@article{3317, abstract = {The physical distance between presynaptic Ca2+ channels and the Ca2+ sensors that trigger exocytosis of neurotransmitter-containing vesicles is a key determinant of the signalling properties of synapses in the nervous system. Recent functional analysis indicates that in some fast central synapses, transmitter release is triggered by a small number of Ca2+ channels that are coupled to Ca2+ sensors at the nanometre scale. Molecular analysis suggests that this tight coupling is generated by protein–protein interactions involving Ca2+ channels, Ca2+ sensors and various other synaptic proteins. Nanodomain coupling has several functional advantages, as it increases the efficacy, speed and energy efficiency of synaptic transmission.}, author = {Eggermann, Emmanuel and Bucurenciu, Iancu and Goswami, Sarit and Jonas, Peter M}, journal = {Nature Reviews Neuroscience}, number = {1}, pages = {7 -- 21}, publisher = {Nature Publishing Group}, title = {{Nanodomain coupling between Ca(2+) channels and sensors of exocytosis at fast mammalian synapses}}, doi = {10.1038/nrn3125}, volume = {13}, year = {2012}, } @article{3314, abstract = {We introduce two-level discounted and mean-payoff games played by two players on a perfect-information stochastic game graph. The upper level game is a discounted or mean-payoff game and the lower level game is a (undiscounted) reachability game. Two-level games model hierarchical and sequential decision making under uncertainty across different time scales. For both discounted and mean-payoff two-level games, we show the existence of pure memoryless optimal strategies for both players and an ordered field property. We show that if there is only one player (Markov decision processes), then the values can be computed in polynomial time. It follows that whether the value of a player is equal to a given rational constant in two-level discounted or mean-payoff games can be decided in NP ∩ coNP. We also give an alternate strategy improvement algorithm to compute the value. © 2012 World Scientific Publishing Company.}, author = {Chatterjee, Krishnendu and Majumdar, Ritankar}, journal = {International Journal of Foundations of Computer Science}, number = {3}, pages = {609 -- 625}, publisher = {World Scientific Publishing}, title = {{Discounting and averaging in games across time scales}}, doi = {10.1142/S0129054112400308}, volume = {23}, year = {2012}, } @article{3115, abstract = {We consider the offset-deconstruction problem: Given a polygonal shape Q with n vertices, can it be expressed, up to a tolerance ε in Hausdorff distance, as the Minkowski sum of another polygonal shape P with a disk of fixed radius? If it does, we also seek a preferably simple-looking solution P; then, P's offset constitutes an accurate, vertex-reduced, and smoothened approximation of Q. We give an O(nlogn)-time exact decision algorithm that handles any polygonal shape, assuming the real-RAM model of computation. A variant of the algorithm, which we have implemented using the cgal library, is based on rational arithmetic and answers the same deconstruction problem up to an uncertainty parameter δ its running time additionally depends on δ. If the input shape is found to be approximable, this algorithm also computes an approximate solution for the problem. It also allows us to solve parameter-optimization problems induced by the offset-deconstruction problem. For convex shapes, the complexity of the exact decision algorithm drops to O(n), which is also the time required to compute a solution P with at most one more vertex than a vertex-minimal one.}, author = {Berberich, Eric and Halperin, Dan and Kerber, Michael and Pogalnikova, Roza}, journal = {Discrete & Computational Geometry}, number = {4}, pages = {964 -- 989}, publisher = {Springer}, title = {{Deconstructing approximate offsets}}, doi = {10.1007/s00454-012-9441-5}, volume = {48}, year = {2012}, } @article{3331, abstract = {Computing the topology of an algebraic plane curve C means computing a combinatorial graph that is isotopic to C and thus represents its topology in R2. We prove that, for a polynomial of degree n with integer coefficients bounded by 2ρ, the topology of the induced curve can be computed with bit operations ( indicates that we omit logarithmic factors). Our analysis improves the previous best known complexity bounds by a factor of n2. The improvement is based on new techniques to compute and refine isolating intervals for the real roots of polynomials, and on the consequent amortized analysis of the critical fibers of the algebraic curve.}, author = {Kerber, Michael and Sagraloff, Michael}, journal = { Journal of Symbolic Computation}, number = {3}, pages = {239 -- 258}, publisher = {Elsevier}, title = {{A worst case bound for topology computation of algebraic curves}}, doi = {10.1016/j.jsc.2011.11.001}, volume = {47}, year = {2012}, } @article{346, abstract = {Arrays of vertically aligned ZnO : Cl/TiO2 and ZnO : Cl/ZnxTiOy/TiO2 core–shell nanowires (NWs) were prepared by means of the combination of two solution-growth processes. First, single-crystal ZnO NWs with controlled n-type doping were grown on conducting substrates by a low-cost, high-yield and seed-free electrochemical route. These NWs were covered by a titanium oxide shell of tunable thickness mediating successive adsorption-hydrolysis-condensation steps. Using this atomic-layer growth procedure, titania shells with controlled thickness and the anatase TiO2 phase were obtained after sintering at 450 °C. Higher sintering temperatures resulted in the formation of ZnO : Cl/ZnxTiOy/TiO2 core–shell NWs by the interdiffusion of Zn and Ti ions at the ZnO–TiO2 interface. The performance of ZnO : Cl/TiO2 and ZnO : Cl/ZnxTiOy/TiO2 core–shell NWs towards photoelectrochemical (PEC) water splitting was investigated as a function of the titania shell thickness. Furthermore, the performance of such core–shell NWs as photoelectrodes in dye-sensitized solar cells was also characterized. The TiO2 presence at the ZnO : Cl surface promoted a two-fold increase on the produced photocurrent densities, probing their potential for PEC and optoelectronic applications. Electrochemical impedance spectroscopy was used to corroborate the lower resistance for charge transfer between the NWs and the electrolyte in the presence of the TiO2 shell.}, author = {Fan, Jiandong and Zamani, Reza and Fábrega, Cristina and Shavel, Alexey and Flox, Cristina and Ibáñez, Maria and Andreu, Teresa and López, Amtonio and Arbiol, Jordi and Morante, Joan and Cabot, Andreu}, journal = {Journal of Physics D: Applied Physics}, number = {41}, publisher = {IOP Publishing Ltd.}, title = {{Solution-growth and optoelectronic performance of ZnO : Cl/TiO2 and ZnO : Cl/ZnxTiOy/TiO2 core–shell nanowires with tunable shell thickness}}, doi = {10.1088/0022-3727/45/41/415301}, volume = {45}, year = {2012}, } @article{3168, abstract = {The induction of a signaling pathway is characterized by transient complex formation and mutual posttranslational modification of proteins. To faithfully capture this combinatorial process in a mathematical model is an important challenge in systems biology. Exploiting the limited context on which most binding and modification events are conditioned, attempts have been made to reduce the combinatorial complexity by quotienting the reachable set of molecular species into species aggregates while preserving the deterministic semantics of the thermodynamic limit. Recently, we proposed a quotienting that also preserves the stochastic semantics and that is complete in the sense that the semantics of individual species can be recovered from the aggregate semantics. In this paper, we prove that this quotienting yields a sufficient condition for weak lumpability (that is to say that the quotient system is still Markovian for a given set of initial distributions) and that it gives rise to a backward Markov bisimulation between the original and aggregated transition system (which means that the conditional probability of being in a given state in the original system knowing that we are in its equivalence class is an invariant of the system). We illustrate the framework on a case study of the epidermal growth factor (EGF)/insulin receptor crosstalk.}, author = {Feret, Jérôme and Henzinger, Thomas A and Koeppl, Heinz and Petrov, Tatjana}, journal = {Theoretical Computer Science}, pages = {137 -- 164}, publisher = {Elsevier}, title = {{Lumpability abstractions of rule based systems}}, doi = {10.1016/j.tcs.2011.12.059}, volume = {431}, year = {2012}, } @article{377, abstract = {The potential to control the composition and crystal phase at the nanometer scale enable the production of nanocrystalline materials with enhanced functionalities and new applications. In the present work, we detail a novel colloidal synthesis route to prepare nanoparticles of the ternary semiconductor Cu2GeSe3 (CGSe) with nanometer-scale control over their crystal phases. We also demonstrate the structural effect on the thermoelectric properties of bottom-up-prepared CGSe nanomaterials. By careful adjustment of the nucleation and growth temperatures, pure orthorhombic CGSe nanoparticles with cationic order or polytypic CGSe nanoparticles with disordered cation positions can be produced. In this second type of nanoparticle, a high density of twins can be created to periodically change the atomic plane stacking, forming a hexagonal wurtzite CGSe phase. The high yield of the synthetic routes reported here allows the production of single-phase and multiphase CGSe nanoparticles in the gram scale, which permits characterization of the thermoelectric properties of these materials. Reduced thermal conductivities and a related 2.5-fold increase of the thermoelectric figure of merit for multiphase nanomaterials compared to pure-phase CGSe are systematically obtained. These results are discussed in terms of the density and efficiency of phonon scattering centers in both types of materials.}, author = {Ibáñez, Maria and Zamani, Reza and Li, Wenhua and Cadavid, Doris and Gorse, Stéphane and Katchoi, Nebll and Shavel, Alexey and López, Antonioo and Morante, Joan and Arbiol, Jordi and Cabot, Andreu}, journal = {Chemistry of Materials}, number = {23}, pages = {4615 -- 4622}, publisher = {American Chemical Society}, title = {{Crystallographic control at the nanoscale to enhance functionality: Polytypic Cu2GeSe3 nanoparticles as thermoelectric materials}}, doi = {10.1021/cm303252q}, volume = {24}, year = {2012}, } @article{3846, abstract = {We summarize classical and recent results about two-player games played on graphs with ω-regular objectives. These games have applications in the verification and synthesis of reactive systems. Important distinctions are whether a graph game is turn-based or concurrent; deterministic or stochastic; zero-sum or not. We cluster known results and open problems according to these classifications.}, author = {Chatterjee, Krishnendu and Henzinger, Thomas A}, journal = {Journal of Computer and System Sciences}, number = {2}, pages = {394 -- 413}, publisher = {Elsevier}, title = {{A survey of stochastic ω regular games}}, doi = {10.1016/j.jcss.2011.05.002}, volume = {78}, year = {2012}, } @article{387, abstract = {In this Letter we present detailed study of the density of states near defects in Bi 2Se 3. In particular, we present data on the commonly found triangular defects in this system. While we do not find any measurable quasiparticle scattering interference effects, we do find localized resonances, which can be well fitted by theory once the potential is taken to be extended to properly account for the observed defects. The data together with the fits confirm that while the local density of states around the Dirac point of the electronic spectrum at the surface is significantly disrupted near the impurity by the creation of low-energy resonance state, the Dirac point is not locally destroyed. We discuss our results in terms of the expected protected surface state of topological insulators. © 2012 American Physical Society.