@inproceedings{784,
abstract = {We demonstrate an optical switch design that can scale up to a thousand ports with high per-port bandwidth (25 Gbps+) and low switching latency (40 ns). Our design uses a broadcast and select architecture, based on a passive star coupler and fast tunable transceivers. In addition we employ time division multiplexing to achieve very low switching latency. Our demo shows the feasibility of the switch data plane using a small testbed, comprising two transmitters and a receiver, connected through a star coupler.},
author = {Alistarh, Dan-Adrian and Ballani, Hitesh and Costa, Paolo and Funnell, Adam and Benjamin, Joshua and Watts, Philip and Thomsen, Benn},
isbn = {978-1-4503-3542-3},
location = {London, United Kindgdom},
pages = {367 -- 368},
publisher = {ACM},
title = {{A high-radix, low-latency optical switch for data centers}},
doi = {10.1145/2785956.2790035},
year = {2015},
}
@article{924,
abstract = {This paper presents a numerical study of a Capillary Pumped Loop evaporator. A two-dimensional unsteady mathematical model of a flat evaporator is developed to simulate heat and mass transfer in unsaturated porous wick with phase change. The liquid-vapor phase change inside the porous wick is described by Langmuir's law. The governing equations are solved by the Finite Element Method. The results are presented then for a sintered nickel wick and methanol as a working fluid. The heat flux required to the transition from the all-liquid wick to the vapor-liquid wick is calculated. The dynamic and thermodynamic behavior of the working fluid in the capillary structure are discussed in this paper.},
author = {Boubaker, Riadh and Platel, Vincent and Bergès, Alexis and Bancelin, Mathieu and Hannezo, Edouard},
journal = {Applied Thermal Engineering},
pages = {1 -- 8},
publisher = {Elsevier},
title = {{Dynamic model of heat and mass transfer in an unsaturated porous wick of capillary pumped loop}},
doi = {10.1016/j.applthermaleng.2014.10.009},
volume = {76},
year = {2015},
}
@article{929,
abstract = {An essential question of morphogenesis is how patterns arise without preexisting positional information, as inspired by Turing. In the past few years, cytoskeletal flows in the cell cortex have been identified as a key mechanism of molecular patterning at the subcellular level. Theoretical and in vitro studies have suggested that biological polymers such as actomyosin gels have the property to self-organize, but the applicability of this concept in an in vivo setting remains unclear. Here, we report that the regular spacing pattern of supracellular actin rings in the Drosophila tracheal tubule is governed by a self-organizing principle. We propose a simple biophysical model where pattern formation arises from the interplay of myosin contractility and actin turnover. We validate the hypotheses of the model using photobleaching experiments and report that the formation of actin rings is contractility dependent. Moreover, genetic and pharmacological perturbations of the physical properties of the actomyosin gel modify the spacing of the pattern, as the model predicted. In addition, our model posited a role of cortical friction in stabilizing the spacing pattern of actin rings. Consistently, genetic depletion of apical extracellular matrix caused strikingly dynamic movements of actin rings, mirroring our model prediction of a transition from steady to chaotic actin patterns at low cortical friction. Our results therefore demonstrate quantitatively that a hydrodynamical instability of the actin cortex can trigger regular pattern formation and drive morphogenesis in an in vivo setting. },
author = {Hannezo, Edouard and Dong, Bo and Recho, Pierre and Joanny, Jean F and Hayashi, Shigeo},
journal = {PNAS},
number = {28},
pages = {8620 -- 8625},
publisher = {National Academy of Sciences},
title = {{Cortical instability drives periodic supracellular actin pattern formation in epithelial tubes}},
doi = {10.1073/pnas.1504762112},
volume = {112},
year = {2015},
}
@article{981,
