@inproceedings{1691, abstract = {We consider a case study of the problem of deploying an autonomous air vehicle in a partially observable, dynamic, indoor environment from a specification given as a linear temporal logic (LTL) formula over regions of interest. We model the motion and sensing capabilities of the vehicle as a partially observable Markov decision process (POMDP). We adapt recent results for solving POMDPs with parity objectives to generate a control policy. We also extend the existing framework with a policy minimization technique to obtain a better implementable policy, while preserving its correctness. The proposed techniques are illustrated in an experimental setup involving an autonomous quadrotor performing surveillance in a dynamic environment.}, author = {Svoreňová, Mária and Chmelik, Martin and Leahy, Kevin and Eniser, Hasan and Chatterjee, Krishnendu and Cěrná, Ivana and Belta, Cǎlin}, booktitle = {Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control}, location = {Seattle, WA, United States}, pages = {233 -- 238}, publisher = {ACM}, title = {{Temporal logic motion planning using POMDPs with parity objectives: Case study paper}}, doi = {10.1145/2728606.2728617}, year = {2015}, } @article{1694, abstract = { We introduce quantitative timed refinement and timed simulation (directed) metrics, incorporating zenoness checks, for timed systems. These metrics assign positive real numbers which quantify the timing mismatches between two timed systems, amongst non-zeno runs. We quantify timing mismatches in three ways: (1) the maximal timing mismatch that can arise, (2) the “steady-state” maximal timing mismatches, where initial transient timing mismatches are ignored; and (3) the (long-run) average timing mismatches amongst two systems. These three kinds of mismatches constitute three important types of timing differences. Our event times are the global times, measured from the start of the system execution, not just the time durations of individual steps. We present algorithms over timed automata for computing the three quantitative simulation distances to within any desired degree of accuracy. In order to compute the values of the quantitative simulation distances, we use a game theoretic formulation. We introduce two new kinds of objectives for two player games on finite-state game graphs: (1) eventual debit-sum level objectives, and (2) average debit-sum level objectives. We present algorithms for computing the optimal values for these objectives in graph games, and then use these algorithms to compute the values of the timed simulation distances over timed automata. }, author = {Chatterjee, Krishnendu and Prabhu, Vinayak}, journal = {IEEE Transactions on Automatic Control}, number = {9}, pages = {2291 -- 2306}, publisher = {IEEE}, title = {{Quantitative temporal simulation and refinement distances for timed systems}}, doi = {10.1109/TAC.2015.2404612}, volume = {60}, year = {2015}, } @article{1695, abstract = {We give a comprehensive introduction into a diagrammatic method that allows for the evaluation of Gutzwiller wave functions in finite spatial dimensions. We discuss in detail some numerical schemes that turned out to be useful in the real-space evaluation of the diagrams. The method is applied to the problem of d-wave superconductivity in a two-dimensional single-band Hubbard model. Here, we discuss in particular the role of long-range contributions in our diagrammatic expansion. We further reconsider our previous analysis on the kinetic energy gain in the superconducting state.}, author = {Kaczmarczyk, Jan and Schickling, Tobias and Bünemann, Jörg}, journal = {Physica Status Solidi (B): Basic Solid State Physics}, number = {9}, pages = {2059 -- 2071}, publisher = {Wiley}, title = {{Evaluation techniques for Gutzwiller wave functions in finite dimensions}}, doi = {10.1002/pssb.201552082}, volume = {252}, year = {2015}, } @article{1697, abstract = {Motion tracking is a challenge the visual system has to solve by reading out the retinal population. It is still unclear how the information from different neurons can be combined together to estimate the position of an object. Here we recorded a large population of ganglion cells in a dense patch of salamander and guinea pig retinas while displaying a bar moving diffusively. We show that the bar’s position can be reconstructed from retinal activity with a precision in the hyperacuity regime using a linear decoder acting on 100+ cells. We then took advantage of this