}, author = {Alpichshev, Zhanybek and Biswas, Rudro and Balatsky, Alexander and Analytis, James and Chu, Jiunhaw and Fisher, Ian and Kapitulnik, Aharon}, journal = {Physical Review Letters}, number = {20}, publisher = {American Physical Society}, title = {{STM imaging of impurity resonances on Bi 2Se 3}}, doi = {10.1103/PhysRevLett.108.206402}, volume = {108}, year = {2012}, } @article{3110, abstract = {The directional transport of the phytohormone auxin depends on the phosphorylation status and polar localization of PIN-FORMED (PIN) auxin efflux proteins. While PINIOD (PID) kinase is directly involved in the phosphorylation of PIN proteins, the phosphatase holoenzyme complexes that dephosphorylate PIN proteins remain elusive. Here, we demonstrate that mutations simultaneously disrupting the function of Arabidopsis thaliana FyPP1 (for Phytochrome-associated serine/threonine protein phosphatase1) and FyPP3, two homologous genes encoding the catalytic subunits of protein phosphatase6 (PP6), cause elevated accumulation of phosphorylated PIN proteins, correlating with a basal-to-apical shift in subcellular PIN localization. The changes in PIN polarity result in increased root basipetal auxin transport and severe defects, including shorter roots, fewer lateral roots, defective columella cells, root meristem collapse, abnormal cotyledons (small, cup-shaped, or fused cotyledons), and altered leaf venation. Our molecular, biochemical, and genetic data support the notion that FyPP1/3, SAL (for SAPS DOMAIN-LIKE), and PP2AA proteins (RCN1 [for ROOTS CURL IN NAPHTHYLPHTHALAMIC ACID1] or PP2AA1, PP2AA2, and PP2AA3) physically interact to form a novel PP6-type heterotrimeric holoenzyme complex. We also show that FyPP1/3, SAL, and PP2AA interact with a subset of PIN proteins and that for SAL the strength of the interaction depends on the PIN phosphorylation status. Thus, an Arabidopsis PP6-type phosphatase holoenzyme acts antagonistically with PID to direct auxin transport polarity and plant development by directly regulating PIN phosphorylation. }, author = {Dai, Mingqiu and Zhang, Chen and Urszula Kania and Chen, Fang and Xue, Qin and McCray, Tyra and Li, Gang and Qin, Genji and Wakeley, Michelle and Terzaghi, William and Wan, Jianmin and Zhao, Yunde and Xu, Jian and Jirí Friml and Deng, Xing W and Wang, Haiyang}, journal = {Plant Cell}, number = {6}, pages = {2497 -- 2514}, publisher = {American Society of Plant Biologists}, title = {{A PP6 type phosphatase holoenzyme directly regulates PIN phosphorylation and auxin efflux in Arabidopsis}}, doi = {10.1105/tpc.112.098905}, volume = {24}, year = {2012}, } @article{3113, abstract = {A cell membrane can be considered a liquid-phase plane in which lipids and proteins theoretically are free to diffuse. Numerous reports,however, describe retarded diffusion ofmembrane proteins in animal cells. This anomalous diffusion results from a combination of structuring factors including protein-protein interactions, cytoskeleton corralling, and lipid organization into microdomains. In plant cells, plasma-membrane (PM) proteins have been described as relatively immobile, but the control mechanisms that structure the PM have not been studied. Here, we use fluorescence recovery after photobleaching to estimate mobility of a set of minimal PM proteins. These proteins consist only of a PM-anchoring domain fused to a fluorescent protein, but their mobilities remained limited, as is the case for many full-length proteins. Neither the cytoskeleton nor membrane microdomain structure was involved in constraining the diffusion of these proteins. The cell wall, however, was shown to have a crucial role in immobilizing PM proteins. In addition, by single-molecule fluorescence imaging we confirmed that the pattern of cellulose deposition in the cell wall affects the trajectory and speed ofPMprotein diffusion. Regulation ofPMprotein dynamics by the plant cell wall can be interpreted as a mechanism for regulating protein interactions in processes such as trafficking and signal transduction.}, author = {Martinière, Alexandre and Lavagi, Irene and Nageswaran, Gayathri and Rolfe, Daniel J and Maneta-Peyret, Lilly and Luu, Doan-Trung and Botchway, Stanley W and Webb, Stephen E and Mongrand, Sebastien and Maurel, Christophe and Martin-Fernandez, Marisa L and Kleine-Vehn, Jürgen and Jirí Friml and Moreau, Patrick and Runions, John}, journal = {PNAS}, number = {31}, pages = {12805 -- 12810}, publisher = {National Academy of Sciences}, title = {{Cell wall constrains lateral diffusion of plant plasma membrane proteins}}, doi = {10.1073/pnas.1202040109}, volume = {109}, year = {2012}, } @article{3114, abstract = {Auxin is a key coordinative signal required for many aspects of plant development and its levels are controlled by auxin metabolism and intercellular auxin transport. Here we find that a member of PIN auxin transporter family, PIN8 is expressed in male gametophyte of Arabidopsis thaliana and has a crucial role in pollen development and functionality. Ectopic expression in sporophytic tissues establishes a role of PIN8 in regulating auxin homoeostasis and metabolism. PIN8 co-localizes with PIN5 to the endoplasmic reticulum (ER) where it acts as an auxin transporter. Genetic analyses reveal an antagonistic action of PIN5 and PIN8 in the regulation of intracellular auxin homoeostasis and gametophyte as well as sporophyte development. Our results reveal a role of the auxin transport in male gametophyte development in which the distinct actions of ER-localized PIN transporters regulate cellular auxin homoeostasis and maintain the auxin levels optimal for pollen development and pollen tube growth.}, author = {Ding, Zhaojun and Wang, Bangjun and Moreno, Ignacio and Dupláková, Nikoleta and Sibu Simon and Carraro, Nicola and Reemmer, Jesica and Pěnčík, Aleš and Xu Chen and Tejos, Ricardo I and Skůpa, Petr and Pollmann, Stephan and Mravec, Jozef and Petrášek, Jan and Zažímalová, Eva and Honys, David and Rolčík, Jakub and Murphy, Angus S and Orellana, Ariel and Geisler, Markus and Jirí Friml}, journal = {Nature Communications}, number = {AN 941}, publisher = {Nature Publishing Group}, title = {{ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis}}, doi = {10.1038/ncomms1941}, volume = {3}, year = {2012}, } @article{3111, abstract = {PIN-FORMED (PIN) protein-mediated auxin polar transport is critically important for development, pattern formation, and morphogenesis in plants. Auxin has been implicated in the regulation of polar auxin transport by inhibiting PIN endocytosis [1, 2], but how auxin regulates this process is poorly understood. Our genetic screen identified the Arabidopsis SPIKE1 (SPK1) gene whose loss-of-function mutations increased lateral root density and retarded gravitropic responses, as do pin2 knockout mutations [3]. SPK1 belongs to the conserved DHR2-Dock family of Rho guanine nucleotide exchange factors [4-6]. The spk1 mutations induced PIN2 internalization that was not suppressed by auxin, as did the loss-of-function mutations for Rho-like GTPase from Plants 6 (ROP6)-GTPase or its effector RIC1. Furthermore, SPK1 was required for auxin induction of ROP6 activation. Our results have established a Rho GTPase-based auxin signaling pathway that maintains PIN2 polar distribution to the plasma membrane via inhibition of its internalization in Arabidopsis roots. Our findings provide new insights into signaling mechanisms that underlie the regulation of the dynamic trafficking of PINs required for long-distance auxin transport and that link auxin signaling to PIN-mediated pattern formation and morphogenesis.}, author = {Lin, Deshu and Nagawa, Shingo and Chen, Jisheng and Cao, Lingyan and Xu Chen and Xu, Tongda and Hongjiang Li and Dhonukshe, Pankaj and Yamamuro, Chizuko and Jirí Friml and Scheres, Ben and Fu, Ying and Yang, Zhenbiao}, journal = {Current Biology}, number = {14}, pages = {1319 -- 1325}, publisher = {Cell Press}, title = {{A ROP GTPase dependent auxin signaling pathway regulates the subcellular distribution of PIN2 in Arabidopsis roots}}, doi = {10.1016/j.cub.2012.05.019}, volume = {22}, year = {2012}, } @article{3112, abstract = {The dynamic spatial and temporal distribution of the crucial plant signaling molecule auxin is achieved by feedback coordination of auxin signaling and intercellular auxin transport pathways [1, 2]. Developmental roles of auxin have been attributed predominantly to its effect on transcription; however, an alternative pathway involving AUXIN BINDING PROTEIN1 (ABP1) has been proposed to regulate clathrin-mediated endocytosis in roots and Rho-like GTPase (ROP)-dependent pavement cell interdigitation in leaves [3, 4]. In this study, we show that ROP6 and its downstream effector RIC1 regulate clathrin association with the plasma membrane for clathrin-mediated endocytosis, as well as for its feedback regulation by auxin. Genetic analysis revealed that ROP6/RIC1 acts downstream of ABP1 to regulate endocytosis. This signaling circuit is also involved in the feedback regulation of PIN-FORMED 1 (PIN1) and PIN2 auxin transporters activity (via its constitutive endocytosis) and corresponding auxin transport-mediated processes, including root gravitropism and leave vascular tissue patterning. Our findings suggest that the signaling module auxin-ABP1-ROP6/RIC1-clathrin-PIN1/PIN2 is a shared component of the feedback regulation of auxin transport during both root and aerial development.}, author = {Xu Chen and Naramoto, Satoshi and Robert, Stéphanie and Tejos, Ricardo and Löfke, Christian and Lin, Deshu and Yang, Zhenbiao and Jirí Friml}, journal = {Current Biology}, number = {14}, pages = {1326 -- 1332}, publisher = {Cell Press}, title = {{ABP1 and ROP6 GTPase signaling regulate clathrin mediated endocytosis in Arabidopsis roots}}, doi = {10.1016/j.cub.2012.05.020}, volume = {22}, year = {2012}, } @article{3128, abstract = {We consider two-player zero-sum stochastic games on graphs with ω-regular winning conditions specified as parity objectives. These games have applications in the design and control of reactive systems. We survey the complexity results for the problem of deciding the winner in such games, and in classes of interest obtained as special cases, based on the information and the power of randomization available to the players, on the class of objectives and on the winning mode. On the basis of information, these games can be classified as follows: (a) partial-observation (both players have partial view of the game); (b) one-sided partial-observation (one player has partial-observation and the other player has complete-observation); and (c) complete-observation (both players have complete view of the game). The one-sided partial-observation games have two important subclasses: the one-player games, known as partial-observation Markov decision processes (POMDPs), and the blind one-player games, known as probabilistic automata. On the basis of randomization, (a) the players may not be allowed to use randomization (pure strategies), or (b) they may choose a probability distribution over actions but the actual random choice is external and not visible to the player (actions invisible), or (c) they may use full randomization. Finally, various classes of games are obtained by restricting the parity objective to a reachability, safety, Büchi, or coBüchi condition. We also consider several winning modes, such as sure-winning (i.e., all outcomes of a strategy have to satisfy the winning condition), almost-sure winning (i.e., winning with probability 1), limit-sure winning (i.e., winning with probability arbitrarily close to 1), and value-threshold winning (i.e., winning with probability at least ν, where ν is a given rational). }, author = {Chatterjee, Krishnendu and Doyen, Laurent and Henzinger, Thomas A}, journal = {Formal Methods in System Design}, number = {2}, pages = {268 -- 284}, publisher = {Springer}, title = {{A survey of partial-observation stochastic parity games}}, doi = {10.1007/s10703-012-0164-2}, volume = {43}, year = {2012}, } @inproceedings{3125, abstract = {We propose a new learning method to infer a mid-level feature representation that combines the advantage of semantic attribute representations with the higher expressive power of non-semantic features. The idea lies in augmenting an existing attribute-based representation with additional dimensions for which an autoencoder model is coupled with a large-margin principle. This construction allows a smooth transition between the zero-shot regime with no training example, the unsupervised regime with training examples but without class labels, and the supervised regime with training examples and with class labels. The resulting optimization problem can be solved efficiently, because several of the necessity steps have closed-form solutions. Through extensive experiments we show that the augmented representation achieves better results in terms of object categorization accuracy than the semantic representation alone.