--- _id: '2945' abstract: - lang: eng text: In search of foreign antigens, lymphocytes recirculate from the blood, through lymph nodes, into lymphatics and back to the blood. Dendritic cells also migrate to lymph nodes for optimal interaction with lymphocytes. This continuous trafficking of immune cells into and out of lymph nodes is essential for immune surveillance of foreign invaders. In this article, we review our current understanding of the functions of high endothelial venules (HEVs), stroma and lymphatics in the entry, positioning and exit of immune cells in lymph nodes during homeostasis, and we highlight the unexpected role of dendritic cells in the control of lymphocyte homing through HEVs. acknowledgement: We thank M. Sixt and A. Peixoto for helpful comments on the manuscript. Work in the laboratory of J.-P.G. is supported by grants from Fondation ARC pour la Recherche sur le Cancer, Agence Nationale de la Recherche (ANR), Institut National du Cancer (INCA), Fondation RITC and Région Midi-Pyrénées. Research by R.F. is supported by Deutsche Forschungsgemeinschaft (DFG) grants SFB621-A1, SFB738-B5, SFB587-B3, SFB900-B1 and KFO 250-FO 334/2-1. We regret that, owing to space limitations, we could not always quote the work of colleagues who have contributed to the field. author: - first_name: Jean full_name: Girard, Jean last_name: Girard - first_name: Christine full_name: Moussion, Christine id: 3356F664-F248-11E8-B48F-1D18A9856A87 last_name: Moussion - first_name: Reinhold full_name: Förster, Reinhold last_name: Förster citation: ama: Girard J, Moussion C, Förster R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nature Reviews Immunology. 2012;12(11):762-773. doi:10.1038/nri3298 apa: Girard, J., Moussion, C., & Förster, R. (2012). HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nature Reviews Immunology. Nature Publishing Group. https://doi.org/10.1038/nri3298 chicago: Girard, Jean, Christine Moussion, and Reinhold Förster. “HEVs, Lymphatics and Homeostatic Immune Cell Trafficking in Lymph Nodes.” Nature Reviews Immunology. Nature Publishing Group, 2012. https://doi.org/10.1038/nri3298. ieee: J. Girard, C. Moussion, and R. Förster, “HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes,” Nature Reviews Immunology, vol. 12, no. 11. Nature Publishing Group, pp. 762–773, 2012. ista: Girard J, Moussion C, Förster R. 2012. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nature Reviews Immunology. 12(11), 762–773. mla: Girard, Jean, et al. “HEVs, Lymphatics and Homeostatic Immune Cell Trafficking in Lymph Nodes.” Nature Reviews Immunology, vol. 12, no. 11, Nature Publishing Group, 2012, pp. 762–73, doi:10.1038/nri3298. short: J. Girard, C. Moussion, R. Förster, Nature Reviews Immunology 12 (2012) 762–773. date_created: 2018-12-11T12:00:29Z date_published: 2012-11-01T00:00:00Z date_updated: 2021-01-12T07:39:57Z day: '01' department: - _id: MiSi doi: 10.1038/nri3298 intvolume: ' 12' issue: '11' language: - iso: eng month: '11' oa_version: None page: 762 - 773 publication: Nature Reviews Immunology publication_status: published publisher: Nature Publishing Group publist_id: '3787' quality_controlled: '1' scopus_import: 1 status: public title: HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 12 year: '2012' ... --- _id: '2949' author: - first_name: David full_name: Dupret, David last_name: Dupret - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 citation: ama: Dupret D, Csicsvari JL. The medial entorhinal cortex keeps Up. Nature Neuroscience. 2012;15(11):1471-1472. doi:10.1038/nn.3245 apa: Dupret, D., & Csicsvari, J. L. (2012). The medial entorhinal cortex keeps Up. Nature Neuroscience. Nature Publishing Group. https://doi.org/10.1038/nn.3245 chicago: Dupret, David, and Jozsef L Csicsvari. “The Medial Entorhinal Cortex Keeps Up.” Nature Neuroscience. Nature Publishing Group, 2012. https://doi.org/10.1038/nn.3245. ieee: D. Dupret and J. L. Csicsvari, “The medial entorhinal cortex keeps Up,” Nature Neuroscience, vol. 15, no. 11. Nature Publishing Group, pp. 1471–1472, 2012. ista: Dupret D, Csicsvari JL. 2012. The medial entorhinal cortex keeps Up. Nature Neuroscience. 