unprecedented precision to explore the spatial structure of the retina’s population code. The classical view would have suggested that the firing rates of the cells form a moving hill of activity tracking the bar’s position. Instead, we found that most ganglion cells in the salamander fired sparsely and idiosyncratically, so that their neural image did not track the bar. Furthermore, ganglion cell activity spanned an area much larger than predicted by their receptive fields, with cells coding for motion far in their surround. As a result, population redundancy was high, and we could find multiple, disjoint subsets of neurons that encoded the trajectory with high precision. This organization allows for diverse collections of ganglion cells to represent high-accuracy motion information in a form easily read out by downstream neural circuits.}, author = {Marre, Olivier and Botella Soler, Vicente and Simmons, Kristina and Mora, Thierry and Tkacik, Gasper and Berry, Michael}, journal = {PLoS Computational Biology}, number = {7}, publisher = {Public Library of Science}, title = {{High accuracy decoding of dynamical motion from a large retinal population}}, doi = {10.1371/journal.pcbi.1004304}, volume = {11}, year = {2015}, } @article{1699, abstract = {By hybridization and backcrossing, alleles can surmount species boundaries and be incorporated into the genome of a related species. This introgression of genes is of particular evolutionary relevance if it involves the transfer of adaptations between populations. However, any beneficial allele will typically be associated with other alien alleles that are often deleterious and hamper the introgression process. In order to describe the introgression of an adaptive allele, we set up a stochastic model with an explicit genetic makeup of linked and unlinked deleterious alleles. Based on the theory of reducible multitype branching processes, we derive a recursive expression for the establishment probability of the beneficial allele after a single hybridization event. We furthermore study the probability that slightly deleterious alleles hitchhike to fixation. The key to the analysis is a split of the process into a stochastic phase in which the advantageous alleles establishes and a deterministic phase in which it sweeps to fixation. We thereafter apply the theory to a set of biologically relevant scenarios such as introgression in the presence of many unlinked or few closely linked deleterious alleles. A comparison to computer simulations shows that the approximations work well over a large parameter range.}, author = {Uecker, Hildegard and Setter, Derek and Hermisson, Joachim}, journal = {Journal of Mathematical Biology}, number = {7}, pages = {1523 -- 1580}, publisher = {Springer}, title = {{Adaptive gene introgression after secondary contact}}, doi = {10.1007/s00285-014-0802-y}, volume = {70}, year = {2015}, } @article{1696, abstract = {The recently proposed diagrammatic expansion (DE) technique for the full Gutzwiller wave function (GWF) is applied to the Anderson lattice model. This approach allows for a systematic evaluation of the expectation values with full Gutzwiller wave function in finite-dimensional systems. It introduces results extending in an essential manner those obtained by means of the standard Gutzwiller approximation (GA), which is variationally exact only in infinite dimensions. Within the DE-GWF approach we discuss the principal paramagnetic properties and their relevance to heavy-fermion systems. We demonstrate the formation of an effective, narrow f band originating from atomic f-electron states and subsequently interpret this behavior as a direct itineracy of f electrons; it represents a combined effect of both the hybridization and the correlations induced by the Coulomb repulsive interaction. Such a feature is absent on the level of GA, which is equivalent to the zeroth order of our expansion. Formation of the hybridization- and electron-concentration-dependent narrow f band rationalizes the common assumption of such dispersion of f levels in the phenomenological modeling of the band structure of CeCoIn5. Moreover, it is shown that the emerging f-electron direct itineracy leads in a natural manner to three physically distinct regimes within a single model that are frequently discussed for 4f- or 5f-electron compounds as separate model situations. We identify these regimes as (i) the mixed-valence regime, (ii) Kondo/almost-Kondo insulating regime, and (iii) the Kondo-lattice limit when the f-electron occupancy is very close to the f-state half filling, ⟨nˆf⟩→1. The nonstandard features of the emerging correlated quantum liquid state are stressed.