}, author = {Sharmanska, Viktoriia and Quadrianto, Novi and Lampert, Christoph}, location = {Florence, Italy}, number = {PART 5}, pages = {242 -- 255}, publisher = {Springer}, title = {{Augmented attribute representations}}, doi = {10.1007/978-3-642-33715-4_18}, volume = {7576}, year = {2012}, } @inproceedings{3129, abstract = {Let K be a simplicial complex and g the rank of its p-th homology group Hp(K) defined with ℤ2 coefficients. We show that we can compute a basis H of Hp(K) and annotate each p-simplex of K with a binary vector of length g with the following property: the annotations, summed over all p-simplices in any p-cycle z, provide the coordinate vector of the homology class [z] in the basis H. The basis and the annotations for all simplices can be computed in O(n ω ) time, where n is the size of K and ω < 2.376 is a quantity so that two n×n matrices can be multiplied in O(n ω ) time. The precomputed annotations permit answering queries about the independence or the triviality of p-cycles efficiently. Using annotations of edges in 2-complexes, we derive better algorithms for computing optimal basis and optimal homologous cycles in 1 - dimensional homology. Specifically, for computing an optimal basis of H1(K) , we improve the previously known time complexity from O(n 4) to O(n ω  + n 2 g ω − 1). Here n denotes the size of the 2-skeleton of K and g the rank of H1(K) . Computing an optimal cycle homologous to a given 1-cycle is NP-hard even for surfaces and an algorithm taking 2 O(g) nlogn time is known for surfaces. We extend this algorithm to work with arbitrary 2-complexes in O(n ω ) + 2 O(g) n 2logn time using annotations. }, author = {Busaryev, Oleksiy and Cabello, Sergio and Chen, Chao and Dey, Tamal and Wang, Yusu}, location = {Helsinki, Finland}, pages = {189 -- 200}, publisher = {Springer}, title = {{Annotating simplices with a homology basis and its applications}}, doi = {10.1007/978-3-642-31155-0_17}, volume = {7357}, year = {2012}, } @inproceedings{3126, abstract = {In this work we propose a new information-theoretic clustering algorithm that infers cluster memberships by direct optimization of a non-parametric mutual information estimate between data distribution and cluster assignment. Although the optimization objective has a solid theoretical foundation it is hard to optimize. We propose an approximate optimization formulation that leads to an efficient algorithm with low runtime complexity. The algorithm has a single free parameter, the number of clusters to find. We demonstrate superior performance on several synthetic and real datasets. }, author = {Müller, Andreas and Nowozin, Sebastian and Lampert, Christoph}, location = {Graz, Austria}, pages = {205 -- 215}, publisher = {Springer}, title = {{Information theoretic clustering using minimal spanning trees}}, doi = {10.1007/978-3-642-32717-9_21}, volume = {7476}, year = {2012}, } @inproceedings{3155, abstract = {We propose synchronous interfaces, a new interface theory for discrete-time systems. We use an application to time-triggered scheduling to drive the design choices for our formalism; in particular, additionally to deriving useful mathematical properties, we focus on providing a syntax which is adapted to natural high-level system modeling. As a result, we develop an interface model that relies on a guarded-command based language and is equipped with shared variables and explicit discrete-time clocks. We define all standard interface operations: compatibility checking, composition, refinement, and shared refinement. Apart from the synchronous interface model, the contribution of this paper is the establishment of a formal relation between interface theories and real-time scheduling, where we demonstrate a fully automatic framework for the incremental computation of time-triggered schedules.}, author = {Delahaye, Benoît and Fahrenberg, Uli and Henzinger, Thomas A and Legay, Axel and Nickovic, Dejan}, location = {Stockholm, Sweden}, pages = {203 -- 218}, publisher = {Springer}, title = {{Synchronous interface theories and time triggered scheduling}}, doi = {10.1007/978-3-642-30793-5_13}, volume = {7273}, year = {2012}, } @article{3159, abstract = {The structure of hierarchical networks in biological and physical systems has long been characterized using the Horton-Strahler ordering scheme. The scheme assigns an integer order to each edge in the network based on the topology of branching such that the order increases from distal parts of the network (e.g., mountain streams or capillaries) to the "root" of the network (e.g., the river outlet or the aorta). However, Horton-Strahler ordering cannot be applied to networks with loops because they they create a contradiction in the edge ordering in terms of which edge precedes another in the hierarchy. Here, we present a generalization of the Horton-Strahler order to weighted planar reticular networks, where weights are assumed to correlate with the importance of network edges, e.g., weights estimated from edge widths may correlate to flow capacity. Our method assigns hierarchical levels not only to edges of the network, but also to its loops, and classifies the edges into reticular edges, which are responsible for loop formation, and tree edges. In addition, we perform a detailed and rigorous theoretical analysis of the sensitivity of the hierarchical levels to weight perturbations. In doing so, we show that the ordering of the reticular edges is more robust to noise in weight estimation than is the ordering of the tree edges. We discuss applications of this generalized Horton-Strahler ordering to the study of leaf venation and other biological networks.}, author = {Mileyko, Yuriy and Edelsbrunner, Herbert and Price, Charles and Weitz, Joshua}, journal = {PLoS One}, number = {6}, publisher = {Public Library of Science}, title = {{Hierarchical ordering of reticular networks}}, doi = {10.1371/journal.pone.0036715}, volume = {7}, year = {2012}, } @article{3156, abstract = {Dispersal is crucial for gene flow and often determines the long-term stability of meta-populations, particularly in rare species with specialized life cycles. Such species are often foci of conservation efforts because they suffer disproportionally from degradation and fragmentation of their habitat. However, detailed knowledge of effective gene flow through dispersal is often missing, so that conservation strategies have to be based on mark-recapture observations that are suspected to be poor predictors of long-distance dispersal. These constraints have been especially severe in the study of butterfly populations, where microsatellite markers have been difficult to develop. We used eight microsatellite markers to analyse genetic population structure of the Large Blue butterfly Maculinea arion in Sweden. During recent decades, this species has become an icon of insect conservation after massive decline throughout Europe and extinction in Britain followed by reintroduction of a seed population from the Swedish island of Öland. We find that populations are highly structured genetically, but that gene flow occurs over distances 15 times longer than the maximum distance recorded from mark-recapture studies, which can only be explained by maximum dispersal distances at least twice as large as previously accepted. However, we also find evidence that gaps between sites with suitable habitat exceeding ∼ 20 km induce genetic erosion that can be detected from bottleneck analyses. Although further work is needed, our results suggest that M. arion can maintain fully functional metapopulations when they consist of optimal habitat patches that are no further apart than ∼10 km.}, author = {Ugelvig, Line V and Andersen, Anne and Boomsma, Jacobus and Nash, David}, journal = {Molecular Ecology}, number = {13}, pages = {3224 -- 3236}, publisher = {Wiley-Blackwell}, title = {{Dispersal and gene flow in the rare parasitic Large Blue butterfly Maculinea arion}}, doi = {10.1111/j.1365-294X.2012.05592.x}, volume = {21}, year = {2012}, } @article{3158, abstract = {We describe here the development and characterization of a conditionally inducible mouse model expressing Lifeact-GFP, a peptide that reports the dynamics of filamentous actin. We have used this model to study platelets, megakaryocytes and melanoblasts and we provide evidence that Lifeact-GFP is a useful reporter in these cell types ex vivo. In the case of platelets and megakaryocytes, these cells are not transfectable by traditional methods, so conditional activation of Lifeact allows the study of actin dynamics in these cells live. We studied melanoblasts in native skin explants from embryos, allowing the visualization of live actin dynamics during cytokinesis and migration. Our study revealed that melanoblasts lacking the small GTPase Rac1 show a delay in the formation of new pseudopodia following cytokinesis that accounts for the previously reported cytokinesis delay in these cells. Thus, through use of this mouse model, we were able to gain insights into the actin dynamics of cells that could only previously be studied using fixed specimens or following isolation from their native tissue environment.}, author = {Schachtner, Hannah and Li, Ang and Stevenson, David and Calaminus, Simon and Thomas, Steven and Watson, Steve and Sixt, Michael K and Wedlich Söldner, Roland and Strathdee, Douglas and Machesky, Laura}, journal = {European Journal of Cell Biology}, number = {11-12}, pages = {923 -- 929}, publisher = {Elsevier}, title = {{Tissue inducible Lifeact expression allows visualization of actin dynamics in vivo and ex vivo}}, doi = {10.1016/j.ejcb.2012.04.002}, volume = {91}, year = {2012}, } @article{3248, abstract = {We describe RTblob, a high speed vision system that detects objects in cluttered scenes based on their color and shape at a speed of over 800 frames/s. Because the system is available as open-source software and relies only on off-the-shelf PC hardware components, it can provide the basis for multiple application scenarios. As an illustrative example, we show how RTblob can be used in a robotic table tennis scenario to estimate ball trajectories through 3D space simultaneously from four cameras images at a speed of 200 Hz.}, author = {Lampert, Christoph and Peters, Jan}, issn = {1861-8219}, journal = {Journal of Real-Time Image Processing}, number = {1}, pages = {31 -- 41}, publisher = {Springer}, title = {{Real-time detection of colored objects in multiple camera streams with off-the-shelf hardware components}}, doi = {10.1007/s11554-010-0168-3}, volume = {7}, year = {2012}, } @article{3247, abstract = {The Brazilian Merganser is a very rare and threatened species that nowadays inhabits only a few protected areas and their surroundings in the Brazilian territory. In order to estimate the remaining genetic diversity and population structure in this species, two mitochondrial genes were sequenced in 39 individuals belonging to two populations and in one individual collected in Argentina in 1950. We found a highly significant divergence between two major remaining populations of Mergus octosetaceus, which suggests a historical population structure in this species. Furthermore, two deeply divergent lineages were found in a single location, which could due to current or historical secondary contact. Based on the available genetic data, we point out future directions which would contribute to design strategies for conservation and management of this threatened species.}, author = {Vilaça, Sibelle and Fernandes Redondo, Rodrigo A and Lins, Lívia and Santos, Fabrício}, journal = {Conservation Genetics}, number = {1}, pages = {293 -- 298}, publisher = {Springer}, title = {{Remaining genetic diversity in Brazilian Merganser (Mergus octosetaceus)}}, doi = {10.1007/s10592-011-0262-5}, volume = {13}, year = {2012}, } @article{3245, abstract = {How cells orchestrate their behavior during collective migration is a long-standing question. Using magnetic tweezers to apply mechanical stimuli to Xenopus mesendoderm cells, Weber etal. (2012) now reveal, in this issue of Developmental Cell, a cadherin-mediated mechanosensitive response that promotes cell polarization and movement persistence during the collective mesendoderm migration in gastrulation.}, author = {Behrndt, Martin and Heisenberg, Carl-Philipp J}, journal = {Developmental Cell}, number = {1}, pages = {3 -- 4}, publisher = {Cell Press}, title = {{Spurred by resistance mechanosensation in collective migration}}, doi = {10.1016/j.devcel.2011.12.018}, volume = {22}, year = {2012}, } @article{3262, abstract = {Living cells must control the reading out or "expression" of information encoded in their genomes, and this regulation often is mediated by transcription factors--proteins that bind to DNA and either enhance or repress the expression of nearby genes. But the expression of transcription factor proteins is itself regulated, and many transcription factors regulate their own expression in addition to responding to other input signals. Here we analyze the simplest of such self-regulatory circuits, asking how parameters can be chosen to optimize information transmission from inputs to outputs in the steady state. Some nonzero level of self-regulation is almost always optimal, with self-activation dominant when transcription factor concentrations are low and self-repression dominant when concentrations are high. In steady state the optimal self-activation is never strong enough to induce bistability, although there is a limit in which the optimal parameters are very close to the critical point.}, author = {Tkacik, Gasper and Walczak, Aleksandra and Bialek, William}, journal = { Physical Review E statistical nonlinear and soft matter physics }, number = {4}, publisher = {American Institute of Physics}, title = {{Optimizing information flow in small genetic networks. III. A self-interacting gene}}, doi = {10.1103/PhysRevE.85.041903}, volume = {85}, year = {2012}, } @article{3257, abstract = {Consider a convex relaxation f̂ of a pseudo-Boolean function f. We say that the relaxation is totally half-integral if f̂(x) is a polyhedral function with half-integral extreme points x, and this property is preserved after adding an arbitrary combination of constraints of the form x i=x j, x i=1-x j, and x i=γ where γ∈{0,1,1/2} is a constant. A well-known example is the roof duality relaxation for quadratic pseudo-Boolean functions f. We argue that total half-integrality is a natural requirement for generalizations of roof duality to arbitrary pseudo-Boolean functions. Our contributions are as follows. First, we provide a complete characterization of totally half-integral relaxations f̂ by establishing a one-to-one correspondence with bisubmodular functions. Second, we give a new characterization of bisubmodular functions. Finally, we show some relationships between general totally half-integral relaxations and relaxations based on the roof duality. On the conceptual level, our results show that bisubmodular functions provide a natural generalization of the roof duality approach to higher-order terms. This can be viewed as a non-submodular analogue of the fact that submodular functions generalize the s-t minimum cut problem with non-negative weights to higher-order terms.