abstract = {The tunability of topological surface states and controllable opening of the Dirac gap are of fundamental and practical interest in the field of topological materials. In the newly discovered topological crystalline insulators (TCIs), theory predicts that the Dirac node is protected by a crystalline symmetry and that the surface state electrons can acquire a mass if this symmetry is broken. Recent studies have detected signatures of a spontaneously generated Dirac gap in TCIs; however, the mechanism of mass formation remains elusive. In this work, we present scanning tunnelling microscopy (STM) measurements of the TCI Pb 1â'x Sn x Se for a wide range of alloy compositions spanning the topological and non-topological regimes. The STM topographies reveal a symmetry-breaking distortion on the surface, which imparts mass to the otherwise massless Dirac electrons-a mechanism analogous to the long sought-after Higgs mechanism in particle physics. Interestingly, the measured Dirac gap decreases on approaching the trivial phase, whereas the magnitude of the distortion remains nearly constant. Our data and calculations reveal that the penetration depth of Dirac surface states controls the magnitude of the Dirac mass. At the limit of the critical composition, the penetration depth is predicted to go to infinity, resulting in zero mass, consistent with our measurements. Finally, we discover the existence of surface states in the non-topological regime, which have the characteristics of gapped, double-branched Dirac fermions and could be exploited in realizing superconductivity in these materials.},
author = {Zeljkovic, Ilija and Okada, Yoshinori and Maksym Serbyn and Sankar, Raman and Walkup, Daniel and Zhou, Wenwen and Liu, Junwei and Chang, Guoqing and Wang, Yungjui and Hasan, Md Z and Chou, Fangcheng and Lin, Hsin and Bansil, Arun and Fu, Liang and Madhavan, Vidya},
journal = {Nature Materials},
number = {3},
pages = {318 -- 324},
publisher = {Nature Publishing Group},
title = {{Dirac mass generation from crystal symmetry breaking on the surfaces of topological crystalline insulators}},
doi = {10.1038/nmat4215},
volume = {14},
year = {2015},
}
@article{99,
abstract = {Quasiparticle excitations can compromise the performance of superconducting devices, causing high-frequency dissipation, decoherence in Josephson qubits, and braiding errors in proposed Majorana-based topological quantum computers. Quasiparticle dynamics have been studied in detail in metallic superconductors but remain relatively unexplored in semiconductor-superconductor structures, which are now being intensely pursued in the context of topological superconductivity. To this end, we use a system comprising a gate-confined semiconductor nanowire with an epitaxially grown superconductor layer, yielding an isolated, proximitized nanowire segment. We identify bound states in the semiconductor by means of bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound state in the semiconductor exceeding 10 ms.},
author = {Higginbotham, Andrew P and Albrecht, S M and Kiršanskas, Gediminas and Chang, W and Kuemmeth, Ferdinand and Krogstrup, Peter and Jespersen, Thomas and Nygård, Jesper and Flensberg, Karsten and Marcus, Charles},
journal = {Nature Physics},
number = {12},
pages = {1017 -- 1021},
publisher = {Nature Publishing Group},
title = {{Parity lifetime of bound states in a proximitized semiconductor nanowire}},
doi = {10.1038/nphys3461},
volume = {11},
year = {2015},
}
@inproceedings{1601,
abstract = {We propose a flexible exchange format for ω-automata, as typically used in formal verification, and implement support for it in a range of established tools. Our aim is to simplify the interaction of tools, helping the research community to build upon other people’s work. A key feature of the format is the use of very generic acceptance conditions, specified by Boolean combinations of acceptance primitives, rather than being limited to common cases such as Büchi, Streett, or Rabin. Such flexibility in the choice of acceptance conditions can be exploited in applications, for example in probabilistic model checking, and furthermore encourages the development of acceptance-agnostic tools for automata manipulations. The format allows acceptance conditions that are either state-based or transition-based, and also supports alternating automata.},
author = {Babiak, Tomáš and Blahoudek, František and Duret Lutz, Alexandre and Klein, Joachim and Kretinsky, Jan and Mueller, Daniel and Parker, David and Strejček, Jan},
location = {San Francisco, CA, United States},
pages = {479 -- 486},
publisher = {Springer},
title = {{The Hanoi omega-automata format}},
doi = {10.1007/978-3-319-21690-4_31},
volume = {9206},
year = {2015},
}
@misc{5437,
abstract = {We consider the core algorithmic problems related to verification of systems with respect to three classical quantitative properties, namely, the mean-payoff property, the ratio property, and the minimum initial credit for energy property.