}, author = {Wysokiński, Marcin and Kaczmarczyk, Jan and Spałek, Jozef}, journal = {Physical Review B}, number = {12}, publisher = {American Physical Society}, title = {{Gutzwiller wave function solution for Anderson lattice model: Emerging universal regimes of heavy quasiparticle states}}, doi = {10.1103/PhysRevB.92.125135}, volume = {92}, year = {2015}, } @article{1701, abstract = {The activity of a neural network is defined by patterns of spiking and silence from the individual neurons. Because spikes are (relatively) sparse, patterns of activity with increasing numbers of spikes are less probable, but, with more spikes, the number of possible patterns increases. This tradeoff between probability and numerosity is mathematically equivalent to the relationship between entropy and energy in statistical physics. We construct this relationship for populations of up to N = 160 neurons in a small patch of the vertebrate retina, using a combination of direct and model-based analyses of experiments on the response of this network to naturalistic movies. We see signs of a thermodynamic limit, where the entropy per neuron approaches a smooth function of the energy per neuron as N increases. The form of this function corresponds to the distribution of activity being poised near an unusual kind of critical point. We suggest further tests of criticality, and give a brief discussion of its functional significance. }, author = {Tkacik, Gasper and Mora, Thierry and Marre, Olivier and Amodei, Dario and Palmer, Stephanie and Berry Ii, Michael and Bialek, William}, journal = {PNAS}, number = {37}, pages = {11508 -- 11513}, publisher = {National Academy of Sciences}, title = {{Thermodynamics and signatures of criticality in a network of neurons}}, doi = {10.1073/pnas.1514188112}, volume = {112}, year = {2015}, } @article{1698, abstract = {In mean-payoff games, the objective of the protagonist is to ensure that the limit average of an infinite sequence of numeric weights is nonnegative. In energy games, the objective is to ensure that the running sum of weights is always nonnegative. Multi-mean-payoff and multi-energy games replace individual weights by tuples, and the limit average (resp., running sum) of each coordinate must be (resp., remain) nonnegative. We prove finite-memory determinacy of multi-energy games and show inter-reducibility of multi-mean-payoff and multi-energy games for finite-memory strategies. We improve the computational complexity for solving both classes with finite-memory strategies: we prove coNP-completeness improving the previous known EXPSPACE bound. For memoryless strategies, we show that deciding the existence of a winning strategy for the protagonist is NP-complete. We present the first solution of multi-mean-payoff games with infinite-memory strategies: we show that mean-payoff-sup objectives can be decided in NP∩coNP, whereas mean-payoff-inf objectives are coNP-complete.}, author = {Velner, Yaron and Chatterjee, Krishnendu and Doyen, Laurent and Henzinger, Thomas A and Rabinovich, Alexander and Raskin, Jean}, journal = {Information and Computation}, number = {4}, pages = {177 -- 196}, publisher = {Elsevier}, title = {{The complexity of multi-mean-payoff and multi-energy games}}, doi = {10.1016/j.ic.2015.03.001}, volume = {241}, year = {2015}, } @article{1700, abstract = {We use the dual boson approach to reveal the phase diagram of the Fermi-Hubbard model with long-range dipole-dipole interactions. By using a large-scale finite-temperature calculation on a 64×64 square lattice we demonstrate the existence of a novel phase, possessing an "ultralong-range" order. The fingerprint of this phase - the density correlation function - features a nontrivial behavior on a scale of tens of lattice sites. We study the properties and the stability of the ultralong-range-ordered phase, and show that it is accessible in modern experiments with ultracold polar molecules and magnetic atoms.