}, author = {Kolmogorov, Vladimir}, journal = {Discrete Applied Mathematics}, number = {4-5}, pages = {416 -- 426}, publisher = {Elsevier}, title = {{Generalized roof duality and bisubmodular functions}}, doi = {10.1016/j.dam.2011.10.026}, volume = {160}, year = {2012}, } @inbook{3277, abstract = {The problem of the origin of metazoa is becoming more urgent in the context of astrobiology. By now it is clear that clues to the understanding of this crucial transition in the evolution of life can arise in a fourth pathway besides the three possibilities in the quest for simplicity outlined by Bonner in his classical book. In other words, solar system exploration seems to be one way in the long-term to elucidate the simplicity of evolutionary development. We place these ideas in the context of different inheritance systems, namely the genotypic and phenotypic replicators with limited or unlimited heredity, and ask which of these can support multicellular development, and to which degree of complexity. However, the quest for evidence on the evolution of biotas from planets around other stars does not seem to be feasible with present technology with direct visualization of living organisms on exoplanets. But this may be attempted on the Galilean moons of Jupiter where there is a possibility of detecting reliable biomarkers in the next decade with the Europa Jupiter System Mission, in view of recent progress by landing micropenetrators on planetary, or satellite surfaces. Mars is a second possibility in the inner Solar System, in spite of the multiple difficulties faced by the fleet of past, present and future missions. We discuss a series of preliminary ideas for elucidating the origin of metazoan analogues with available instrumentation in potential payloads of feasible space missions to the Galilean moons.}, author = {de Vladar, Harold and Chela Flores, Julian}, booktitle = {Life on Earth and other planetary bodies}, pages = {387 -- 405}, publisher = {Springer}, title = {{Can the evolution of multicellularity be anticipated in the exploration of the solar system?}}, doi = {10.1007/978-94-007-4966-5_22}, volume = {24}, year = {2012}, } @inproceedings{3279, abstract = {We show a hardness-preserving construction of a PRF from any length doubling PRG which improves upon known constructions whenever we can put a non-trivial upper bound q on the number of queries to the PRF. Our construction requires only O(logq) invocations to the underlying PRG with each query. In comparison, the number of invocations by the best previous hardness-preserving construction (GGM using Levin's trick) is logarithmic in the hardness of the PRG. For example, starting from an exponentially secure PRG {0,1} n → {0,1} 2n, we get a PRF which is exponentially secure if queried at most q = exp(√n)times and where each invocation of the PRF requires Θ(√n) queries to the underlying PRG. This is much less than the Θ(n) required by known constructions. }, author = {Jain, Abhishek and Pietrzak, Krzysztof Z and Tentes, Aris}, location = {Taormina, Sicily, Italy}, pages = {369 -- 382}, publisher = {Springer}, title = {{Hardness preserving constructions of pseudorandom functions}}, doi = {10.1007/978-3-642-28914-9_21}, volume = {7194}, year = {2012}, } @article{3274, abstract = {A boundary element model of a tunnel running through horizontally layered soil with anisotropic material properties is presented. Since there is no analytical fundamental solution for wave propagation inside a layered orthotropic medium in 3D, the fundamental displacements and stresses have to be calculated numerically. In our model this is done in the Fourier domain with respect to space and time. The assumption of a straight tunnel with infinite extension in the x direction makes it possible to decouple the system for every wave number kx, leading to a 2.5D-problem, which is suited for parallel computation. The special form of the fundamental solution, resulting from our Fourier ansatz, and the fact, that the calculation of the boundary integral equation is performed in the Fourier domain, enhances the stability and efficiency of the numerical calculations.}, author = {Rieckh, Georg and Kreuzer, Wolfgang and Waubke, Holger and Balazs, Peter}, journal = { Engineering Analysis with Boundary Elements}, number = {6}, pages = {960 -- 967}, publisher = {Elsevier}, title = {{A 2.5D-Fourier-BEM model for vibrations in a tunnel running through layered anisotropic soil}}, doi = {10.1016/j.enganabound.2011.12.014}, volume = {36}, year = {2012}, } @article{3289, abstract = {Viral manipulation of transduction pathways associated with key cellular functions such as survival, response to microbial infection, and cytoskeleton reorganization can provide the supportive milieu for a productive infection. Here, we demonstrate that vaccinia virus (VACV) infection leads to activation of the stress-activated protein kinase (SAPK)/extracellular signal-regulated kinase (ERK) 4/7 (MKK4/7)-c-Jun N-terminal protein kinase 1/2 (JNK1/2) pathway; further, the stimulation of this pathway requires postpenetration, prereplicative events in the viral replication cycle. Although the formation of intracellular mature virus (IMV) was not affected in MKK4/7- or JNK1/2-knockout (KO) cells, we did note an accentuated deregulation of microtubule and actin network organization in infected JNK1/2-KO cells. This was followed by deregulated viral trafficking to the periphery and enhanced enveloped particle release. Furthermore, VACV infection induced alterations in the cell contractility and morphology, and cell migration was reduced in the JNK-KO cells. In addition, phosphorylation of proteins implicated with early cell contractility and cell migration, such as microtubule-associated protein 1B and paxillin, respectively, was not detected in the VACV-infected KO cells. In sum, our findings uncover a regulatory role played by the MKK4/7-JNK1/2 pathway in cytoskeleton reorganization during VACV infection. }, author = {Pereira, Anna and Leite, Flávia and Brasil, Bruno and Soares Martins, Jamaria and Torres, Alice and Pimenta, Paulo and Souto Padrón, Thais and Tranktman, Paula and Ferreira, Paulo and Kroon, Erna and Bonjardim, Cláudio}, journal = {Journal of Virology}, number = {1}, pages = {172 -- 184}, publisher = {ASM}, title = {{A vaccinia virus-driven interplay between the MKK4/7-JNK1/2 pathway and cytoskeleton reorganization}}, doi = {10.1128/JVI.05638-11}, volume = {86}, year = {2012}, } @article{3310, abstract = {The theory of persistent homology opens up the possibility to reason about topological features of a space or a function quantitatively and in combinatorial terms. We refer to this new angle at a classical subject within algebraic topology as a point calculus, which we present for the family of interlevel sets of a real-valued function. Our account of the subject is expository, devoid of proofs, and written for non-experts in algebraic topology.}, author = {Bendich, Paul and Cabello, Sergio and Edelsbrunner, Herbert}, journal = {Pattern Recognition Letters}, number = {11}, pages = {1436 -- 1444}, publisher = {Elsevier}, title = {{A point calculus for interlevel set homology}}, doi = {10.1016/j.patrec.2011.10.007}, volume = {33}, year = {2012}, } @article{338, abstract = {The ample chemical and structural freedom of quaternary compounds permits engineering materials that fulfill the requirements of a wide variety of applications. In this work, the mechanisms to achieve unprecedented size, shape, and composition control in quaternary nanocrystals are detailed. The described procedure allows obtaining tetrahedral and penta-tetrahedral quaternary nanocrystals with tuned size distributions and controlled compositions from a plethora of I 2-II-IV-VI 4 semiconductors.}, author = {Ibáñez, Maria and Zamani, Reza and Li, Wenhua and Shavel, Alexey and Arbiol, Jordi and Morante, Joan and Cabot, Andreu}, journal = {Crystal Growth and Design }, number = {3}, pages = {1085 -- 1090}, publisher = {American Chemical Society (ACS)}, title = {{Extending the nanocrystal synthesis control to quaternary compositions}}, doi = {10.1021/cg201709c}, volume = {12}, year = {2012}, } @article{339, abstract = {A high-yield and upscalable colloidal synthesis route for the production of quaternary I 2-II-IV-VI 4 nanocrystals, particularly stannite Cu 2+xCd 1-xSnSe 4, with narrow size distribution and precisely controlled composition is presented. It is also shown here how the diversity of valences in the constituent elements allows an effective control of their electrical conductivity through the adjustment of the cation ratios. At the same time, while the crystallographic complexity of quaternary chalcogenides is associated with intrinsically low thermal conductivities, the reduction of the lattice dimensions to the nanoscale further reduces the materials thermal conductivity. In the specific case of the stannite crystal structure, a convenient slab distribution of the valence band maximum states permits a partial decoupling of the p-type electrical conductivity from both the Seebeck coefficient and the thermal conductivity. Combining these features, we demonstrate how an initial optimization of the nanocrystals Cd/Cu ratio allowed us to obtain low-temperature solution-processed materials with ZT values up to 0.71 at 685 K.}, author = {Ibáñez, Maria and Cadavid, Doris and Zamani, Reza and García Castelló, Nuria and Izquierdo Roca, Victora and Li, Wenhua and Fairbrother, Andrew and Prades, Joan and Shavel, Alexey and Arbiol, Jordi and Pérez Rodríguez, Alejandro and Morante, Joan and Cabot, Andreu}, journal = {Chemistry of Materials}, number = {3}, pages = {562 -- 570}, publisher = {American Chemical Society}, title = {{Composition control and thermoelectric properties of quaternary chalcogenide nanocrystals: The case of stannite Cu2CdSnSe4}}, doi = {10.1021/cm2031812}, volume = {24}, year = {2012}, } @article{340, abstract = {A procedure for the continuous production of Cu 2ZnSnS 4 (CZTS) nanoparticles with controlled composition is presented. CZTS nanoparticles were prepared through the reaction of the metals' amino complexes with elemental sulfur in a continuous-flow reactor at moderate temperatures (300-330 °C). High-resolution transmission electron microscopy and X-ray diffraction analysis showed the nanocrystals to have a crystallographic structure compatible with that of the kesterite. Chemical characterization of the materials showed the presence of the four elements in each individual nanocrystal. Composition control was achieved by adjusting the solution flow rate through the reactor and the proper choice of the nominal precursor concentration within the flowing solution. Single-particle analysis revealed a composition distribution within each sample, which was optimized at the highest synthesis temperatures used. }, author = {Shavel, Alexey and Cadavid, Doris and Ibáñez, Maria and Carrete, Alex and Cabot, Andreu}, journal = {Journal of the American Chemical Society}, number = {3}, pages = {1438 -- 1441}, publisher = {ACS}, title = {{Continuous production of Cu inf 2 inf ZnSnS inf 4 inf nanocrystals in a flow reactor}}, doi = {10.1021/ja209688a}, volume = {134}, year = {2012}, } @article{345, abstract = {Nanocomposites are highly promising materials to enhance the efficiency of current thermoelectric devices. A straightforward and at the same time highly versatile and controllable approach to produce nanocomposites is the assembly of solution-processed nanocrystal building blocks. The convenience of this bottom-up approach to produce nanocomposites with homogeneous phase distributions and adjustable composition is demonstrated here by blending Ag2Te and PbTe colloidal nanocrystals to form Ag2Te–PbTe bulk nanocomposites. The thermoelectric properties of these nanocomposites are analyzed in the temperature range from 300 to 700 K. The evolution of their electrical conductivity and Seebeck coefficient is discussed in terms of the blend composition and the characteristics of the constituent materials. }, author = {Cadavid, Doris and Ibáñez, Maria and Gorsse, Stéphane and López, Antonio and Cirera, Albert and Morante, Joan and Cabot, Andreu}, journal = {Journal of Nanoparticle Research}, number = {12}, publisher = {Kluwer}, title = {{Bottom-up processing of thermoelectric nanocomposites from colloidal nanocrystal building blocks: The case of Ag2Te–PbTe}}, doi = {10.1007/s11051-012-1328-0}, volume = {14}, year = {2012}, } @article{347, abstract = {A synthetic route for producing Cu 2ZnGeSe 4 nanocrystals with narrow size distributions and controlled composition is presented. These nanocrystals were used to produce densely packed nanomaterials by hot-pressing. From the characterization of the thermoelectric properties of these nanomaterials, Cu 2ZnGeSe 4 is demonstrated to show excellent thermoelectric properties. A very preliminary adjustment of the nanocrystal composition has already resulted in a figure of merit of up to 0.55 at 450°C. }, author = {Ibáñez, Maria and Zamani, Reza and Lalonde, Aaron and Cadavid, Doris and Li, Wenhua and Shavel, Alexey and Arbiol, Jordi and Morante, Joan and Gorsse, Stéphane and Snyder, G Jeffrey and Cabot, Andreu}, journal = {Journal of the American Chemical Society}, number = {9}, pages = {4060 -- 4063}, publisher = {ACS}, title = {{Cu 2ZnGeSe 4 nanocrystals: Synthesis and thermoelectric properties}}, doi = {10.1021/ja211952z}, volume = {134}, year = {2012}, } @article{3836, abstract = {Hierarchical Timing Language (HTL) is a coordination language for distributed, hard real-time applications. HTL is a hierarchical extension of Giotto and, like its predecessor, based on the logical execution time (LET) paradigm of real-time programming. Giotto is compiled into code for a virtual machine, called the EmbeddedMachine (or E machine). If HTL is targeted to the E machine, then the hierarchicalprogram structure needs to be flattened; the flattening makes separatecompilation difficult, and may result in E machinecode of exponential size. In this paper, we propose a generalization of the E machine, which supports a hierarchicalprogram structure at runtime through real-time trigger mechanisms that are arranged in a tree. We present the generalized E machine, and a modular compiler for HTL that generates code of linear size. The compiler may generate code for any part of a given HTL program separately in any order.