@article{1693,
abstract = {Quantum interference between energetically close states is theoretically investigated, with the state structure being observed via laser spectroscopy. In this work, we focus on hyperfine states of selected hydrogenic muonic isotopes, and on how quantum interference affects the measured Lamb shift. The process of photon excitation and subsequent photon decay is implemented within the framework of nonrelativistic second-order perturbation theory. Due to its experimental interest, calculations are performed for muonic hydrogen, deuterium, and helium-3. We restrict our analysis to the case of photon scattering by incident linear polarized photons and the polarization of the scattered photons not being observed. We conclude that while quantum interference effects can be safely neglected in muonic hydrogen and helium-3, in the case of muonic deuterium there are resonances with close proximity, where quantum interference effects can induce shifts up to a few percent of the linewidth, assuming a pointlike detector. However, by taking into account the geometry of the setup used by the CREMA collaboration, this effect is reduced to less than 0.2% of the linewidth in all possible cases, which makes it irrelevant at the present level of accuracy. © 2015 American Physical Society.},
author = {Amaro, Pedro and Franke, Beatrice and Krauth, Julian and Diepold, Marc and Fratini, Filippo and Safari, Laleh and Machado, Jorge and Antognini, Aldo and Kottmann, Franz and Indelicato, Paul and Pohl, Randolf and Santos, José},
journal = {Physical Review A},
number = {2},
publisher = {American Physical Society},
title = {{Quantum interference effects in laser spectroscopy of muonic hydrogen, deuterium, and helium-3}},
doi = {10.1103/PhysRevA.92.022514},
volume = {92},
year = {2015},
}
@article{1694,
abstract = {
We introduce quantitative timed refinement and timed simulation (directed) metrics, incorporating zenoness checks, for timed systems. These metrics assign positive real numbers which quantify the timing mismatches between two timed systems, amongst non-zeno runs. We quantify timing mismatches in three ways: (1) the maximal timing mismatch that can arise, (2) the “steady-state” maximal timing mismatches, where initial transient timing mismatches are ignored; and (3) the (long-run) average timing mismatches amongst two systems. These three kinds of mismatches constitute three important types of timing differences. Our event times are the global times, measured from the start of the system execution, not just the time durations of individual steps. We present algorithms over timed automata for computing the three quantitative simulation distances to within any desired degree of accuracy. In order to compute the values of the quantitative simulation distances, we use a game theoretic formulation. We introduce two new kinds of objectives for two player games on finite-state game graphs: (1) eventual debit-sum level objectives, and (2) average debit-sum level objectives. We present algorithms for computing the optimal values for these objectives in graph games, and then use these algorithms to compute the values of the timed simulation distances over timed automata.
},
author = {Chatterjee, Krishnendu and Prabhu, Vinayak},
journal = {IEEE Transactions on Automatic Control},
number = {9},
pages = {2291 -- 2306},
publisher = {IEEE},
title = {{Quantitative temporal simulation and refinement distances for timed systems}},
doi = {10.1109/TAC.2015.2404612},
volume = {60},
year = {2015},
}
@article{1695,
abstract = {We give a comprehensive introduction into a diagrammatic method that allows for the evaluation of Gutzwiller wave functions in finite spatial dimensions. We discuss in detail some numerical schemes that turned out to be useful in the real-space evaluation of the diagrams. The method is applied to the problem of d-wave superconductivity in a two-dimensional single-band Hubbard model. Here, we discuss in particular the role of long-range contributions in our diagrammatic expansion. We further reconsider our previous analysis on the kinetic energy gain in the superconducting state.},
author = {Kaczmarczyk, Jan and Schickling, Tobias and Bünemann, Jörg},
journal = {Physica Status Solidi (B): Basic Solid State Physics},
number = {9},
pages = {2059 -- 2071},
publisher = {Wiley},
title = {{Evaluation techniques for Gutzwiller wave functions in finite dimensions}},
doi = {10.1002/pssb.201552082},
volume = {252},
year = {2015},
}
@article{1696,
abstract = {The recently proposed diagrammatic expansion (DE) technique for the full Gutzwiller wave function (GWF) is applied to the Anderson lattice model. This approach allows for a systematic evaluation of the expectation values with full Gutzwiller wave function in finite-dimensional systems. It introduces results extending in an essential manner those obtained by means of the standard Gutzwiller approximation (GA), which is variationally exact only in infinite dimensions. Within the DE-GWF approach we discuss the principal paramagnetic properties and their relevance to heavy-fermion systems. We demonstrate the formation of an effective, narrow f band originating from atomic f-electron states and subsequently interpret this behavior as a direct itineracy of f electrons; it represents a combined effect of both the hybridization and the correlations induced by the Coulomb