}, author = {Van Loon, Erik and Katsnelson, Mikhail and Lemeshko, Mikhail}, journal = {Physical Review B}, number = {8}, publisher = {American Physical Society}, title = {{Ultralong-range order in the Fermi-Hubbard model with long-range interactions}}, doi = {10.1103/PhysRevB.92.081106}, volume = {92}, year = {2015}, } @article{1704, abstract = {Given a convex function (Formula presented.) and two hermitian matrices A and B, Lewin and Sabin study in (Lett Math Phys 104:691–705, 2014) the relative entropy defined by (Formula presented.). Among other things, they prove that the so-defined quantity is monotone if and only if (Formula presented.) is operator monotone. The monotonicity is then used to properly define (Formula presented.) for bounded self-adjoint operators acting on an infinite-dimensional Hilbert space by a limiting procedure. More precisely, for an increasing sequence of finite-dimensional projections (Formula presented.) with (Formula presented.) strongly, the limit (Formula presented.) is shown to exist and to be independent of the sequence of projections (Formula presented.). The question whether this sequence converges to its "obvious" limit, namely (Formula presented.), has been left open. We answer this question in principle affirmatively and show that (Formula presented.). If the operators A and B are regular enough, that is (A − B), (Formula presented.) and (Formula presented.) are trace-class, the identity (Formula presented.) holds.}, author = {Deuchert, Andreas and Hainzl, Christian and Seiringer, Robert}, journal = {Letters in Mathematical Physics}, number = {10}, pages = {1449 -- 1466}, publisher = {Springer}, title = {{Note on a family of monotone quantum relative entropies}}, doi = {10.1007/s11005-015-0787-5}, volume = {105}, year = {2015}, } @article{1703, abstract = {Vegetation clearing and land-use change have depleted many natural plant communities to the point where restoration is required. A major impediment to the success of rebuilding complex vegetation communities is having regular access to sufficient quantities of high-quality seed. Seed-production areas (SPAs) can help generate this seed, but these must be underpinned by a broad genetic base to maximise the evolutionary potential of restored populations. However, genetic bottlenecks can occur at the collection, establishment and production stages in SPAs, requiring genetic evaluation. This is especially relevant for species that may take many years before a return on SPA investment is realised. Two recently established yellow box (Eucalyptus melliodora A.Cunn. ex Schauer, Myrtaceae) SPAs were evaluated to determine whether genetic bottlenecks had occurred between seed collection and SPA establishment. No evidence was found to suggest that a significant loss of genetic diversity had occurred at this stage, although there was a significant difference in diversity between the two SPAs. Complex population genetic structure was also observed in the seed used to source the SPAs, with up to eight groups identified. Plant survival in the SPAs was influenced by seed collection location but not by SPA location and was not associated with genetic diversity. There were also no associations between genetic diversity and plant growth. These data highlighted the importance of chance events when establishing SPAs and indicated that the two yellow box SPAs are likely to provide genetically diverse seed sources for future restoration projects, especially by pooling seed from both SPAs.}, author = {Broadhurst, Linda and Fifield, Graham and Vanzella, Bindi and Pickup, Melinda}, journal = {Australian Journal of Botany}, number = {5}, pages = {455 -- 466}, publisher = {CSIRO}, title = {{An evaluation of the genetic structure of seed sources and the maintenance of genetic diversity during establishment of two yellow box (Eucalyptus melliodora) seed-production areas}}, doi = {10.1071/BT15023}, volume = {63}, year = {2015}, } @inproceedings{1706, abstract = {We consider a problem of learning kernels for use in SVM classification in the multi-task and lifelong scenarios and provide generalization bounds on the error of a large margin classifier. Our results show that, under mild conditions on the family of kernels used for learning, solving several related tasks simultaneously is beneficial over single task learning. In particular, as the number of observed tasks grows, assuming that in the considered family of kernels there exists one that yields low approximation error on all tasks, the overhead associated with learning such a kernel vanishes and the complexity converges to that of learning when this good kernel is given to the learner.