}, author = {Ghosal, Arkadeb and Iercan, Daniel and Kirsch, Christoph and Henzinger, Thomas A and Sangiovanni Vincentelli, Alberto}, journal = {Science of Computer Programming}, number = {2}, pages = {96 -- 112}, publisher = {Elsevier}, title = {{Separate compilation of hierarchical real-time programs into linear-bounded embedded machine code}}, doi = {10.1016/j.scico.2010.06.004}, volume = {77}, year = {2012}, } @article{2972, abstract = {Energy parity games are infinite two-player turn-based games played on weighted graphs. The objective of the game combines a (qualitative) parity condition with the (quantitative) requirement that the sum of the weights (i.e., the level of energy in the game) must remain positive. Beside their own interest in the design and synthesis of resource-constrained omega-regular specifications, energy parity games provide one of the simplest model of games with combined qualitative and quantitative objectives. Our main results are as follows: (a) exponential memory is sufficient and may be necessary for winning strategies in energy parity games; (b) the problem of deciding the winner in energy parity games can be solved in NP ∩ coNP; and (c) we give an algorithm to solve energy parity by reduction to energy games. We also show that the problem of deciding the winner in energy parity games is logspace-equivalent to the problem of deciding the winner in mean-payoff parity games, which can thus be solved in NP ∩ coNP. As a consequence we also obtain a conceptually simple algorithm to solve mean-payoff parity games.}, author = {Chatterjee, Krishnendu and Doyen, Laurent}, journal = {Theoretical Computer Science}, pages = {49 -- 60}, publisher = {Elsevier}, title = {{Energy parity games}}, doi = {10.1016/j.tcs.2012.07.038}, volume = {458}, year = {2012}, } @article{2967, abstract = {For programs whose data variables range over Boolean or finite domains, program verification is decidable, and this forms the basis of recent tools for software model checking. In this article, we consider algorithmic verification of programs that use Boolean variables, and in addition, access a single read-only array whose length is potentially unbounded, and whose elements range over an unbounded data domain. We show that the reachability problem, while undecidable in general, is (1) PSPACE-complete for programs in which the array-accessing for-loops are not nested, (2) decidable for a restricted class of programs with doubly nested loops. The second result establishes connections to automata and logics defining languages over data words.}, author = {Alur, Rajeev and Cerny, Pavol and Weinstein, Scott}, journal = {ACM Transactions on Computational Logic (TOCL)}, number = {3}, publisher = {ACM}, title = {{Algorithmic analysis of array-accessing programs}}, doi = {10.1145/2287718.2287727}, volume = {13}, year = {2012}, } @article{492, abstract = {Background: Characterizing root system architecture (RSA) is essential to understanding the development and function of vascular plants. Identifying RSA-associated genes also represents an underexplored opportunity for crop improvement. Software tools are needed to accelerate the pace at which quantitative traits of RSA are estimated from images of root networks.Results: We have developed GiA Roots (General Image Analysis of Roots), a semi-automated software tool designed specifically for the high-throughput analysis of root system images. GiA Roots includes user-assisted algorithms to distinguish root from background and a fully automated pipeline that extracts dozens of root system phenotypes. Quantitative information on each phenotype, along with intermediate steps for full reproducibility, is returned to the end-user for downstream analysis. GiA Roots has a GUI front end and a command-line interface for interweaving the software into large-scale workflows. GiA Roots can also be extended to estimate novel phenotypes specified by the end-user.Conclusions: We demonstrate the use of GiA Roots on a set of 2393 images of rice roots representing 12 genotypes from the species Oryza sativa. We validate trait measurements against prior analyses of this image set that demonstrated that RSA traits are likely heritable and associated with genotypic differences. Moreover, we demonstrate that GiA Roots is extensible and an end-user can add functionality so that GiA Roots can estimate novel RSA traits. In summary, we show that the software can function as an efficient tool as part of a workflow to move from large numbers of root images to downstream analysis.}, author = {Galkovskyi, Taras and Mileyko, Yuriy and Bucksch, Alexander and Moore, Brad and Symonova, Olga and Price, Charles and Topp, Chrostopher and Iyer Pascuzzi, Anjali and Zurek, Paul and Fang, Suqin and Harer, John and Benfey, Philip and Weitz, Joshua}, journal = {BMC Plant Biology}, publisher = {BioMed Central}, title = {{GiA Roots: Software for the high throughput analysis of plant root system architecture}}, doi = {10.1186/1471-2229-12-116}, volume = {12}, year = {2012}, } @article{493, abstract = {The BCI competition IV stands in the tradition of prior BCI competitions that aim to provide high quality neuroscientific data for open access to the scientific community. As experienced already in prior competitions not only scientists from the narrow field of BCI compete, but scholars with a broad variety of backgrounds and nationalities. They include high specialists as well as students.The goals of all BCI competitions have always been to challenge with respect to novel paradigms and complex data. We report on the following challenges: (1) asynchronous data, (2) synthetic, (3) multi-class continuous data, (4) sessionto-session transfer, (5) directionally modulated MEG, (6) finger movements recorded by ECoG. As after past competitions, our hope is that winning entries may enhance the analysis methods of future BCIs.}, author = {Tangermann, Michael and Müller, Klaus and Aertsen, Ad and Birbaumer, Niels and Braun, Christoph and Brunner, Clemens and Leeb, Robert and Mehring, Carsten and Miller, Kai and Müller Putz, Gernot and Nolte, Guido and Pfurtscheller, Gert and Preissl, Hubert and Schalk, Gerwin and Schlögl, Alois and Vidaurre, Carmen and Waldert, Stephan and Blankertz, Benjamin}, journal = {Frontiers in Neuroscience}, publisher = {Frontiers Research Foundation}, title = {{Review of the BCI competition IV}}, doi = {10.3389/fnins.2012.00055}, volume = {6}, year = {2012}, } @inproceedings{495, abstract = {An automaton with advice is a finite state automaton which has access to an additional fixed infinite string called an advice tape. We refine the Myhill-Nerode theorem to characterize the languages of finite strings that are accepted by automata with advice. We do the same for tree automata with advice.}, author = {Kruckman, Alex and Rubin, Sasha and Sheridan, John and Zax, Ben}, booktitle = {Proceedings GandALF 2012}, location = {Napoli, Italy}, pages = {238 -- 246}, publisher = {Open Publishing Association}, title = {{A Myhill Nerode theorem for automata with advice}}, doi = {10.4204/EPTCS.96.18}, volume = {96}, year = {2012}, } @article{498, abstract = {Understanding patterns and correlates of local adaptation in heterogeneous landscapes can provide important information in the selection of appropriate seed sources for restoration. We assessed the extent of local adaptation of fitness components in 12 population pairs of the perennial herb Rutidosis leptorrhynchoides (Asteraceae) and examined whether spatial scale (0.7-600 km), environmental distance, quantitative (QST) and neutral (FST) genetic differentiation, and size of the local and foreign populations could predict patterns of adaptive differentiation. Local adaptation varied among populations and fitness components. Including all population pairs, local adaptation was observed for seedling survival, but not for biomass, while foreign genotype advantage was observed for reproduction (number of inflorescences). Among population pairs, local adaptation increased with QST and local population size for biomass. QST was associated with environmental distance, suggesting ecological selection for phenotypic divergence. However, low FST and variation in population structure in small populations demonstrates the interaction of gene flow and drift in constraining local adaptation in R. leptorrhynchoides. Our study indicates that for species in heterogeneous landscapes, collecting seed from large populations from similar environments to candidate sites is likely to provide the most appropriate seed sources for restoration.}, author = {Pickup, Melinda and Field, David and Rowell, David and Young, Andrew}, journal = {Evolutionary Applications}, number = {8}, pages = {913 -- 924}, publisher = {Wiley-Blackwell}, title = {{Predicting local adaptation in fragmented plant populations: Implications for restoration genetics}}, doi = {10.1111/j.1752-4571.2012.00284.x}, volume = {5}, year = {2012}, } @inproceedings{496, abstract = {We study the expressive power of logical interpretations on the class of scattered trees, namely those with countably many infinite branches. Scattered trees can be thought of as the tree analogue of scattered linear orders. Every scattered tree has an ordinal rank that reflects the structure of its infinite branches. We prove, roughly, that trees and orders of large rank cannot be interpreted in scattered trees of small rank. We consider a quite general notion of interpretation: each element of the interpreted structure is represented by a set of tuples of subsets of the interpreting tree. Our trees are countable, not necessarily finitely branching, and may have finitely many unary predicates as labellings. We also show how to replace injective set-interpretations in (not necessarily scattered) trees by 'finitary' set-interpretations.}, author = {Rabinovich, Alexander and Rubin, Sasha}, location = {Dubrovnik, Croatia}, publisher = {IEEE}, title = {{Interpretations in trees with countably many branches}}, doi = {10.1109/LICS.2012.65}, year = {2012}, } @article{494, abstract = {We solve the longstanding open problems of the blow-up involved in the translations, when possible, of a nondeterministic Büchi word automaton (NBW) to a nondeterministic co-Büchi word automaton (NCW) and to a deterministic co-Büchi word automaton (DCW). For the NBW to NCW translation, the currently known upper bound is 2o(nlog n) and the lower bound is 1.5n. We improve the upper bound to n2n and describe a matching lower bound of 2ω(n). For the NBW to DCW translation, the currently known upper bound is 2o(nlog n). We improve it to 2 o(n), which is asymptotically tight. Both of our upper-bound constructions are based on a simple subset construction, do not involve intermediate automata with richer acceptance conditions, and can be implemented symbolically. We continue and solve the open problems of translating nondeterministic Streett, Rabin, Muller, and parity word automata to NCW and to DCW. Going via an intermediate NBW is not optimal and we describe direct, simple, and asymptotically tight constructions, involving a 2o(n) blow-up. The constructions are variants of the subset construction, providing a unified approach for translating all common classes of automata to NCW and DCW. Beyond the theoretical importance of the results, we point to numerous applications of the new constructions. In particular, they imply a simple subset-construction based translation, when possible, of LTL to deterministic Büchi word automata.