15(11), 1471–1472. mla: Dupret, David, and Jozsef L. Csicsvari. “The Medial Entorhinal Cortex Keeps Up.” Nature Neuroscience, vol. 15, no. 11, Nature Publishing Group, 2012, pp. 1471–72, doi:10.1038/nn.3245. short: D. Dupret, J.L. Csicsvari, Nature Neuroscience 15 (2012) 1471–1472. date_created: 2018-12-11T12:00:30Z date_published: 2012-11-01T00:00:00Z date_updated: 2021-01-12T07:39:59Z day: '01' department: - _id: JoCs doi: 10.1038/nn.3245 intvolume: ' 15' issue: '11' language: - iso: eng main_file_link: - url: http://www.mrcbndu.ox.ac.uk/publications/medial-entorhinal-cortex-keeps month: '11' oa_version: None page: 1471 - 1472 publication: Nature Neuroscience publication_status: published publisher: Nature Publishing Group publist_id: '3782' quality_controlled: '1' scopus_import: 1 status: public title: The medial entorhinal cortex keeps Up type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2012' ... --- _id: '2954' abstract: - lang: eng text: Spontaneous postsynaptic currents (PSCs) provide key information about the mechanisms of synaptic transmission and the activity modes of neuronal networks. However, detecting spontaneous PSCs in vitro and in vivo has been challenging, because of the small amplitude, the variable kinetics, and the undefined time of generation of these events. Here, we describe a, to our knowledge, new method for detecting spontaneous synaptic events by deconvolution, using a template that approximates the average time course of spontaneous PSCs. A recorded PSC trace is deconvolved from the template, resulting in a series of delta-like functions. The maxima of these delta-like events are reliably detected, revealing the precise onset times of the spontaneous PSCs. Among all detection methods, the deconvolution-based method has a unique temporal resolution, allowing the detection of individual events in high-frequency bursts. Furthermore, the deconvolution-based method has a high amplitude resolution, because deconvolution can substantially increase the signal/noise ratio. When tested against previously published methods using experimental data, the deconvolution-based method was superior for spontaneous PSCs recorded in vivo. Using the high-resolution deconvolution-based detection algorithm, we show that the frequency of spontaneous excitatory postsynaptic currents in dentate gyrus granule cells is 4.5 times higher in vivo than in vitro. acknowledgement: "This work was supported by the Deutsche Forschungsgemeinschaft (TR3/B10) and a European Research Council Advanced grant to P.J.\r\nWe thank H. Hu, S. J. Guzman, and C. Schmidt-Hieber for critically reading the manuscript, I. Koeva and F. Marr for technical support, and E. Kramberger for editorial assistance.\r\n" author: - first_name: Alejandro full_name: Pernia-Andrade, Alejandro id: 36963E98-F248-11E8-B48F-1D18A9856A87 last_name: Pernia-Andrade - first_name: Sarit full_name: Goswami, Sarit id: 3A578F32-F248-11E8-B48F-1D18A9856A87 last_name: Goswami - first_name: Yvonne full_name: Stickler, Yvonne id: 63B76600-E9CC-11E9-9B5F-82450873F7A1 last_name: Stickler - first_name: Ulrich full_name: Fröbe, Ulrich last_name: Fröbe - first_name: Alois full_name: Schlögl, Alois id: 45BF87EE-F248-11E8-B48F-1D18A9856A87 last_name: Schlögl orcid: 0000-0002-5621-8100 - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 citation: ama: Pernia-Andrade A, Goswami S, Stickler Y, Fröbe U, Schlögl A, Jonas PM. A deconvolution based method with high sensitivity and temporal resolution for detection of spontaneous synaptic currents in vitro and in vivo. Biophysical Journal. 2012;103(7):1429-1439. doi:10.1016/j.bpj.2012.08.039 apa: Pernia-Andrade, A., Goswami, S., Stickler, Y., Fröbe, U., Schlögl, A., & Jonas, P. M. (2012). A deconvolution based method with high sensitivity and temporal resolution for detection of spontaneous synaptic currents in vitro and in vivo. Biophysical Journal. Biophysical. https://doi.org/10.1016/j.bpj.2012.08.039 chicago: Pernia-Andrade, Alejandro, Sarit Goswami, Yvonne Stickler, Ulrich Fröbe, Alois Schlögl, and Peter M Jonas. “A Deconvolution Based Method with High Sensitivity and Temporal Resolution for Detection of Spontaneous Synaptic Currents in Vitro and in Vivo.” Biophysical Journal. Biophysical, 2012. https://doi.org/10.1016/j.bpj.2012.08.039. ieee: A. Pernia-Andrade, S. Goswami, Y. Stickler, U. Fröbe, A. Schlögl, and P. M. Jonas, “A deconvolution based method with high sensitivity and temporal resolution for detection of spontaneous synaptic currents in vitro and in vivo,” Biophysical Journal, vol. 103, no. 7. Biophysical, pp. 1429–1439, 2012. ista: Pernia-Andrade A, Goswami S, Stickler Y, Fröbe U, Schlögl A, Jonas PM. 2012. A deconvolution based method with high sensitivity and temporal resolution for detection of spontaneous synaptic currents in vitro and in vivo. Biophysical Journal. 