repulsive interaction. Such a feature is absent on the level of GA, which is equivalent to the zeroth order of our expansion. Formation of the hybridization- and electron-concentration-dependent narrow f band rationalizes the common assumption of such dispersion of f levels in the phenomenological modeling of the band structure of CeCoIn5. Moreover, it is shown that the emerging f-electron direct itineracy leads in a natural manner to three physically distinct regimes within a single model that are frequently discussed for 4f- or 5f-electron compounds as separate model situations. We identify these regimes as (i) the mixed-valence regime, (ii) Kondo/almost-Kondo insulating regime, and (iii) the Kondo-lattice limit when the f-electron occupancy is very close to the f-state half filling, ⟨nˆf⟩→1. The nonstandard features of the emerging correlated quantum liquid state are stressed.},
author = {Wysokiński, Marcin and Kaczmarczyk, Jan and Spałek, Jozef},
journal = {Physical Review B},
number = {12},
publisher = {American Physical Society},
title = {{Gutzwiller wave function solution for Anderson lattice model: Emerging universal regimes of heavy quasiparticle states}},
doi = {10.1103/PhysRevB.92.125135},
volume = {92},
year = {2015},
}
@article{1697,
abstract = {Motion tracking is a challenge the visual system has to solve by reading out the retinal population. It is still unclear how the information from different neurons can be combined together to estimate the position of an object. Here we recorded a large population of ganglion cells in a dense patch of salamander and guinea pig retinas while displaying a bar moving diffusively. We show that the bar’s position can be reconstructed from retinal activity with a precision in the hyperacuity regime using a linear decoder acting on 100+ cells. We then took advantage of this unprecedented precision to explore the spatial structure of the retina’s population code. The classical view would have suggested that the firing rates of the cells form a moving hill of activity tracking the bar’s position. Instead, we found that most ganglion cells in the salamander fired sparsely and idiosyncratically, so that their neural image did not track the bar. Furthermore, ganglion cell activity spanned an area much larger than predicted by their receptive fields, with cells coding for motion far in their surround. As a result, population redundancy was high, and we could find multiple, disjoint subsets of neurons that encoded the trajectory with high precision. This organization allows for diverse collections of ganglion cells to represent high-accuracy motion information in a form easily read out by downstream neural circuits.},
author = {Marre, Olivier and Botella Soler, Vicente and Simmons, Kristina and Mora, Thierry and Tkacik, Gasper and Berry, Michael},
journal = {PLoS Computational Biology},
number = {7},
publisher = {Public Library of Science},
title = {{High accuracy decoding of dynamical motion from a large retinal population}},
doi = {10.1371/journal.pcbi.1004304},
volume = {11},
year = {2015},
}
@article{1698,
abstract = {In mean-payoff games, the objective of the protagonist is to ensure that the limit average of an infinite sequence of numeric weights is nonnegative. In energy games, the objective is to ensure that the running sum of weights is always nonnegative. Multi-mean-payoff and multi-energy games replace individual weights by tuples, and the limit average (resp., running sum) of each coordinate must be (resp., remain) nonnegative. We prove finite-memory determinacy of multi-energy games and show inter-reducibility of multi-mean-payoff and multi-energy games for finite-memory strategies. We improve the computational complexity for solving both classes with finite-memory strategies: we prove coNP-completeness improving the previous known EXPSPACE bound. For memoryless strategies, we show that deciding the existence of a winning strategy for the protagonist is NP-complete. We present the first solution of multi-mean-payoff games with infinite-memory strategies: we show that mean-payoff-sup objectives can be decided in NP∩coNP, whereas mean-payoff-inf objectives are coNP-complete.},
author = {Velner, Yaron and Chatterjee, Krishnendu and Doyen, Laurent and Henzinger, Thomas A and Rabinovich, Alexander and Raskin, Jean},
journal = {Information and Computation},
number = {4},
pages = {177 -- 196},
publisher = {Elsevier},
title = {{The complexity of multi-mean-payoff and multi-energy games}},
doi = {10.1016/j.ic.2015.03.001},
volume = {241},
year = {2015},
}
@article{1699,
abstract = {By hybridization and backcrossing, alleles can surmount species boundaries and be incorporated into the genome of a related species. This introgression of genes is of particular evolutionary relevance if it involves the transfer of adaptations between populations. However, any beneficial allele will typically be associated with other alien alleles that are often deleterious and hamper the introgression process. In order to describe the introgression of an adaptive allele, we set up a stochastic model with an explicit genetic makeup of linked and unlinked deleterious alleles. Based on the theory of reducible multitype branching processes, we derive a recursive expression for the establishment probability of the beneficial allele after a single hybridization event. We furthermore study the probability that slightly deleterious alleles hitchhike to fixation. The key to the analysis is a split of the process into a stochastic phase in which the advantageous alleles establishes and a deterministic phase in which it sweeps to fixation. We thereafter apply the theory to a set of biologically relevant scenarios such as introgression in the presence of many unlinked or few closely linked deleterious alleles. A comparison to computer simulations shows that the approximations work well over a large parameter range.},