}, author = {Boker, Udi and Kupferman, Orna}, journal = {ACM Transactions on Computational Logic (TOCL)}, number = {4}, publisher = {ACM}, title = {{Translating to Co-Büchi made tight, unified, and useful}}, doi = {10.1145/2362355.2362357}, volume = {13}, year = {2012}, } @article{506, author = {Sixt, Michael K}, journal = {Journal of Cell Biology}, number = {3}, pages = {347 -- 349}, publisher = {Rockefeller University Press}, title = {{Cell migration: Fibroblasts find a new way to get ahead}}, doi = {10.1083/jcb.201204039}, volume = {197}, year = {2012}, } @inproceedings{497, abstract = {One central issue in the formal design and analysis of reactive systems is the notion of refinement that asks whether all behaviors of the implementation is allowed by the specification. The local interpretation of behavior leads to the notion of simulation. Alternating transition systems (ATSs) provide a general model for composite reactive systems, and the simulation relation for ATSs is known as alternating simulation. The simulation relation for fair transition systems is called fair simulation. In this work our main contributions are as follows: (1) We present an improved algorithm for fair simulation with Büchi fairness constraints; our algorithm requires O(n 3·m) time as compared to the previous known O(n 6)-time algorithm, where n is the number of states and m is the number of transitions. (2) We present a game based algorithm for alternating simulation that requires O(m2)-time as compared to the previous known O((n·m)2)-time algorithm, where n is the number of states and m is the size of transition relation. (3) We present an iterative algorithm for alternating simulation that matches the time complexity of the game based algorithm, but is more space efficient than the game based algorithm. © Krishnendu Chatterjee, Siddhesh Chaubal, and Pritish Kamath.}, author = {Chatterjee, Krishnendu and Chaubal, Siddhesh and Kamath, Pritish}, location = {Fontainebleau, France}, pages = {167 -- 182}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Faster algorithms for alternating refinement relations}}, doi = {10.4230/LIPIcs.CSL.2012.167}, volume = {16}, year = {2012}, } @inproceedings{3165, abstract = {Computing the winning set for Büchi objectives in alternating games on graphs is a central problem in computer aided verification with a large number of applications. The long standing best known upper bound for solving the problem is Õ(n·m), where n is the number of vertices and m is the number of edges in the graph. We are the first to break the Õ(n·m) boundary by presenting a new technique that reduces the running time to O(n 2). This bound also leads to O(n 2) time algorithms for computing the set of almost-sure winning vertices for Büchi objectives (1) in alternating games with probabilistic transitions (improving an earlier bound of Õ(n·m)), (2) in concurrent graph games with constant actions (improving an earlier bound of O(n 3)), and (3) in Markov decision processes (improving for m > n 4/3 an earlier bound of O(min(m 1.5, m·n 2/3)). We also show that the same technique can be used to compute the maximal end-component decomposition of a graph in time O(n 2), which is an improvement over earlier bounds for m > n 4/3. Finally, we show how to maintain the winning set for Büchi objectives in alternating games under a sequence of edge insertions or a sequence of edge deletions in O(n) amortized time per operation. This is the first dynamic algorithm for this problem.}, author = {Chatterjee, Krishnendu and Henzinger, Monika H}, booktitle = {Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms}, location = {Kyoto, Japan}, pages = {1386 -- 1399}, publisher = {SIAM}, title = {{An O(n2) time algorithm for alternating Büchi games}}, doi = {10.1137/1.9781611973099.109}, year = {2012}, } @inproceedings{2956, abstract = {Two-player games on graphs are central in many problems in formal verification and program analysis such as synthesis and verification of open systems. In this work we consider solving recursive game graphs (or pushdown game graphs) that can model the control flow of sequential programs with recursion. While pushdown games have been studied before with qualitative objectives, such as reachability and parity objectives, in this work we study for the first time such games with the most well-studied quantitative objective, namely, mean payoff objectives. In pushdown games two types of strategies are relevant: (1) global strategies, that depend on the entire global history; and (2) modular strategies, that have only local memory and thus do not depend on the context of invocation, but only on the history of the current invocation of the module. Our main results are as follows: (1) One-player pushdown games with mean-payoff objectives under global strategies are decidable in polynomial time. (2) Two-player pushdown games with mean-payoff objectives under global strategies are undecidable. (3) One-player pushdown games with mean-payoff objectives under modular strategies are NP-hard. (4) Two-player pushdown games with mean-payoff objectives under modular strategies can be solved in NP (i.e., both one-player and two-player pushdown games with mean-payoff objectives under modular strategies are NP-complete). We also establish the optimal strategy complexity showing that global strategies for mean-payoff objectives require infinite memory even in one-player pushdown games; and memoryless modular strategies are sufficient in two-player pushdown games. Finally we also show that all the problems have the same computational complexity if the stack boundedness condition is added, where along with the mean-payoff objective the player must also ensure that the stack height is bounded.}, author = {Chatterjee, Krishnendu and Velner, Yaron}, booktitle = {Proceedings of the 2012 27th Annual ACM/IEEE Symposium on Logic in Computer Science}, location = {Dubrovnik, Croatia }, publisher = {IEEE}, title = {{Mean payoff pushdown games}}, doi = {10.1109/LICS.2012.30}, year = {2012}, } @misc{5377, abstract = {Two-player games on graphs are central in many problems in formal verification and program analysis such as synthesis and verification of open systems. In this work we consider solving recursive game graphs (or pushdown game graphs) that can model the control flow of sequential programs with recursion. While pushdown games have been studied before with qualitative objectives, such as reachability and ω-regular objectives, in this work we study for the first time such games with the most well-studied quantitative objective, namely, mean-payoff objectives. In pushdown games two types of strategies are relevant: (1) global strategies, that depend on the entire global history; and (2) modular strategies, that have only local memory and thus do not depend on the context of invocation, but only on the history of the current invocation of the module. Our main results are as follows: (1) One-player pushdown games with mean-payoff objectives under global strategies are decidable in polynomial time. (2) Two- player pushdown games with mean-payoff objectives under global strategies are undecidable. (3) One-player pushdown games with mean-payoff objectives under modular strategies are NP- hard. (4) Two-player pushdown games with mean-payoff objectives under modular strategies can be solved in NP (i.e., both one-player and two-player pushdown games with mean-payoff objectives under modular strategies are NP-complete). We also establish the optimal strategy complexity showing that global strategies for mean-payoff objectives require infinite memory even in one-player pushdown games; and memoryless modular strategies are sufficient in two- player pushdown games. Finally we also show that all the problems have the same complexity if the stack boundedness condition is added, where along with the mean-payoff objective the player must also ensure that the stack height is bounded.}, author = {Chatterjee, Krishnendu and Velner, Yaron}, issn = {2664-1690}, pages = {33}, publisher = {IST Austria}, title = {{Mean-payoff pushdown games}}, doi = {10.15479/AT:IST-2012-0002}, year = {2012}, } @misc{5378, abstract = {One central issue in the formal design and analysis of reactive systems is the notion of refinement that asks whether all behaviors of the implementation is allowed by the specification. The local interpretation of behavior leads to the notion of simulation. Alternating transition systems (ATSs) provide a general model for composite reactive systems, and the simulation relation for ATSs is known as alternating simulation. The simulation relation for fair transition systems is called fair simulation. In this work our main contributions are as follows: (1) We present an improved algorithm for fair simulation with Büchi fairness constraints; our algorithm requires O(n3 · m) time as compared to the previous known O(n6)-time algorithm, where n is the number of states and m is the number of transitions. (2) We present a game based algorithm for alternating simulation that requires O(m2)-time as compared to the previous known O((n · m)2)-time algorithm, where n is the number of states and m is the size of transition relation. (3) We present an iterative algorithm for alternating simulation that matches the time complexity of the game based algorithm, but is more space efficient than the game based algorithm.}, author = {Chatterjee, Krishnendu and Chaubal, Siddhesh and Kamath, Pritish}, issn = {2664-1690}, pages = {21}, publisher = {IST Austria}, title = {{Faster algorithms for alternating refinement relations}}, doi = {10.15479/AT:IST-2012-0001}, year = {2012}, } @inproceedings{2955, abstract = {We consider two-player stochastic games played on finite graphs with reachability objectives where the first player tries to ensure a target state to be visited almost-surely (i.e., with probability 1), or positively (i.e., with positive probability), no matter the strategy of the second player. We classify such games according to the information and the power of randomization available to the players. On the basis of information, the game can be one-sided with either (a) player 1, or (b) player 2 having partial observation (and the other player has perfect observation), or two-sided with (c) both players having partial observation. On the basis of randomization, the players (a) may not be allowed to use randomization (pure strategies), or (b) may choose a probability distribution over actions but the actual random choice is external and not visible to the player (actions invisible), or (c) may use full randomization. Our main results for pure strategies are as follows. (1) For one-sided games with player 1 having partial observation we show that (in contrast to full randomized strategies) belief-based (subset-construction based) strategies are not sufficient, and we present an exponential upper bound on memory both for almostsure and positive winning strategies; we show that the problem of deciding the existence of almost-sure and positive winning strategies for player 1 is EXPTIME-complete. (2) For one-sided games with player 2 having partial observation we show that non-elementary memory is both necessary and sufficient for both almost-sure and positive winning strategies. (3) We show that for the general (two-sided) case finite-memory strategies are sufficient for both positive and almost-sure winning, and at least non-elementary memory is required. We establish the equivalence of the almost-sure winning problems for pure strategies and for randomized strategies with actions invisible. Our equivalence result exhibits serious flaws in previous results of the literature: we show a non-elementary memory lower bound for almost-sure winning whereas an exponential upper bound was previously claimed.}, author = {Chatterjee, Krishnendu and Doyen, Laurent}, booktitle = {Proceedings of the 2012 27th Annual ACM/IEEE Symposium on Logic in Computer Science}, location = {Dubrovnik, Croatia}, publisher = {IEEE}, title = {{Partial-observation stochastic games: How to win when belief fails}}, doi = {10.1109/LICS.2012.28}, year = {2012}, } @inproceedings{3341, abstract = {We consider two-player stochastic games played on a finite state space for an infinite number of rounds. The games are concurrent: in each round, the two players (player 1 and player 2) choose their moves independently and simultaneously; the current state and the two moves determine a probability distribution over the successor states. We also consider the important special case of turn-based stochastic games where players make moves in turns, rather than concurrently. We study concurrent games with \omega-regular winning conditions specified as parity objectives. The value for player 1 for a parity objective is the maximal probability with which the player can guarantee the satisfaction of the objective against all strategies of the opponent. We study the problem of continuity and robustness of the value function in concurrent and turn-based stochastic parity gameswith respect to imprecision in the transition probabilities. We present quantitative bounds on the difference of the value function (in terms of the imprecision of the transition probabilities) and show the value continuity for structurally equivalent concurrent games (two games are structurally equivalent if the support of the transition function is same and the probabilities differ). We also show robustness of optimal strategies for structurally equivalent turn-based stochastic parity games. Finally we show that the value continuity property breaks without the structurally equivalent assumption (even for Markov chains) and show that our quantitative bound is asymptotically optimal. Hence our results are tight (the assumption is both necessary and sufficient) and optimal (our quantitative bound is asymptotically optimal).