@misc{9742, abstract = {Repeated pathogen exposure is a common threat in colonies of social insects, posing selection pressures on colony members to respond with improved disease-defense performance. We here tested whether experience gained by repeated tending of low-level fungus-exposed (Metarhizium robertsii) larvae may alter the performance of sanitary brood care in the clonal ant, Platythyrea punctata. We trained ants individually over nine consecutive trials to either sham-treated or fungus-exposed larvae. We then compared the larval grooming behavior of naive and trained ants and measured how effectively they removed infectious fungal conidiospores from the fungus-exposed larvae. We found that the ants changed the duration of larval grooming in response to both, larval treatment and their level of experience: (1) sham-treated larvae received longer grooming than the fungus-exposed larvae and (2) trained ants performed less self-grooming but longer larval grooming than naive ants, which was true for both, ants trained to fungus-exposed and also to sham-treated larvae. Ants that groomed the fungus-exposed larvae for longer periods removed a higher number of fungal conidiospores from the surface of the fungus-exposed larvae. As experienced ants performed longer larval grooming, they were more effective in fungal removal, thus making them better caretakers under pathogen attack of the colony. By studying this clonal ant, we can thus conclude that even in the absence of genetic variation between colony members, differences in experience levels of brood care may affect performance of sanitary brood care in social insects.}, author = {Westhus, Claudia and Ugelvig, Line V and Tourdot, Edouard and Heinze, Jürgen and Doums, Claudie and Cremer, Sylvia}, publisher = {Dryad}, title = {{Data from: Increased grooming after repeated brood care provides sanitary benefits in a clonal ant}}, doi = {10.5061/dryad.7kc79}, year = {2015}, } @misc{9765, author = {Chevereau, Guillaume and Lukacisinova, Marta and Batur, Tugce and Guvenek, Aysegul and Ayhan, Dilay Hazal and Toprak, Erdal and Bollenbach, Mark Tobias}, publisher = {Public Library of Science}, title = {{Gene ontology enrichment analysis for the most sensitive gene deletion strains for all drugs}}, doi = {10.1371/journal.pbio.1002299.s008}, year = {2015}, } @article{12630, abstract = {The hydrology of high-elevation watersheds of the Hindu Kush-Himalaya region (HKH) is poorly known. The correct representation of internal states and process dynamics in glacio-hydrological models can often not be verified due to missing in situ measurements. We use a new set of detailed ground data from the upper Langtang valley in Nepal to systematically guide a state-of-the art glacio-hydrological model through a parameter assigning process with the aim to understand the hydrology of the catchment and contribution of snow and ice processes to runoff. 14 parameters are directly calculated on the basis of local data, and 13 parameters are calibrated against 5 different datasets of in situ or remote sensing data. Spatial fields of debris thickness are reconstructed through a novel approach that employs data from an Unmanned Aerial Vehicle (UAV), energy balance modeling and statistical techniques. The model is validated against measured catchment runoff (Nash–Sutcliffe efficiency 0.87) and modeled snow cover is compared to Landsat snow cover. The advanced representation of processes allowed assessing the role played by avalanching for runoff for the first time for a Himalayan catchment (5% of annual water inputs to the hydrological system are due to snow redistribution) and to quantify the hydrological significance of sub-debris ice melt (9% of annual water inputs). Snowmelt is the most important contributor to total runoff during the hydrological year 2012/2013 (representing 40% of all sources), followed by rainfall (34%) and ice melt (26%). A sensitivity analysis is used to assess the efficiency of the monitoring network and identify the timing and location of field measurements that constrain model uncertainty. The methodology to set up a glacio-hydrological model in high-elevation regions presented in this study can be regarded as a benchmark for modelers in the HKH seeking to evaluate their calibration approach, their experimental setup and thus to reduce the predictive model uncertainty. }, author = {Ragettli, S. and Pellicciotti, Francesca and Immerzeel, W.W. and Miles, E.S. and Petersen, L. and Heynen, M. and Shea, J.M. and Stumm, D. and Joshi, S. and Shrestha, A.