103(7), 1429–1439. mla: Pernia-Andrade, Alejandro, et al. “A Deconvolution Based Method with High Sensitivity and Temporal Resolution for Detection of Spontaneous Synaptic Currents in Vitro and in Vivo.” Biophysical Journal, vol. 103, no. 7, Biophysical, 2012, pp. 1429–39, doi:10.1016/j.bpj.2012.08.039. short: A. Pernia-Andrade, S. Goswami, Y. Stickler, U. Fröbe, A. Schlögl, P.M. Jonas, Biophysical Journal 103 (2012) 1429–1439. date_created: 2018-12-11T12:00:32Z date_published: 2012-10-03T00:00:00Z date_updated: 2021-01-12T07:40:01Z day: '03' department: - _id: PeJo - _id: ScienComp doi: 10.1016/j.bpj.2012.08.039 external_id: pmid: - '23062335' intvolume: ' 103' issue: '7' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471482/ month: '10' oa: 1 oa_version: Submitted Version page: 1429 - 1439 pmid: 1 project: - _id: 25BDE9A4-B435-11E9-9278-68D0E5697425 grant_number: SFB-TR3-TP10B name: Glutamaterge synaptische Übertragung und Plastizität in hippocampalen Mikroschaltkreisen publication: Biophysical Journal publication_status: published publisher: Biophysical publist_id: '3774' quality_controlled: '1' scopus_import: 1 status: public title: A deconvolution based method with high sensitivity and temporal resolution for detection of spontaneous synaptic currents in vitro and in vivo type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 103 year: '2012' ... --- _id: '2950' abstract: - lang: eng text: Contractile actomyosin rings drive various fundamental morphogenetic processes ranging from cytokinesis to wound healing. Actomyosin rings are generally thought to function by circumferential contraction. Here, we show that the spreading of the enveloping cell layer (EVL) over the yolk cell during zebrafish gastrulation is driven by a contractile actomyosin ring. In contrast to previous suggestions, we find that this ring functions not only by circumferential contraction but also by a flow-friction mechanism. This generates a pulling force through resistance against retrograde actomyosin flow. EVL spreading proceeds normally in situations where circumferential contraction is unproductive, indicating that the flow-friction mechanism is sufficient. Thus, actomyosin rings can function in epithelial morphogenesis through a combination of cable-constriction and flow-friction mechanisms. acknowledged_ssus: - _id: SSU author: - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt - first_name: Guillaume full_name: Salbreux, Guillaume last_name: Salbreux - first_name: Pedro full_name: Campinho, Pedro id: 3AFBBC42-F248-11E8-B48F-1D18A9856A87 last_name: Campinho orcid: 0000-0002-8526-5416 - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Felix full_name: Oswald, Felix last_name: Oswald - first_name: Julia full_name: Roensch, Julia id: 4220E59C-F248-11E8-B48F-1D18A9856A87 last_name: Roensch - first_name: Stephan full_name: Grill, Stephan last_name: Grill - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Behrndt M, Salbreux G, Campinho P, et al. Forces driving epithelial spreading in zebrafish gastrulation. Science. 2012;338(6104):257-260. doi:10.1126/science.1224143 apa: Behrndt, M., Salbreux, G., Campinho, P., Hauschild, R., Oswald, F., Roensch, J., … Heisenberg, C.-P. J. (2012). Forces driving epithelial spreading in zebrafish gastrulation. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.1224143 chicago: Behrndt, Martin, Guillaume Salbreux, Pedro Campinho, Robert Hauschild, Felix Oswald, Julia Roensch, Stephan Grill, and Carl-Philipp J Heisenberg. “Forces Driving Epithelial Spreading in Zebrafish Gastrulation.” Science. American Association for the Advancement of Science, 2012. https://doi.org/10.1126/science.1224143. ieee: M. Behrndt et al., “Forces driving epithelial spreading in zebrafish gastrulation,” Science, vol. 338, no. 6104. American Association for the Advancement of Science, pp. 257–260, 2012. ista: Behrndt M, Salbreux G, Campinho P, Hauschild R, Oswald F, Roensch J, Grill S, Heisenberg C-PJ. 2012. Forces driving epithelial spreading in zebrafish gastrulation. Science. 338(6104), 257–260. mla: Behrndt, Martin, et al. “Forces Driving Epithelial Spreading in Zebrafish Gastrulation.” Science, vol. 338, no. 6104, American Association for the Advancement of Science, 2012, pp. 257–60, doi:10.1126/science.1224143. short: M. Behrndt, G. Salbreux, P. Campinho, R. Hauschild, F. Oswald, J. Roensch, S. Grill, C.