}, author = {Chatterjee, Krishnendu}, location = {Tallinn, Estonia}, pages = {270 -- 285}, publisher = {Springer}, title = {{Robustness of structurally equivalent concurrent parity games}}, doi = {10.1007/978-3-642-28729-9_18}, volume = {7213}, year = {2012}, } @inproceedings{2957, abstract = {We consider probabilistic automata on infinite words with acceptance defined by parity conditions. We consider three qualitative decision problems: (i) the positive decision problem asks whether there is a word that is accepted with positive probability; (ii) the almost decision problem asks whether there is a word that is accepted with probability 1; and (iii) the limit decision problem asks whether words are accepted with probability arbitrarily close to 1. We unify and generalize several decidability results for probabilistic automata over infinite words, and identify a robust (closed under union and intersection) subclass of probabilistic automata for which all the qualitative decision problems are decidable for parity conditions. We also show that if the input words are restricted to lasso shape (regular) words, then the positive and almost problems are decidable for all probabilistic automata with parity conditions. For most decidable problems we show an optimal PSPACE-complete complexity bound.}, author = {Chatterjee, Krishnendu and Tracol, Mathieu}, booktitle = {Proceedings of the 2012 27th Annual ACM/IEEE Symposium on Logic in Computer Science}, location = {Dubrovnik, Croatia }, publisher = {IEEE}, title = {{Decidable problems for probabilistic automata on infinite words}}, doi = {10.1109/LICS.2012.29}, year = {2012}, } @article{3249, abstract = {Boolean notions of correctness are formalized by preorders on systems. Quantitative measures of correctness can be formalized by real-valued distance functions between systems, where the distance between implementation and specification provides a measure of "fit" or "desirability". We extend the simulation preorder to the quantitative setting by making each player of a simulation game pay a certain price for her choices. We use the resulting games with quantitative objectives to define three different simulation distances. The correctness distance measures how much the specification must be changed in order to be satisfied by the implementation. The coverage distance measures how much the implementation restricts the degrees of freedom offered by the specification. The robustness distance measures how much a system can deviate from the implementation description without violating the specification. We consider these distances for safety as well as liveness specifications. The distances can be computed in polynomial time for safety specifications, and for liveness specifications given by weak fairness constraints. We show that the distance functions satisfy the triangle inequality, that the distance between two systems does not increase under parallel composition with a third system, and that the distance between two systems can be bounded from above and below by distances between abstractions of the two systems. These properties suggest that our simulation distances provide an appropriate basis for a quantitative theory of discrete systems. We also demonstrate how the robustness distance can be used to measure how many transmission errors are tolerated by error correcting codes.}, author = {Cerny, Pavol and Henzinger, Thomas A and Radhakrishna, Arjun}, journal = {Theoretical Computer Science}, number = {1}, pages = {21 -- 35}, publisher = {Elsevier}, title = {{Simulation distances}}, doi = {10.1016/j.tcs.2011.08.002}, volume = {413}, year = {2012}, } @inproceedings{3124, abstract = {We consider the problem of inference in a graphical model with binary variables. While in theory it is arguably preferable to compute marginal probabilities, in practice researchers often use MAP inference due to the availability of efficient discrete optimization algorithms. We bridge the gap between the two approaches by introducing the Discrete Marginals technique in which approximate marginals are obtained by minimizing an objective function with unary and pairwise terms over a discretized domain. This allows the use of techniques originally developed for MAP-MRF inference and learning. We explore two ways to set up the objective function - by discretizing the Bethe free energy and by learning it from training data. Experimental results show that for certain types of graphs a learned function can outperform the Bethe approximation. We also establish a link between the Bethe free energy and submodular functions. }, author = {Korc, Filip and Kolmogorov, Vladimir and Lampert, Christoph}, location = {Edinburgh, Scotland}, publisher = {ICML}, title = {{Approximating marginals using discrete energy minimization}}, year = {2012}, } @misc{5396, abstract = {We consider the problem of inference in agraphical model with binary variables. While in theory it is arguably preferable to compute marginal probabilities, in practice researchers often use MAP inference due to the availability of efficient discrete optimization algorithms. We bridge the gap between the two approaches by introducing the Discrete Marginals technique in which approximate marginals are obtained by minimizing an objective function with unary and pair-wise terms over a discretized domain. This allows the use of techniques originally devel-oped for MAP-MRF inference and learning. We explore two ways to set up the objective function - by discretizing the Bethe free energy and by learning it from training data. Experimental results show that for certain types of graphs a learned function can out-perform the Bethe approximation. We also establish a link between the Bethe free energy and submodular functions.}, author = {Korc, Filip and Kolmogorov, Vladimir and Lampert, Christoph}, issn = {2664-1690}, pages = {13}, publisher = {IST Austria}, title = {{Approximating marginals using discrete energy minimization}}, doi = {10.15479/AT:IST-2012-0003}, year = {2012}, } @techreport{5398, abstract = {This document is created as a part of the project “Repository for Research Data on IST Austria”. It summarises the actual state of research data at IST Austria, based on survey results. It supports the choice of appropriate software, which would best fit the requirements of their users, the researchers.}, author = {Porsche, Jana}, publisher = {IST Austria}, title = {{Actual state of research data @ ISTAustria}}, year = {2012}, } @article{5839, abstract = {Canny's edge detection algorithm is a classical and robust method for edge detection in gray-scale images. The two significant features of this method are introduction of NMS (Non-Maximum Suppression) and double thresholding of the gradient image. Due to poor illumination, the region boundaries in an image may become vague, creating uncertainties in the gradient image. In this paper, we have proposed an algorithm based on the concept of type-2 fuzzy sets to handle uncertainties that automatically selects the threshold values needed to segment the gradient image using classical Canny’s edge detection algorithm. The results show that our algorithm works significantly well on different benchmark images as well as medical images (hand radiography images). }, author = {Biswas, Ranita and Sil, Jaya}, issn = {2212-0173}, journal = {Procedia Technology}, pages = {820--824}, publisher = {Elsevier}, title = {{An Improved Canny Edge Detection Algorithm Based on Type-2 Fuzzy Sets}}, doi = {10.1016/j.protcy.2012.05.134}, volume = {4}, year = {2012}, } @article{596, abstract = {The human Mediator complex controls RNA polymerase II (pol II) function in ways that remain incompletely understood. Activator-Mediator binding alters Mediator structure, and these activator-induced structural shifts appear to play key roles in regulating transcription. A recent cryo-electron microscopy (EM) analysis revealed that pol II adopted a stable orientation within a Mediator-pol II-TFIIF assembly in which Mediator was bound to the activation domain of viral protein 16 (VP16). Whereas TFIIF was shown to be important for orienting pol II within this assembly, the potential role of the activator was not assessed. To determine how activator binding might affect pol II orientation, we isolated human Mediator-pol II-TFIIF complexes in which Mediator was not bound to an activator. Cryo-EM analysis of this assembly, coupled with pol II crystal structure docking, revealed that pol II binds Mediator at the same general location; however, in contrast to VP16-bound Mediator, pol II does not appear to stably orient in the absence of an activator. Variability in pol II orientation might be important mechanistically, perhaps to enable sense and antisense transcription at human promoters. Because Mediator interacts extensively with pol II, these results suggest that Mediator structural shifts induced by activator binding help stably orient pol II prior to transcription initiation.}, author = {Bernecky, Carrie A and Taatjes, Dylan}, journal = {Journal of Molecular Biology}, number = {5}, pages = {387 -- 394}, publisher = {Elsevier}, title = {{Activator-mediator binding stabilizes RNA polymerase II orientation within the human mediator-RNA polymerase II-TFIIF assembly}}, doi = {10.1016/j.jmb.2012.02.014}, volume = {417}, year = {2012}, } @article{6136, abstract = {Tonic receptors convey stimulus duration and intensity and are implicated in homeostatic control. However, how tonic homeostatic signals are generated and how they reconfigure neural circuits and modify animal behavior is poorly understood. Here we show that Caenorhabditis elegans O2-sensing neurons are tonic receptors that continuously signal ambient [O2] to set the animal's behavioral state. Sustained signaling relied on a Ca2+ relay involving L-type voltage-gated Ca2+ channels, the ryanodine and the inositol-1,4,5-trisphosphate receptors. Tonic activity evoked continuous neuropeptide release, which helps elicit the enduring behavioral state associated with high [O2]. Sustained O2 receptor signaling was propagated to downstream neural circuits, including the hub interneuron RMG. O2 receptors evoked similar locomotory states at particular O2 concentrations, regardless of previous d[O2]/dt. However, a phasic component of the URX receptors' response to high d[O2]/dt, as well as tonic-to-phasic transformations in downstream interneurons, enabled transient reorientation movements shaped by d[O2]/dt. Our results highlight how tonic homeostatic signals can generate both transient and enduring behavioral change.}, author = {Busch, Karl Emanuel and Laurent, Patrick and Soltesz, Zoltan and Murphy, Robin Joseph and Faivre, Olivier and Hedwig, Berthold and Thomas, Martin and Smith, Heather L and de Bono, Mario}, issn = {1097-6256}, journal = {Nature Neuroscience}, number = {4}, pages = {581--591}, publisher = {Springer Nature}, title = {{Tonic signaling from O2 sensors sets neural circuit activity and behavioral state}}, doi = {10.1038/nn.3061}, volume = {15}, year = {2012}, } @inproceedings{6746, abstract = {This paper proposes a novel cooperative approach for two-hop amplify-and-forward (A&F) relaying that exploits both the signal forwarded by the relay and the one directly transmitted by the source in impulse-radio ultra-wideband (IR-UWB) systems. Specifically, we focus on a non-coherent setup employing a double-differential encoding scheme at the source node and a single differential demodulation at the relay and destination. The log-likelihood ratio based decision rule is derived at the destination node. A semi-analytical power allocation strategy is presented by evaluating a closed-form expression for the effective signal to noise ratio (SNR) at the destination, which is maximized by exhaustive search. Numerical simulations show that the proposed system outperforms both the direct transmission with single differential encoding and the non-cooperative multi-hop approach in different scenarios.}, author = {Mondelli, Marco and Zhou, Qi and Ma, Xiaoli and Lottici, Vincenzo}, booktitle = {2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, issn = {1520-6149}, location = {Kyoto, Japan}, pages = {2905--2908}, publisher = {IEEE}, title = {{A cooperative approach for amplify-and-forward differential transmitted reference IR-UWB relay systems}}, doi = {10.1109/icassp.2012.6288524}, year = {2012}, } @article{7074, abstract = {The Seebeck coefficients, electrical resistivities, total thermal conductivities, and magnetization are reported for temperatures between 5 and 350 K for n-type Bi0.88Sb0.12 nano-composite alloys made by Ho-doping at the 0, 1, and 3 % atomic levels. The alloys were prepared using a dc hot-pressing method, and are shown to be single phase for both Ho contents with grain sizes on the average of 900 nm. We find the parent compound has a maximum of ZT = 0.28 at 231 K, while doping 1 % Ho increases the maximum ZT to 0.31 at 221 K and the 3 % doped sample suppresses the maximum ZT = 0.24 at a temperature of 260 K.