author = {Uecker, Hildegard and Setter, Derek and Hermisson, Joachim},
journal = {Journal of Mathematical Biology},
number = {7},
pages = {1523 -- 1580},
publisher = {Springer},
title = {{Adaptive gene introgression after secondary contact}},
doi = {10.1007/s00285-014-0802-y},
volume = {70},
year = {2015},
}
@article{1700,
abstract = {We use the dual boson approach to reveal the phase diagram of the Fermi-Hubbard model with long-range dipole-dipole interactions. By using a large-scale finite-temperature calculation on a 64×64 square lattice we demonstrate the existence of a novel phase, possessing an "ultralong-range" order. The fingerprint of this phase - the density correlation function - features a nontrivial behavior on a scale of tens of lattice sites. We study the properties and the stability of the ultralong-range-ordered phase, and show that it is accessible in modern experiments with ultracold polar molecules and magnetic atoms.},
author = {Van Loon, Erik and Katsnelson, Mikhail and Lemeshko, Mikhail},
journal = {Physical Review B},
number = {8},
publisher = {American Physical Society},
title = {{Ultralong-range order in the Fermi-Hubbard model with long-range interactions}},
doi = {10.1103/PhysRevB.92.081106},
volume = {92},
year = {2015},
}
@article{1701,
abstract = {The activity of a neural network is defined by patterns of spiking and silence from the individual neurons. Because spikes are (relatively) sparse, patterns of activity with increasing numbers of spikes are less probable, but, with more spikes, the number of possible patterns increases. This tradeoff between probability and numerosity is mathematically equivalent to the relationship between entropy and energy in statistical physics. We construct this relationship for populations of up to N = 160 neurons in a small patch of the vertebrate retina, using a combination of direct and model-based analyses of experiments on the response of this network to naturalistic movies. We see signs of a thermodynamic limit, where the entropy per neuron approaches a smooth function of the energy per neuron as N increases. The form of this function corresponds to the distribution of activity being poised near an unusual kind of critical point. We suggest further tests of criticality, and give a brief discussion of its functional significance. },
author = {Tkacik, Gasper and Mora, Thierry and Marre, Olivier and Amodei, Dario and Palmer, Stephanie and Berry Ii, Michael and Bialek, William},
journal = {PNAS},
number = {37},
pages = {11508 -- 11513},
publisher = {National Academy of Sciences},
title = {{Thermodynamics and signatures of criticality in a network of neurons}},
doi = {10.1073/pnas.1514188112},
volume = {112},
year = {2015},
}
@article{1703,
abstract = {Vegetation clearing and land-use change have depleted many natural plant communities to the point where restoration is required. A major impediment to the success of rebuilding complex vegetation communities is having regular access to sufficient quantities of high-quality seed. Seed-production areas (SPAs) can help generate this seed, but these must be underpinned by a broad genetic base to maximise the evolutionary potential of restored populations. However, genetic bottlenecks can occur at the collection, establishment and production stages in SPAs, requiring genetic evaluation. This is especially relevant for species that may take many years before a return on SPA investment is realised. Two recently established yellow box (Eucalyptus melliodora A.Cunn. ex Schauer, Myrtaceae) SPAs were evaluated to determine whether genetic bottlenecks had occurred between seed collection and SPA establishment. No evidence was found to suggest that a significant loss of genetic diversity had occurred at this stage, although there was a significant difference in diversity between the two SPAs. Complex population genetic structure was also observed in the seed used to source the SPAs, with up to eight groups identified. Plant survival in the SPAs was influenced by seed collection location but not by SPA location and was not associated with genetic diversity. There were also no associations between genetic diversity and plant growth. These data highlighted the importance of chance events when establishing SPAs and indicated that the two yellow box SPAs are likely to provide genetically diverse seed sources for future restoration projects, especially by pooling seed from both SPAs.},
author = {Broadhurst, Linda and Fifield, Graham and Vanzella, Bindi and Pickup, Melinda},
journal = {Australian Journal of Botany},
number = {5},
pages = {455 -- 466},
publisher = {CSIRO},
title = {{An evaluation of the genetic structure of seed sources and the maintenance of genetic diversity during establishment of two yellow box (Eucalyptus melliodora) seed-production areas}},
doi = {10.1071/BT15023},
volume = {63},
year = {2015},
}