The algorithmic problem given a graph and a quantitative property asks to compute the optimal value (the infimum value over all traces) from every node of the graph. We consider graphs with constant treewidth, and it is well-known that the control-flow graphs of most programs have constant treewidth. Let $n$ denote the number of nodes of a graph, $m$ the number of edges (for constant treewidth graphs $m=O(n)$) and $W$ the largest absolute value of the weights.
Our main theoretical results are as follows.
First, for constant treewidth graphs we present an algorithm that approximates the mean-payoff value within a multiplicative factor of $\epsilon$ in time $O(n \cdot \log (n/\epsilon))$ and linear space, as compared to the classical algorithms that require quadratic time. Second, for the ratio property we present an algorithm that for constant treewidth graphs works in time $O(n \cdot \log (|a\cdot b|))=O(n\cdot\log (n\cdot W))$, when the output is $\frac{a}{b}$, as compared to the previously best known algorithm with running time $O(n^2 \cdot \log (n\cdot W))$. Third, for the minimum initial credit problem we show that (i)~for general graphs the problem can be solved in $O(n^2\cdot m)$ time and the associated decision problem can be solved in $O(n\cdot m)$ time, improving the previous known $O(n^3\cdot m\cdot \log (n\cdot W))$ and $O(n^2 \cdot m)$ bounds, respectively; and (ii)~for constant treewidth graphs we present an algorithm that requires $O(n\cdot \log n)$ time, improving the previous known $O(n^4 \cdot \log (n \cdot W))$ bound.
We have implemented some of our algorithms and show that they present a significant speedup on standard benchmarks. },
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Pavlogiannis, Andreas},
issn = {2664-1690},
pages = {27},
publisher = {IST Austria},
title = {{Faster algorithms for quantitative verification in constant treewidth graphs}},
doi = {10.15479/AT:IST-2015-330-v2-1},
year = {2015},
}
@inproceedings{1606,
abstract = {In this paper, we present the first steps toward a runtime verification framework for monitoring hybrid and cyber-physical systems (CPS) development tools based on randomized differential testing. The development tools include hybrid systems reachability analysis tools, model-based development environments like Simulink/Stateflow (SLSF), etc. First, hybrid automaton models are randomly generated. Next, these hybrid automaton models are translated to a number of different tools (currently, SpaceEx, dReach, Flow*, HyCreate, and the MathWorks’ Simulink/Stateflow) using the HyST source transformation and translation tool. Then, the hybrid automaton models are executed in the different tools and their outputs are parsed. The final step is the differential comparison: the outputs of the different tools are compared. If the results do not agree (in the sense that an analysis or verification result from one tool does not match that of another tool, ignoring timeouts, etc.), a candidate bug is flagged and the model is saved for future analysis by the user. The process then repeats and the monitoring continues until the user terminates the process. We present preliminary results that have been useful in identifying a few bugs in the analysis methods of different development tools, and in an earlier version of HyST.},
author = {Nguyen, Luan and Schilling, Christian and Bogomolov, Sergiy and Johnson, Taylor},
location = {Vienna, Austria},
pages = {281 -- 286},
publisher = {Springer},
title = {{Runtime verification for hybrid analysis tools}},
doi = {10.1007/978-3-319-23820-3_19},
volume = {9333},
year = {2015},
}
@inproceedings{1670,
abstract = {Planning in hybrid domains poses a special challenge due to the involved mixed discrete-continuous dynamics. A recent solving approach for such domains is based on applying model checking techniques on a translation of PDDL+ planning problems to hybrid automata. However, the proposed translation is limited because must behavior is only overapproximated, and hence, processes and events are not reflected exactly. In this paper, we present the theoretical foundation of an exact PDDL+ translation. We propose a schema to convert a hybrid automaton with must transitions into an equivalent hybrid automaton featuring only may transitions.},
author = {Bogomolov, Sergiy and Magazzeni, Daniele and Minopoli, Stefano and Wehrle, Martin},
location = {Jerusalem, Israel},
pages = {42 -- 46},
publisher = {AAAI Press},
title = {{PDDL+ planning with hybrid automata: Foundations of translating must behavior}},
year = {2015},
}
@article{1810,
abstract = {Combining antibiotics is a promising strategy for increasing treatment efficacy and for controlling resistance evolution. When drugs are combined, their effects on cells may be amplified or weakened, that is the drugs may show synergistic or antagonistic interactions. Recent work revealed the underlying mechanisms of such drug interactions by elucidating the drugs'; joint effects on cell physiology. Moreover, new treatment strategies that use drug combinations to exploit evolutionary tradeoffs were shown to affect the rate of resistance evolution in predictable ways. High throughput studies have further identified drug candidates based on their interactions with established antibiotics and general principles that enable the prediction of drug interactions were suggested. Overall, the conceptual and technical foundation for the rational design of potent drug combinations is rapidly developing.},
