, Faten and Moortgat, Stéphanie and Ulucan, Hakan and Koparir, Erkan and Karaca, Ender and Katsanis, Nicholas and Marton, Valeria and Vermeesch, Joris R and Davis, Erica E and Cowan, Nicholas J and Keays, David and Van Esch, Hilde},
journal = {The American Journal of Human Genetics},
number = {6},
pages = {790 -- 800},
publisher = {Cell Press},
title = {{Mutations in either TUBB or MAPRE2 cause circumferential skin creases Kunze type}},
doi = {10.1016/j.ajhg.2015.10.014},
volume = {97},
year = {2015},
}
@article{120,
abstract = {Clustering of fine particles is of crucial importance in settings ranging from the early stages of planet formation to the coagulation of industrial powders and airborne pollutants. Models of such clustering typically focus on inelastic deformation and cohesion. However, even in charge-neutral particle systems comprising grains of the same dielectric material, tribocharging can generate large amounts of net positive or negative charge on individual particles, resulting in long-range electrostatic forces. The effects of such forces on cluster formation are not well understood and have so far not been studied in situ. Here we report the first observations of individual collide-and-capture events between charged submillimetre particles, including Kepler-like orbits. Charged particles can become trapped in their mutual electrostatic energy well and aggregate via multiple bounces. This enables the initiation of clustering at relative velocities much larger than the upper limit for sticking after a head-on collision, a long-standing issue known from pre-planetary dust aggregation. Moreover, Coulomb interactions together with dielectric polarization are found to stabilize characteristic molecule-like configurations, providing new insights for the modelling of clustering dynamics in a wide range of microscopic dielectric systems, such as charged polarizable ions, biomolecules and colloids.},
author = {Lee, Victor and Waitukaitis, Scott R and Miskin, Marc and Jaeger, Heinrich},
journal = {Nature Physics},
number = {9},
pages = {733 -- 737},
publisher = {Nature Publishing Group},
title = {{Direct observation of particle interactions and clustering in charged granular streams}},
doi = {10.1038/nphys3396},
volume = {11},
year = {2015},
}