}, author = {Pentina, Anastasia and Ben David, Shai}, location = {Banff, AB, Canada}, pages = {194 -- 208}, publisher = {Springer}, title = {{Multi-task and lifelong learning of kernels}}, doi = {10.1007/978-3-319-24486-0_13}, volume = {9355}, year = {2015}, } @article{1712, abstract = {The majority of immune cells in Drosophila melanogaster are plasmatocytes; they carry out similar functions to vertebrate macrophages, influencing development as well as protecting against infection and cancer. Plasmatocytes, sometimes referred to with the broader term of hemocytes, migrate widely during embryonic development and cycle in the larvae between sessile and circulating positions. Here we discuss the similarities of plasmatocyte developmental migration and its functions to that of vertebrate macrophages, considering the recent controversy regarding the functions of Drosophila PDGF/VEGF related ligands. We also examine recent findings on the significance of adhesion for plasmatocyte migration in the embryo, as well as proliferation, trans-differentiation, and tumor responses in the larva. We spotlight parallels throughout to vertebrate immune responses.}, author = {Ratheesh, Aparna and Belyaeva, Vera and Siekhaus, Daria E}, journal = {Current Opinion in Cell Biology}, number = {10}, pages = {71 -- 79}, publisher = {Elsevier}, title = {{Drosophila immune cell migration and adhesion during embryonic development and larval immune responses}}, doi = {10.1016/j.ceb.2015.07.003}, volume = {36}, year = {2015}, } @article{1710, abstract = {We consider the hollow on the half-plane {(x, y) : y ≤ 0} ⊂ ℝ2 defined by a function u : (-1, 1) → ℝ, u(x) < 0, and a vertical flow of point particles incident on the hollow. It is assumed that u satisfies the so-called single impact condition (SIC): each incident particle is elastically reflected by graph(u) and goes away without hitting the graph of u anymore. We solve the problem: find the function u minimizing the force of resistance created by the flow. We show that the graph of the minimizer is formed by two arcs of parabolas symmetric to each other with respect to the y-axis. Assuming that the resistance of u ≡ 0 equals 1, we show that the minimal resistance equals π/2 - 2arctan(1/2) ≈ 0.6435. This result completes the previously obtained result [SIAM J. Math. Anal., 46 (2014), pp. 2730-2742] stating in particular that the minimal resistance of a hollow in higher dimensions equals 0.5. We additionally consider a similar problem of minimal resistance, where the hollow in the half-space {(x1,...,xd,y) : y ≤ 0} ⊂ ℝd+1 is defined by a radial function U satisfying the SIC, U(x) = u(|x|), with x = (x1,...,xd), u(ξ) < 0 for 0 ≤ ξ < 1, and u(ξ) = 0 for ξ ≥ 1, and the flow is parallel to the y-axis. The minimal resistance is greater than 0.5 (and coincides with 0.6435 when d = 1) and converges to 0.5 as d → ∞.}, author = {Akopyan, Arseniy and Plakhov, Alexander}, journal = {Society for Industrial and Applied Mathematics}, number = {4}, pages = {2754 -- 2769}, publisher = {SIAM}, title = {{Minimal resistance of curves under the single impact assumption}}, doi = {10.1137/140993843}, volume = {47}, year = {2015}, } @article{1730, abstract = {How much cutting is needed to simplify the topology of a surface? We provide bounds for several instances of this question, for the minimum length of topologically non-trivial closed curves, pants decompositions, and cut graphs with a given combinatorial map in triangulated combinatorial surfaces (or their dual cross-metric counterpart). Our work builds upon Riemannian systolic inequalities, which bound the minimum length of non-trivial closed curves in terms of the genus and the area of the surface. We first describe a systematic way to translate Riemannian systolic inequalities to a discrete setting, and vice-versa. This implies a conjecture by Przytycka and Przytycki (Graph structure theory. Contemporary Mathematics, vol. 147, 1993), a number of new systolic inequalities in the discrete setting, and the fact that a theorem of Hutchinson on the edge-width of triangulated surfaces and Gromov’s systolic inequality for surfaces are essentially equivalent. We also discuss how these proofs generalize to higher dimensions. Then we focus on topological decompositions of surfaces. Relying on ideas of Buser, we prove the existence of pants decompositions of length O(g^(3/2)n^(1/2)) for any triangulated combinatorial surface of genus g with n triangles, and describe an O(gn)-time algorithm to compute such a decomposition. Finally, we consider the problem of embedding a cut graph (or more generally a cellular graph) with a given combinatorial map on a given surface. Using random triangulations, we prove (essentially) that, for any choice of a combinatorial map, there are some surfaces on which any cellular embedding with that combinatorial map has length superlinear in the number of triangles of the triangulated combinatorial surface. There is also a similar result for graphs embedded on polyhedral triangulations.