@article{826, abstract = {Plants exhibit a unique developmental flexibility to ever-changing environmental conditions. To achieve their profound adaptability, plants are able to maintain permanent stem cell populations and form new organs during the entire plant life cycle. Signaling substances, called plant hormones, such as auxin, cytokinin, abscisic acid, brassinosteroid, ethylene, gibberellin, jasmonic acid, and strigolactone, govern and coordinate these developmental processes. Physiological and genetic studies have dissected the molecular components of signal perception and transduction of the individual hormonal pathways. However, over recent years it has become evident that hormones do not act only in a linear pathway. Hormonal pathways are interconnected by a complex network of interactions and feedback circuits that determines the final outcome of the individual hormone actions. This raises questions about the molecular mechanisms underlying hormonal cross talk and about how these hormonal networks are established, maintained, and modulated throughout plant development.}, author = {Vanstraelen, Marleen and Eva Benková}, journal = {Annual Review of Cell and Developmental Biology}, pages = {463 -- 487}, publisher = {Annual Reviews}, title = {{Hormonal interactions in the regulation of plant development}}, doi = {10.1146/annurev-cellbio-101011-155741}, volume = {28}, year = {2012}, } @article{829, abstract = {The architecture of a plant's root system, established postembryonically, results from both coordinated root growth and lateral root branching. The plant hormones auxin and cytokinin are central endogenous signaling molecules that regulate lateral root organogenesis positively and negatively, respectively. Tight control and mutual balance of their antagonistic activities are particularly important during the early phases of lateral root organogenesis to ensure continuous lateral root initiation (LRI) and proper development of lateral root primordia (LRP). Here, we show that the early phases of lateral root organogenesis, including priming and initiation, take place in root zones with a repressed cytokinin response. Accordingly, ectopic overproduction of cytokinin in the root basal meristem most efficiently inhibits LRI. Enhanced cytokinin responses in pericycle cells between existing LRP might restrict LRI near existing LRP and, when compromised, ectopic LRI occurs. Furthermore, our results demonstrate that young LRP are more sensitive to perturbations in the cytokinin activity than are developmentally more advanced primordia. We hypothesize that the effect of cytokinin on the development of primordia possibly depends on the robustness and stability of the auxin gradient.}, author = {Bielach, Agnieszka and Podlesakova, Katerina and Peter Marhavy and Duclercq, Jérôme and Candela Cuesta and Muller, Bruno and Grunewald, Wim and Tarkowski, Petr and Eva Benková}, journal = {The Plant Cell}, number = {10}, pages = {3967 -- 3981}, publisher = {American Society of Plant Biologists}, title = {{Spatiotemporal regulation of lateral root organogenesis in Arabidopsis by cytokinin}}, doi = {10.1105/tpc.112.103044}, volume = {24}, year = {2012}, } @article{846, abstract = {Whether or not evolutionary change is inherently irreversible remains a controversial topic. Some examples of evolutionary irreversibility are known; however, this question has not been comprehensively addressed at the molecular level. Here, we use data from 221 human genes with known pathogenic mutations to estimate the rate of irreversibility in protein evolution. For these genes, we reconstruct ancestral amino acid sequences along the mammalian phylogeny and identify ancestral amino acid states that match known pathogenic mutations. Such cases represent inherent evolutionary irreversibility because, at the present moment, reversals to these ancestral amino acid states are impossible for the human lineage. We estimate that approximately 10% of all amino acid substitutions along the mammalian phylogeny are irreversible, such that a return to the ancestral amino acid state would lead to a pathogenic phenotype. For a subset of 51 genes with high rates of irreversibility, as much as 40% of all amino acid evolution was estimated to be irreversible. Because pathogenic phenotypes do not resemble ancestral phenotypes, the molecular nature of the high rate of irreversibility in proteins is best explained by evolution with a high prevalence of compensatory, epistatic interactions between amino acid sites. Under such mode of protein evolution, once an amino acid substitution is fixed, the probability of its reversal declines as the protein sequence accumulates changes that affect the phenotypic manifestation of the ancestral state. The prevalence of epistasis in evolution indicates that the observed high rate of irreversibility in protein evolution is an inherent property of protein structure and function.