-P.J. Heisenberg, Science 338 (2012) 257–260. date_created: 2018-12-11T12:00:30Z date_published: 2012-10-12T00:00:00Z date_updated: 2023-02-21T17:02:44Z day: '12' department: - _id: CaHe - _id: Bio doi: 10.1126/science.1224143 intvolume: ' 338' issue: '6104' language: - iso: eng month: '10' oa_version: None page: 257 - 260 project: - _id: 252ABD0A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 930-B20 name: Control of Epithelial Cell Layer Spreading in Zebrafish publication: Science publication_status: published publisher: American Association for the Advancement of Science publist_id: '3778' quality_controlled: '1' related_material: record: - id: '1403' relation: dissertation_contains status: public scopus_import: 1 status: public title: Forces driving epithelial spreading in zebrafish gastrulation type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 338 year: '2012' ... --- _id: '2951' abstract: - lang: eng text: Differential cell adhesion and cortex tension are thought to drive cell sorting by controlling cell-cell contact formation. Here, we show that cell adhesion and cortex tension have different mechanical functions in controlling progenitor cell-cell contact formation and sorting during zebrafish gastrulation. Cortex tension controls cell-cell contact expansion by modulating interfacial tension at the contact. By contrast, adhesion has little direct function in contact expansion, but instead is needed to mechanically couple the cortices of adhering cells at their contacts, allowing cortex tension to control contact expansion. The coupling function of adhesion is mediated by E-cadherin and limited by the mechanical anchoring of E-cadherin to the cortex. Thus, cell adhesion provides the mechanical scaffold for cell cortex tension to drive cell sorting during gastrulation. acknowledged_ssus: - _id: SSU author: - first_name: Jean-Léon full_name: Maître, Jean-Léon id: 48F1E0D8-F248-11E8-B48F-1D18A9856A87 last_name: Maître orcid: 0000-0002-3688-1474 - first_name: Hélène full_name: Berthoumieux, Hélène last_name: Berthoumieux - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Guillaume full_name: Salbreux, Guillaume last_name: Salbreux - first_name: Frank full_name: Julicher, Frank last_name: Julicher - first_name: Ewa full_name: Paluch, Ewa last_name: Paluch - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Maître J-L, Berthoumieux H, Krens G, et al. Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science. 2012;338(6104):253-256. doi:10.1126/science.1225399 apa: Maître, J.-L., Berthoumieux, H., Krens, G., Salbreux, G., Julicher, F., Paluch, E., & Heisenberg, C.-P. J. (2012). Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.1225399 chicago: Maître, Jean-Léon, Hélène Berthoumieux, Gabriel Krens, Guillaume Salbreux, Frank Julicher, Ewa Paluch, and Carl-Philipp J Heisenberg. “Adhesion Functions in Cell Sorting by Mechanically Coupling the Cortices of Adhering Cells.” Science. American Association for the Advancement of Science, 2012. https://doi.org/10.1126/science.1225399. ieee: J.-L. Maître et al., “Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells,” Science, vol. 338, no. 6104. American Association for the Advancement of Science, pp. 253–256, 2012. ista: Maître J-L, Berthoumieux H, Krens G, Salbreux G, Julicher F, Paluch E, Heisenberg C-PJ. 2012. Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science. 338(6104), 253–256. mla: Maître, Jean-Léon, et al. “Adhesion Functions in Cell Sorting by Mechanically Coupling the Cortices of Adhering Cells.” Science, vol. 338, no. 6104, American Association for the Advancement of Science, 2012, pp. 253–56, doi:10.1126/science.1225399. short: J.-L. Maître, H. Berthoumieux, G. Krens, G. Salbreux, F. Julicher, E. Paluch, C.-P.J. Heisenberg, Science 338 (2012) 253–256. date_created: 2018-12-11T12:00:31Z date_published: 2012-10-12T00:00:00Z date_updated: 2021-01-12T07:40:00Z day: '12' department: - _id: CaHe doi: 10.1126/science.1225399 intvolume: ' 338' issue: '6104' language: - iso: eng month: '10' oa_version: None page: 253 - 256 publication: Science publication_status: published publisher: American Association for the Advancement of Science publist_id: '3777' quality_controlled: '1' scopus_import: 1 status: public title: Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 338 year: '2012' ...