}, issn = {0309-1708}, journal = {Advances in Water Resources}, keywords = {Water Science and Technology}, number = {4}, pages = {94--111}, publisher = {Elsevier}, title = {{Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with an advanced simulation model}}, doi = {10.1016/j.advwatres.2015.01.013}, volume = {78}, year = {2015}, } @article{12628, abstract = {Thick debris cover on glaciers can significantly reduce ice melt. However, several studies have suggested that debris-covered glaciers in the Himalaya might have lost mass at a rate similar to debris-free glaciers. We reconstruct elevation and mass changes for the debris-covered glaciers of the upper Langtang valley, Nepalese Himalaya, using a digital elevation model (DEM) from 1974 stereo Hexagon satellite data and the 2000 SRTM (Shuttle Radar Topography Mission) DEM. Uncertainties are high in the accumulation areas, due to data gaps in the SRTM and difficulties with delineation of the glacier borders. Even with these uncertainties, we obtain thinning rates comparable to those of several other studies in the Himalaya. In particular, we obtain a total mass balance for the investigated debris-covered glaciers of the basin of –0.32 ± 0.18 m w.e. a−1. However, there are major spatial differences both between glaciers and within any single glacier, exhibiting a very distinct nonlinear mass-balance profile with elevation. Through analysis of surface velocities derived from Landsat ETM+ imagery, we show that thinning occurs in areas of low velocity and low slope. These areas are prone to a general, dynamic decay of surface features and to the development of supraglacial lakes and ice cliffs, which may be responsible for a considerable increase in overall glacier ablation.}, author = {Pellicciotti, Francesca and Stephan, Christa and Miles, Evan and Herreid, Sam and Immerzeel, Walter W. and Bolch, Tobias}, issn = {1727-5652}, journal = {Journal of Glaciology}, keywords = {Earth-Surface Processes}, number = {226}, pages = {373--386}, publisher = {International Glaciological Society}, title = {{Mass-balance changes of the debris-covered glaciers in the Langtang Himal, Nepal, from 1974 to 1999}}, doi = {10.3189/2015jog13j237}, volume = {61}, year = {2015}, } @article{12631, abstract = {Air temperature is one of the most relevant input variables for snow and ice melt calculations. However, local meteorological conditions, complex topography, and logistical concerns in glacierized regions make the measuring and modeling of air temperature a difficult task. In this study, we investigate the spatial distribution of 2 m air temperature over mountain glaciers and propose a modification to an existing model to improve its representation. Spatially distributed meteorological data from Haut Glacier d'Arolla (Switzerland), Place (Canada), and Juncal Norte (Chile) Glaciers are used to examine approximate flow line temperatures during their respective ablation seasons. During warm conditions (off-glacier temperatures well above 0°C), observed air temperatures in the upper reaches of Place Glacier and Haut Glacier d'Arolla decrease down glacier along the approximate flow line. At Juncal Norte and Haut Glacier d'Arolla, an increase in air temperature is observed over the glacier tongue. While the temperature behavior over the upper part can be explained by the cooling effect of the glacier surface, the temperature increase over the glacier tongue may be caused by several processes induced by the surrounding warm atmosphere. In order to capture the latter effect, we add an additional term to the Greuell and Böhm (GB) thermodynamic glacier wind model. For high off-glacier temperatures, the modified GB model reduces root-mean-square error up to 32% and provides a new approach for distributing air temperature over mountain glaciers as a function of off-glacier temperatures and approximate glacier flow lines.}, author = {Ayala, A. and Pellicciotti, Francesca and Shea, J. M.}, issn = {2169-8996}, journal = {Journal of Geophysical Research: Atmospheres}, keywords = {Space and Planetary Science, Earth and Planetary Sciences (miscellaneous), Atmospheric Science, Geophysics}, number = {8}, pages = {3139--3157}, publisher = {American Geophysical Union}, title = {{Modeling 2 m air temperatures over mountain glaciers: Exploring the influence of katabatic cooling and external warming}}, doi = {10.1002/2015jd023137}, volume = {120}, year = {2015}, } @article{12629, abstract = {Meteorological studies in high-mountain environments form the basis of our understanding of catchment hydrology and glacier accumulation and melt processes, yet high-altitude (>4000 m above sea level, asl) observatories are rare. This research presents meteorological data recorded between December 2012 and November 2013 at seven stations in Nepal, ranging in elevation from 3860 to 5360 m asl. Seasonal and diurnal cycles in air temperature, vapour pressure, incoming short-wave and long-wave radiation, atmospheric transmissivity, wind speed, and precipitation are compared between sites. Solar radiation strongly affects diurnal temperature and vapour pressure cycles, but local topography and valley-scale circulations alter wind speed and precipitation cycles. The observed diurnal variability in vertical temperature gradients in all seasons highlights the importance of in situ measurements for melt modelling. The monsoon signal (progressive onset and sharp end) is visible in all data-sets, and the passage of the remnants of Typhoon Phailin in mid-October 2013 provides an interesting case study on the possible effects of such storms on glaciers in the region.