author = {Bollenbach, Mark Tobias},
journal = {Current Opinion in Microbiology},
pages = {1 -- 9},
publisher = {Elsevier},
title = {{Antimicrobial interactions: Mechanisms and implications for drug discovery and resistance evolution}},
doi = {10.1016/j.mib.2015.05.008},
volume = {27},
year = {2015},
}
@inproceedings{1839,
abstract = {We present MultiGain, a tool to synthesize strategies for Markov decision processes (MDPs) with multiple mean-payoff objectives. Our models are described in PRISM, and our tool uses the existing interface and simulator of PRISM. Our tool extends PRISM by adding novel algorithms for multiple mean-payoff objectives, and also provides features such as (i) generating strategies and exploring them for simulation, and checking them with respect to other properties; and (ii) generating an approximate Pareto curve for two mean-payoff objectives. In addition, we present a new practical algorithm for the analysis of MDPs with multiple mean-payoff objectives under memoryless strategies.},
author = {Brázdil, Tomáš and Chatterjee, Krishnendu and Forejt, Vojtěch and Kučera, Antonín},
location = {London, United Kingdom},
pages = {181 -- 187},
publisher = {Springer},
title = {{Multigain: A controller synthesis tool for MDPs with multiple mean-payoff objectives}},
doi = {10.1007/978-3-662-46681-0_12},
volume = {9035},
year = {2015},
}
@article{1846,
abstract = {Modal transition systems (MTS) is a well-studied specification formalism of reactive systems supporting a step-wise refinement methodology. Despite its many advantages, the formalism as well as its currently known extensions are incapable of expressing some practically needed aspects in the refinement process like exclusive, conditional and persistent choices. We introduce a new model called parametric modal transition systems (PMTS) together with a general modal refinement notion that overcomes many of the limitations. We investigate the computational complexity of modal and thorough refinement checking on PMTS and its subclasses and provide a direct encoding of the modal refinement problem into quantified Boolean formulae, allowing us to employ state-of-the-art QBF solvers for modal refinement checking. The experiments we report on show that the feasibility of refinement checking is more influenced by the degree of nondeterminism rather than by the syntactic restrictions on the types of formulae allowed in the description of the PMTS.},
author = {Beneš, Nikola and Kretinsky, Jan and Larsen, Kim and Möller, Mikael and Sickert, Salomon and Srba, Jiří},
journal = {Acta Informatica},
number = {2-3},
pages = {269 -- 297},
publisher = {Springer},
title = {{Refinement checking on parametric modal transition systems}},
doi = {10.1007/s00236-015-0215-4},
volume = {52},
year = {2015},
}
@article{2034,
abstract = {Opacity is a generic security property, that has been defined on (non-probabilistic) transition systems and later on Markov chains with labels. For a secret predicate, given as a subset of runs, and a function describing the view of an external observer, the value of interest for opacity is a measure of the set of runs disclosing the secret. We extend this definition to the richer framework of Markov decision processes, where non-deterministicchoice is combined with probabilistic transitions, and we study related decidability problems with partial or complete observation hypotheses for the schedulers. We prove that all questions are decidable with complete observation and ω-regular secrets. With partial observation, we prove that all quantitative questions are undecidable but the question whether a system is almost surely non-opaquebecomes decidable for a restricted class of ω-regular secrets, as well as for all ω-regular secrets under finite-memory schedulers.},
author = {Bérard, Béatrice and Chatterjee, Krishnendu and Sznajder, Nathalie},
journal = { Information Processing Letters},
number = {1},
pages = {52 -- 59},
publisher = {Elsevier},
title = {{Probabilistic opacity for Markov decision processes}},
doi = {10.1016/j.ipl.2014.09.001},
volume = {115},
year = {2015},
}
@article{1694,
abstract = {
We introduce quantitative timed refinement and timed simulation (directed) metrics, incorporating zenoness checks, for timed systems. These metrics assign positive real numbers which quantify the timing mismatches between two timed systems, amongst non-zeno runs. We quantify timing mismatches in three ways: (1) the maximal timing mismatch that can arise, (2) the “steady-state” maximal timing mismatches, where initial transient timing mismatches are ignored; and (3) the (long-run) average timing mismatches amongst two systems. These three kinds of mismatches constitute three important types of timing differences. Our event times are the global times, measured from the start of the system execution, not just the time durations of individual steps. We present algorithms over timed automata for computing the three quantitative simulation distances to within any desired degree of accuracy. In order to compute the values of the quantitative simulation distances, we use a game theoretic formulation. We introduce two new kinds of objectives for two player games on finite-state game graphs: (1) eventual debit-sum level objectives, and (2) average debit-sum level objectives. We present algorithms for computing the optimal values for these objectives in graph games, and then use these algorithms to compute the values of the timed simulation distances over timed automata.