}, author = {Soylemez, Onuralp and Fyodor Kondrashov}, journal = {Genome Biology and Evolution}, number = {12}, pages = {1213 -- 1222}, publisher = {Oxford University Press}, title = {{Estimating the rate of irreversibility in protein evolution}}, doi = {10.1093/gbe/evs096}, volume = {4}, year = {2012}, } @article{8463, abstract = {The 1H dipolar network, which is the major obstacle for applying proton detection in the solid-state, can be reduced by deuteration, employing the RAP (Reduced Adjoining Protonation) labeling scheme, which yields random protonation at non-exchangeable sites. We present here a systematic study on the optimal degree of random sidechain protonation in RAP samples as a function of the MAS (magic angle spinning) frequency. In particular, we compare 1H sensitivity and linewidth of a microcrystalline protein, the SH3 domain of chicken α-spectrin, for samples, prepared with 5–25 % H2O in the E. coli growth medium, in the MAS frequency range of 20–60 kHz. At an external field of 19.96 T (850 MHz), we find that using a proton concentration between 15 and 25 % in the M9 medium yields the best compromise in terms of sensitivity and resolution, with an achievable average 1H linewidth on the order of 40–50 Hz. Comparing sensitivities at a MAS frequency of 60 versus 20 kHz, a gain in sensitivity by a factor of 4–4.5 is observed in INEPT-based 1H detected 1D 1H,13C correlation experiments. In total, we find that spectra recorded with a 1.3 mm rotor at 60 kHz have almost the same sensitivity as spectra recorded with a fully packed 3.2 mm rotor at 20 kHz, even though ~20× less material is employed. The improved sensitivity is attributed to 1H line narrowing due to fast MAS and to the increased efficiency of the 1.3 mm coil.}, author = {Asami, Sam and Szekely, Kathrin and Schanda, Paul and Meier, Beat H. and Reif, Bernd}, issn = {0925-2738}, journal = {Journal of Biomolecular NMR}, number = {2}, pages = {155--168}, publisher = {Springer Nature}, title = {{Optimal degree of protonation for 1H detection of aliphatic sites in randomly deuterated proteins as a function of the MAS frequency}}, doi = {10.1007/s10858-012-9659-9}, volume = {54}, year = {2012}, } @article{8465, abstract = {We demonstrate that conformational exchange processes in proteins on microsecond-to-millisecond time scales can be detected and quantified by solid-state NMR spectroscopy. We show two independent approaches that measure the effect of conformational exchange on transverse relaxation parameters, namely Carr–Purcell–Meiboom–Gill relaxation-dispersion experiments and measurement of differential multiple-quantum coherence decay. Long coherence lifetimes, as required for these experiments, are achieved by the use of highly deuterated samples and fast magic-angle spinning. The usefulness of the approaches is demonstrated by application to microcrystalline ubiquitin. We detect a conformational exchange process in a region of the protein for which dynamics have also been observed in solution. Interestingly, quantitative analysis of the data reveals that the exchange process is more than 1 order of magnitude slower than in solution, and this points to the impact of the crystalline environment on free energy barriers.}, author = {Tollinger, Martin and Sivertsen, Astrid C. and Meier, Beat H. and Ernst, Matthias and Schanda, Paul}, issn = {0002-7863}, journal = {Journal of the American Chemical Society}, number = {36}, pages = {14800--14807}, publisher = {American Chemical Society}, title = {{Site-resolved measurement of microsecond-to-millisecond conformational-exchange processes in proteins by solid-state NMR spectroscopy}}, doi = {10.1021/ja303591y}, volume = {134}, year = {2012}, }