}, author = {Colin De Verdière, Éric and Hubard, Alfredo and De Mesmay, Arnaud N}, journal = {Discrete & Computational Geometry}, number = {3}, pages = {587 -- 620}, publisher = {Springer}, title = {{Discrete systolic inequalities and decompositions of triangulated surfaces}}, doi = {10.1007/s00454-015-9679-9}, volume = {53}, year = {2015}, } @article{1728, abstract = {In the vertebrate neural tube, the morphogen Sonic Hedgehog (Shh) establishes a characteristic pattern of gene expression. Here we quantify the Shh gradient in the developing mouse neural tube and show that while the amplitude of the gradient increases over time, the activity of the pathway transcriptional effectors, Gli proteins, initially increases but later decreases. Computational analysis of the pathway suggests three mechanisms that could contribute to this adaptation: transcriptional upregulation of the inhibitory receptor Ptch1, transcriptional downregulation of Gli and the differential stability of active and inactive Gli isoforms. Consistent with this, Gli2 protein expression is downregulated during neural tube patterning and adaptation continues when the pathway is stimulated downstream of Ptch1. Moreover, the Shh-induced upregulation of Gli2 transcription prevents Gli activity levels from adapting in a different cell type, NIH3T3 fibroblasts, despite the upregulation of Ptch1. Multiple mechanisms therefore contribute to the intracellular dynamics of Shh signalling, resulting in different signalling dynamics in different cell types.}, author = {Cohen, Michael H and Anna Kicheva and Ribeiro, Ana C and Blassberg, Robert A and Page, Karen M and Barnes, Chris P and Briscoe, James}, journal = {Nature Communications}, publisher = {Nature Publishing Group}, title = {{Ptch1 and Gli regulate Shh signalling dynamics via multiple mechanisms}}, doi = {10.1038/ncomms7709}, volume = {6}, year = {2015}, } @article{1735, abstract = {This work presents a method for efficiently simplifying the pressure projection step in a liquid simulation. We first devise a straightforward dimension reduction technique that dramatically reduces the cost of solving the pressure projection. Next, we introduce a novel change of basis that satisfies free-surface boundary conditions exactly, regardless of the accuracy of the pressure solve. When combined, these ideas greatly reduce the computational complexity of the pressure solve without compromising free surface boundary conditions at the highest level of detail. Our techniques are easy to parallelize, and they effectively eliminate the computational bottleneck for large liquid simulations.}, author = {Ando, Ryoichi and Thürey, Nils and Wojtan, Christopher J}, journal = {Computer Graphics Forum}, number = {2}, pages = {473 -- 480}, publisher = {Wiley}, title = {{A dimension-reduced pressure solver for liquid simulations}}, doi = {10.1111/cgf.12576}, volume = {34}, year = {2015}, } @article{1734, abstract = {Facial appearance capture is now firmly established within academic research and used extensively across various application domains, perhaps most prominently in the entertainment industry through the design of virtual characters in video games and films. While significant progress has occurred over the last two decades, no single survey currently exists that discusses the similarities, differences, and practical considerations of the available appearance capture techniques as applied to human faces. A central difficulty of facial appearance capture is the way light interacts with skin-which has a complex multi-layered structure-and the interactions that occur below the skin surface can, by definition, only be observed indirectly. In this report, we distinguish between two broad strategies for dealing with this complexity. "Image-based methods" try to exhaustively capture the exact face appearance under different lighting and viewing conditions, and then render the face through weighted image combinations. "Parametric methods" instead fit the captured reflectance data to some parametric appearance model used during rendering, allowing for a more lightweight and flexible representation but at the cost of potentially increased rendering complexity or inexact reproduction. The goal of this report is to provide an overview that can guide practitioners and researchers in assessing the tradeoffs between current approaches and identifying directions for future advances in facial appearance capture.