},
author = {Chatterjee, Krishnendu and Prabhu, Vinayak},
journal = {IEEE Transactions on Automatic Control},
number = {9},
pages = {2291 -- 2306},
publisher = {IEEE},
title = {{Quantitative temporal simulation and refinement distances for timed systems}},
doi = {10.1109/TAC.2015.2404612},
volume = {60},
year = {2015},
}
@article{1598,
abstract = {We consider Markov decision processes (MDPs) with specifications given as Büchi (liveness) objectives, and examine the problem of computing the set of almost-sure winning vertices such that the objective can be ensured with probability 1 from these vertices. We study for the first time the average-case complexity of the classical algorithm for computing the set of almost-sure winning vertices for MDPs with Büchi objectives. Our contributions are as follows: First, we show that for MDPs with constant out-degree the expected number of iterations is at most logarithmic and the average-case running time is linear (as compared to the worst-case linear number of iterations and quadratic time complexity). Second, for the average-case analysis over all MDPs we show that the expected number of iterations is constant and the average-case running time is linear (again as compared to the worst-case linear number of iterations and quadratic time complexity). Finally we also show that when all MDPs are equally likely, the probability that the classical algorithm requires more than a constant number of iterations is exponentially small.},
author = {Chatterjee, Krishnendu and Joglekar, Manas and Shah, Nisarg},
journal = {Theoretical Computer Science},
number = {3},
pages = {71 -- 89},
publisher = {Elsevier},
title = {{Average case analysis of the classical algorithm for Markov decision processes with Büchi objectives}},
doi = {10.1016/j.tcs.2015.01.050},
volume = {573},
year = {2015},
}
@inproceedings{1656,
abstract = {Recently there has been a significant effort to handle quantitative properties in formal verification and synthesis. While weighted automata over finite and infinite words provide a natural and flexible framework to express quantitative properties, perhaps surprisingly, some basic system properties such as average response time cannot be expressed using weighted automata, nor in any other know decidable formalism. In this work, we introduce nested weighted automata as a natural extension of weighted automata which makes it possible to express important quantitative properties such as average response time. In nested weighted automata, a master automaton spins off and collects results from weighted slave automata, each of which computes a quantity along a finite portion of an infinite word. Nested weighted automata can be viewed as the quantitative analogue of monitor automata, which are used in run-time verification. We establish an almost complete decidability picture for the basic decision problems about nested weighted automata, and illustrate their applicability in several domains. In particular, nested weighted automata can be used to decide average response time properties.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Otop, Jan},
booktitle = {Proceedings - Symposium on Logic in Computer Science},
location = {Kyoto, Japan},
publisher = {IEEE},
title = {{Nested weighted automata}},
doi = {10.1109/LICS.2015.72},
volume = {2015-July},
year = {2015},
}
@inproceedings{1714,
abstract = {We present a flexible framework for the automated competitive analysis of on-line scheduling algorithms for firm-deadline real-time tasks based on multi-objective graphs: Given a task set and an on-line scheduling algorithm specified as a labeled transition system, along with some optional safety, liveness, and/or limit-average constraints for the adversary, we automatically compute the competitive ratio of the algorithm w.r.t. A clairvoyant scheduler. We demonstrate the flexibility and power of our approach by comparing the competitive ratio of several on-line algorithms, including Dover, that have been proposed in the past, for various task sets. Our experimental results reveal that none of these algorithms is universally optimal, in the sense that there are task sets where other schedulers provide better performance. Our framework is hence a very useful design tool for selecting optimal algorithms for a given application.},
author = {Chatterjee, Krishnendu and Pavlogiannis, Andreas and Kößler, Alexander and Schmid, Ulrich},