}, author = {Shea, J.M. and Wagnon, P. and Immerzeel, W.W. and Biron, R. and Brun, F. and Pellicciotti, Francesca}, issn = {1360-0648}, journal = {International Journal of Water Resources Development}, keywords = {Water Science and Technology, Development}, number = {2}, pages = {174--200}, publisher = {Taylor & Francis}, title = {{A comparative high-altitude meteorological analysis from three catchments in the Nepalese Himalaya}}, doi = {10.1080/07900627.2015.1020417}, volume = {31}, year = {2015}, } @article{12626, abstract = {Ice cliffs have been identified as a reason for higher ablation rates on debris-covered glaciers than are implied by the insulation effects of the debris. This study aims to improve our understanding of cliff backwasting, and the role of radiative fluxes in particular. An energy-balance model is forced with new data gathered in May and October 2013 on Lirung Glacier, Nepalese Himalaya. Observations show substantial variability in melt between cliffs, between locations on any cliff and between seasons. Using a high-resolution digital elevation model we calculate longwave fluxes incident to the cliff from surrounding terrain and include the effect of local shading on shortwave radiation. This is an advance over previous studies, that made simplified assumptions on cliff geometry and radiative fluxes. Measured melt rates varied between 3.25 and 8.6 cm d−1 in May and 0.18 and 1.34 cm d−1 in October. Model results reproduce the strong variability in space and time, suggesting considerable differences in radiative fluxes over one cliff. In October the model fails to reproduce stake readings, probably due to the lack of a refreezing component. Disregarding local topography can lead to overestimation of melt at the point scale by up to ∼9%.}, author = {Steiner, Jakob F. and Pellicciotti, Francesca and Buri, Pascal and Miles, Evan S. and Immerzeel, Walter W. and Reid, Tim D.}, issn = {1727-5652}, journal = {Journal of Glaciology}, number = {229}, pages = {889--907}, publisher = {International Glaciological Society}, title = {{Modelling ice-cliff backwasting on a debris-covered glacier in the Nepalese Himalaya}}, doi = {10.3189/2015jog14j194}, volume = {61}, year = {2015}, } @article{12627, abstract = {Spatial evolution of supraglacial debris cover on mountain glaciers is a largely unmonitored and poorly understood phenomenon that directly affects glacier melt. Supraglacial debris cover for 93 glaciers in the Karakoram, northern Pakistan, was mapped from Landsat imagery acquired in 1977, 1998, 2009 and 2014. Surge-type glaciers occupy 41% of the study area and were considered separately. The time series of debris-covered surface area change shows a mean value of zero or near-zero change for both surging and non-surging glaciers. An increase in debris-covered area is often associated with negative regional mass balances. We extend this logic to suggest that the stable regional mass balances in the Karakoram explain the zero or near-zero change in debris-covered area. This coupling of trends combined with our 37 year time series of data suggests the Karakoram anomaly extends further back in time than previously known.}, author = {Herreid, Sam and Pellicciotti, Francesca and Ayala, Alvaro and Chesnokova, Anna and Kienholz, Christian and Shea, Joseph and Shrestha, Arun}, issn = {1727-5652}, journal = {Journal of Glaciology}, number = {227}, pages = {524--536}, publisher = {International Glaciological Society}, title = {{Satellite observations show no net change in the percentage of supraglacial debris-covered area in northern Pakistan from 1977 to 2014}}, doi = {10.3189/2015jog14j227}, volume = {61}, year = {2015}, } @article{1618, abstract = {CCL19 and CCL21 are chemokines involved in the trafficking of immune cells, particularly within the lymphatic system, through activation of CCR7. Concurrent expression of PSGL-1 and CCR7 in naive T-cells enhances recruitment of these cells to secondary lymphoid organs by CCL19 and CCL21. Here the solution structure of CCL19 is reported. It contains a canonical chemokine domain. Chemical shift mapping shows the N-termini of PSGL-1 and CCR7 have overlapping binding sites for CCL19 and binding is competitive. Implications for the mechanism of PSGL-1's enhancement of resting T-cell recruitment are discussed.}, author = {Veldkamp, Christopher and Kiermaier, Eva and Gabel Eissens, Skylar and Gillitzer, Miranda and Lippner, David and Disilvio, Frank and Mueller, Casey and Wantuch, Paeton and Chaffee, Gary and Famiglietti, Michael and Zgoba, Danielle and Bailey, Asha and Bah, Yaya and Engebretson, Samantha and Graupner, David and Lackner, Emily and Larosa, Vincent and Medeiros, Tysha and Olson, Michael and Phillips, Andrew and Pyles, Harley and Richard, Amanda and Schoeller, Scott and Touzeau, Boris and Williams, Larry and Sixt, Michael K and Peterson, Francis}, journal = {Biochemistry}, number = {27}, pages = {4163 -- 4166}, publisher = {American Chemical Society}, title = {{Solution structure of CCL19 and identification of overlapping CCR7 and PSGL-1 binding sites}}, doi = {10.1021/acs.biochem.5b00560}, volume = {54}, year = {2015}, } @inproceedings{12881, author = {Martius, Georg S and Olbrich, Eckehard}, booktitle = {Proceedings of the 13th European Conference on Artificial Life}, isbn = {9780262330275}, location = {York, United Kingdom}, pages = {78}, publisher = {MIT Press}, title = {{Quantifying self-organizing behavior of autonomous robots}}, doi = {10.7551/978-0-262-33027-5-ch018}, year = {2015}, }