}, author = {Klehm, Oliver and Rousselle, Fabrice and Papas, Marios and Bradley, Derek and Hery, Christophe and Bickel, Bernd and Jarosz, Wojciech and Beeler, Thabo}, journal = {Computer Graphics Forum}, number = {2}, pages = {709 -- 733}, publisher = {Wiley-Blackwell}, title = {{Recent advances in facial appearance capture}}, doi = {10.1111/cgf.12594}, volume = {34}, year = {2015}, } @article{1789, abstract = {Intellectual disability (ID) has an estimated prevalence of 2-3%. Due to its extreme heterogeneity, the genetic basis of ID remains elusive in many cases. Recently, whole exome sequencing (WES) studies revealed that a large proportion of sporadic cases are caused by de novo gene variants. To identify further genes involved in ID, we performed WES in 250 patients with unexplained ID and their unaffected parents and included exomes of 51 previously sequenced child-parents trios in the analysis. Exome analysis revealed de novo intragenic variants in SET domain-containing 5 (SETD5) in two patients. One patient carried a nonsense variant, and the other an 81 bp deletion located across a splice-donor site. Chromosomal microarray diagnostics further identified four de novo non-recurrent microdeletions encompassing SETD5. CRISPR/Cas9 mutation modelling of the two intragenic variants demonstrated nonsense-mediated decay of the resulting transcripts, pointing to a loss-of-function (LoF) and haploinsufficiency as the common disease-causing mechanism of intragenic SETD5 sequence variants and SETD5-containing microdeletions. In silico domain prediction of SETD5, a predicted SET domain-containing histone methyltransferase (HMT), substantiated the presence of a SET domain and identified a novel putative PHD domain, strengthening a functional link to well-known histone-modifying ID genes. All six patients presented with ID and certain facial dysmorphisms, suggesting that SETD5 sequence variants contribute substantially to the microdeletion 3p25.3 phenotype. The present report of two SETD5 LoF variants in 301 patients demonstrates a prevalence of 0.7% and thus SETD5 variants as a relatively frequent cause of ID.}, author = {Kuechler, Alma and Zink, Alexander and Wieland, Thomas and Lüdecke, Hermann and Cremer, Kirsten and Salviati, Leonardo and Magini, Pamela and Najafi, Kimia and Zweier, Christiane and Czeschik, Johanna and Aretz, Stefan and Endele, Sabine and Tamburrino, Federica and Pinato, Claudia and Clementi, Maurizio and Gundlach, Jasmin and Maylahn, Carina and Mazzanti, Laura and Wohlleber, Eva and Schwarzmayr, Thomas and Kariminejad, Roxana and Schlessinger, Avner and Wieczorek, Dagmar and Strom, Tim and Novarino, Gaia and Engels, Hartmut}, journal = {European Journal of Human Genetics}, number = {6}, pages = {753 -- 760}, publisher = {Nature Publishing Group}, title = {{Loss-of-function variants of SETD5 cause intellectual disability and the core phenotype of microdeletion 3p25.3 syndrome}}, doi = {10.1038/ejhg.2014.165}, volume = {23}, year = {2015}, } @article{1788, abstract = {We fabricate and characterize a microscale silicon opto-electromechanical system whose mechanical motion is coupled capacitively to an electrical circuit and optically via radiation pressure to a photonic crystal cavity. To achieve large electromechanical interaction strength, we implement an inverse shadow mask fabrication scheme which obtains capacitor gaps as small as 30 nm while maintaining a silicon surface quality necessary for minimizing optical loss. Using the sensitive optical read-out of the photonic crystal cavity, we characterize the linear and nonlinear capacitive coupling to the fundamental ωm=2π = 63 MHz in-plane flexural motion of the structure, showing that the large electromechanical coupling in such devices may be suitable for realizing efficient microwave-to-optical signal conversion.}, author = {Pitanti, Alessandro and Johannes Fink and Safavi-Naeini, Amir H and Hill, Jeff T and Lei, Chan U and Tredicucci, Alessandro and Painter, Oskar J}, journal = {Optics Express}, number = {3}, pages = {3196 -- 3208}, publisher = {Optical Society of America}, title = {{Strong opto-electro-mechanical coupling in a silicon photonic crystal cavity}}, doi = {10.1364/OE.23.003196}, volume = {23}, year = {2015}, }