booktitle = {Real-Time Systems Symposium},
location = {Rome, Italy},
number = {January},
pages = {118 -- 127},
publisher = {IEEE},
title = {{A framework for automated competitive analysis of on-line scheduling of firm-deadline tasks}},
doi = {10.1109/RTSS.2014.9},
volume = {2015},
year = {2015},
}
@article{1311,
abstract = {In this paper, we develop an energy method to study finite speed of propagation and waiting time phenomena for the stochastic porous media equation with linear multiplicative noise in up to three spatial dimensions. Based on a novel iteration technique and on stochastic counterparts of weighted integral estimates used in the deterministic setting, we formulate a sufficient criterion on the growth of initial data which locally guarantees a waiting time phenomenon to occur almost surely. Up to a logarithmic factor, this criterion coincides with the optimal criterion known from the deterministic setting. Our technique can be modified to prove finite speed of propagation as well.},
author = {Julian Fischer and Grün, Günther},
journal = {SIAM Journal on Mathematical Analysis},
number = {1},
pages = {825 -- 854},
publisher = {Society for Industrial and Applied Mathematics },
title = {{Finite speed of propagation and waiting times for the stochastic porous medium equation: A unifying approach}},
doi = {10.1137/140960578},
volume = {47},
year = {2015},
}
@article{1316,
abstract = {In the present work we introduce the notion of a renormalized solution for reaction–diffusion systems with entropy-dissipating reactions. We establish the global existence of renormalized solutions. In the case of integrable reaction terms our notion of a renormalized solution reduces to the usual notion of a weak solution. Our existence result in particular covers all reaction–diffusion systems involving a single reversible reaction with mass-action kinetics and (possibly species-dependent) Fick-law diffusion; more generally, it covers the case of systems of reversible reactions with mass-action kinetics which satisfy the detailed balance condition. For such equations the existence of any kind of solution in general was an open problem, thereby motivating the study of renormalized solutions.},
author = {Julian Fischer},
journal = {Archive for Rational Mechanics and Analysis},
number = {1},
pages = {553 -- 587},
publisher = {Springer},
title = {{Global existence of renormalized solutions to entropy-dissipating reaction–diffusion systems}},
doi = {10.1007/s00205-015-0866-x},
volume = {218},
year = {2015},
}
@inproceedings{1474,
abstract = {Cryptographic access control offers selective access to encrypted data via a combination of key management and functionality-rich cryptographic schemes, such as attribute-based encryption. Using this approach, publicly available meta-data may inadvertently leak information on the access policy that is enforced by cryptography, which renders cryptographic access control unusable in settings where this information is highly sensitive. We begin to address this problem by presenting rigorous definitions for policy privacy in cryptographic access control. For concreteness we set our results in the model of Role-Based Access Control (RBAC), where we identify and formalize several different flavors of privacy, however, our framework should serve as inspiration for other models of access control. Based on our insights we propose a new system which significantly improves on the privacy properties of state-of-the-art constructions. Our design is based on a novel type of privacy-preserving attribute-based encryption, which we introduce and show how to instantiate. We present our results in the context of a cryptographic RBAC system by Ferrara et al. (CSF'13), which uses cryptography to control read access to files, while write access is still delegated to trusted monitors. We give an extension of the construction that permits cryptographic control over write access. Our construction assumes that key management uses out-of-band channels between the policy enforcer and the users but eliminates completely the need for monitoring read/write access to the data.},
author = {Ferrara, Anna and Fuchsbauer, Georg and Liu, Bin and Warinschi, Bogdan},
location = {Verona, Italy},
pages = {46--60},
publisher = {IEEE},
title = {{Policy privacy in cryptographic access control}},
doi = {10.1109/CSF.2015.11},
year = {2015},
}