}, author = {Lukas, K. C. and Joshi, G. and Modic, Kimberly A and Ren, Z. F. and Opeil, C. P.}, issn = {1573-4803}, journal = {Journal of Materials Science}, number = {15}, pages = {5729--5734}, publisher = {Springer Nature}, title = {{Thermoelectric properties of Ho-doped Bi0.88Sb0.12}}, doi = {10.1007/s10853-012-6463-6}, volume = {47}, year = {2012}, } @article{7308, abstract = {Carbon has been used widely as the basis of porous cathodes for nonaqueous Li–O2 cells. However, the stability of carbon and the effect of carbon on electrolyte decomposition in such cells are complex and depend on the hydrophobicity/hydrophilicity of the carbon surface. Analyzing carbon cathodes, cycled in Li–O2 cells between 2 and 4 V, using acid treatment and Fenton’s reagent, and combined with differential electrochemical mass spectrometry and FTIR, demonstrates the following: Carbon is relatively stable below 3.5 V (vs Li/Li+) on discharge or charge, especially so for hydrophobic carbon, but is unstable on charging above 3.5 V (in the presence of Li2O2), oxidatively decomposing to form Li2CO3. Direct chemical reaction with Li2O2 accounts for only a small proportion of the total carbon decomposition on cycling. Carbon promotes electrolyte decomposition during discharge and charge in a Li–O2 cell, giving rise to Li2CO3 and Li carboxylates (DMSO and tetraglyme electrolytes). The Li2CO3 and Li carboxylates present at the end of discharge and those that form on charge result in polarization on the subsequent charge. Li2CO3 (derived from carbon and from the electrolyte) as well as the Li carboxylates (derived from the electrolyte) decompose and form on charging. Oxidation of Li2CO3 on charging to ∼4 V is incomplete; Li2CO3 accumulates on cycling resulting in electrode passivation and capacity fading. Hydrophilic carbon is less stable and more catalytically active toward electrolyte decomposition than carbon with a hydrophobic surface. If the Li–O2 cell could be charged at or below 3.5 V, then carbon may be relatively stable, however, its ability to promote electrolyte decomposition, presenting problems for its use in a practical Li–O2 battery. The results emphasize that stable cycling of Li2O2 at the cathode in a Li–O2 cell depends on the synergy between electrolyte and electrode; the stability of the electrode and the electrolyte cannot be considered in isolation.}, author = {Ottakam Thotiyl, Muhammed M. and Freunberger, Stefan Alexander and Peng, Zhangquan and Bruce, Peter G.}, issn = {0002-7863}, journal = {Journal of the American Chemical Society}, number = {1}, pages = {494--500}, publisher = {ACS}, title = {{The carbon electrode in nonaqueous Li–O2 cells}}, doi = {10.1021/ja310258x}, volume = {135}, year = {2012}, } @article{7309, abstract = {Energy‐storage technologies, including electrical double‐layer capacitors and rechargeable batteries, have attracted significant attention for applications in portable electronic devices, electric vehicles, bulk electricity storage at power stations, and “load leveling” of renewable sources, such as solar energy and wind power. Transforming lithium batteries and electric double‐layer capacitors requires a step change in the science underpinning these devices, including the discovery of new materials, new electrochemistry, and an increased understanding of the processes on which the devices depend. The Review will consider some of the current scientific issues underpinning lithium batteries and electric double‐layer capacitors.}, author = {Choi, Nam-Soon and Chen, Zonghai and Freunberger, Stefan Alexander and Ji, Xiulei and Sun, Yang-Kook and Amine, Khalil and Yushin, Gleb and Nazar, Linda F. and Cho, Jaephil and Bruce, Peter G.}, issn = {1433-7851}, journal = {Angewandte Chemie International Edition}, number = {40}, pages = {9994--10024}, publisher = {Wiley}, title = {{Challenges facing Lithium batteries and electrical double-layer capacitors}}, doi = {10.1002/anie.201201429}, volume = {51}, year = {2012}, } @article{7310, abstract = {The rechargeable nonaqueous lithium-air (Li-O2) battery is receiving a great deal of interest because, theoretically, its specific energy far exceeds the best that can be achieved with lithium-ion cells. Operation of the rechargeable Li-O2 battery depends critically on repeated and highly reversible formation/decomposition of lithium peroxide (Li2O2) at the cathode upon cycling. Here, we show that this process is possible with the use of a dimethyl sulfoxide electrolyte and a porous gold electrode (95% capacity retention from cycles 1 to 100), whereas previously only partial Li2O2 formation/decomposition and limited cycling could occur. Furthermore, we present data indicating that the kinetics of Li2O2 oxidation on charge is approximately 10 times faster than on carbon electrodes.}, author = {Peng, Z. and Freunberger, Stefan Alexander and Chen, Y. and Bruce, P. G.}, issn = {0036-8075}, journal = {Science}, number = {6094}, pages = {563--566}, publisher = {AAAS}, title = {{A reversible and higher-rate Li-O2 battery}}, doi = {10.1126/science.1223985}, volume = {337}, year = {2012}, } @article{7311, abstract = {Stability of the electrolyte toward reduced oxygen species generated at the cathode is a crucial challenge for the rechargeable nonaqueous Li–O2 battery. Here, we investigate dimethylformamide as the basis of an electrolyte. Although reactions at the O2 cathode on the first discharge–charge cycle are dominated by reversible Li2O2 formation/decomposition, there is also electrolyte decomposition, which increases on cycling. The products of decomposition at the cathode on discharge are Li2O2, Li2CO3, HCO2Li, CH3CO2Li, NO, H2O, and CO2. Li2CO3 accumulates in the electrode with cycling. The stability of dimethylformamide toward reduced oxygen species is insufficient for its use in the rechargeable nonaqueous Li–O2 battery.}, author = {Chen, Yuhui and Freunberger, Stefan Alexander and Peng, Zhangquan and Bardé, Fanny and Bruce, Peter G.}, issn = {0002-7863}, journal = {Journal of the American Chemical Society}, number = {18}, pages = {7952--7957}, publisher = {ACS}, title = {{Li–O2 battery with a dimethylformamide electrolyte}}, doi = {10.1021/ja302178w}, volume = {134}, year = {2012}, } @inproceedings{762, abstract = {Decades of research in distributed computing have led to a variety of perspectives on what it means for a concurrent algorithm to be efficient, depending on model assumptions, progress guarantees, and complexity metrics. It is therefore natural to ask whether one could compose algorithms that perform efficiently under different conditions, so that the composition preserves the performance of the original components when their conditions are met. In this paper, we evaluate the cost of composing shared-memory algorithms. First, we formally define the notion of safely composable algorithms and we show that every sequential type has a safely composable implementation, as long as enough state is transferred between modules. Since such generic implementations are inherently expensive, we present a more general light-weight specification that allows the designer to transfer very little state between modules, by taking advantage of the semantics of the implemented object. Using this framework, we implement a composed longlived test-and-set object, with the property that each of its modules is asymptotically optimal with respect to the progress condition it ensures, while the entire implementation only uses objects with consensus number at most two. Thus, we show that the overhead of composition can be negligible in the case of some important shared-memory abstractions.}, author = {Alistarh, Dan-Adrian and Guerraoui, Rachid and Kuznetsov, Petr and Losa, Giuliano}, pages = {298 -- 307}, publisher = {ACM}, title = {{On the cost of composing shared-memory algorithms}}, doi = {10.1145/2312005.2312057}, year = {2012}, } @inproceedings{763, abstract = {Renaming is a fundamental problem in distributed computing, in which a set of n processes need to pick unique names from a namespace of limited size. In this paper, we present the first early-deciding upper bounds for synchronous renaming, in which the running time adapts to the actual number of failures f in the execution. We show that, surprisingly, renaming can be solved in constant time if the number of failures f is limited to O(√n), while for general f ≤ n - 1 renaming can always be solved in O(log f) communication rounds. In the wait-free case, i.e. for f = n - 1, our upper bounds match the Ω(log n) lower bound of Chaudhuri et al. [13].}, author = {Alistarh, Dan-Adrian and Attiya, Hagit and Guerraoui, Rachid and Travers, Corentin}, pages = {195 -- 206}, publisher = {Springer}, title = {{Early deciding synchronous renaming in O(log f) rounds or less}}, doi = {10.1007/978-3-642-31104-8_17}, volume = {7355 LNCS}, year = {2012}, } @article{764, abstract = {Set agreement is a fundamental problem in distributed computing in which processes collectively choose a small subset of values from a larger set of proposals. The impossibility of fault-tolerant set agreement in asynchronous networks is one of the seminal results in distributed computing. In synchronous networks, too, the complexity of set agreement has been a significant research challenge that has now been resolved. Real systems, however, are neither purely synchronous nor purely asynchronous. Rather, they tend to alternate between periods of synchrony and periods of asynchrony. Nothing specific is known about the complexity of set agreement in such a "partially synchronous" setting. In this paper, we address this challenge, presenting the first (asymptotically) tight bound on the complexity of set agreement in such systems. We introduce a novel technique for simulating, in a fault-prone asynchronous shared memory, executions of an asynchronous and failure-prone message-passing system in which some fragments appear synchronous to some processes. We use this simulation technique to derive a lower bound on the round complexity of set agreement in a partially synchronous system by a reduction from asynchronous wait-free set agreement. Specifically, we show that every set agreement protocol requires at least $\lfloor\frac t k \rfloor + 2$ synchronous rounds to decide. We present an (asymptotically) matching algorithm that relies on a distributed asynchrony detection mechanism to decide as soon as possible during periods of synchrony. From these two results, we derive the size of the minimal window of synchrony needed to solve set agreement. By relating synchronous, asynchronous and partially synchronous environments, our simulation technique is of independent interest. In particular, it allows us to obtain a new lower bound on the complexity of early deciding k-set agreement complementary to that of Gafni et al. (in SIAM J. Comput. 40(1):63-78, 2011), and to re-derive the combinatorial topology lower bound of Guerraoui et al. (in Theor. Comput. Sci. 410(6-7):570-580, 2009) in an algorithmic way.}, author = {Alistarh, Dan-Adrian and Gilbert, Seth and Guerraoui, Rachid and Travers, Corentin}, journal = {Algorithmica (New York)}, number = {1-2}, pages = {595 -- 629}, publisher = {Springer}, title = {{Of choices, failures and asynchrony: the many faces of set agreement}}, doi = {10.1007/s00453-011-9581-7}, volume = {62}, year = {2012}, } @inproceedings{766, abstract = {Asynchronous task allocation is a fundamental problem in distributed computing in which p asynchronous processes must execute a set of m tasks. Also known as write-all or do-all, this problem been studied extensively, both independently and as a key building block for various distributed algorithms. In this paper, we break new ground on this classic problem: we introduce the To-Do Tree concurrent data structure, which improves on the best known randomized and deterministic upper bounds. In the presence of an adaptive adversary, the randomized To-Do Tree algorithm has O(m + p log p log2 m) work complexity. We then show that there exists a deterministic variant of the To-Do Tree algorithm with work complexity O(m + p log5 m log2 max(m, p)). For all values of m and p, our algorithms are within log factors of the Ω(m + p log p) lower bound for this problem. The key technical ingredient in our results is a new approach for analyzing concurrent executions against a strong adaptive scheduler. This technique allows us to handle the complex dependencies between the processes' coin flips and their scheduling, and to tightly bound the work needed to perform subsets of the tasks.}, author = {Alistarh, Dan-Adrian and Bender, Michael and Gilbert, Seth and Guerraoui, Rachid}, pages = {331 -- 340}, publisher = {IEEE}, title = {{How to allocate tasks asynchronously}}, doi = {10.1109/FOCS.2012.41}, year = {2012}, } @article{767, abstract = {Synchronous distributed algorithms are easier to design and prove correct than algorithms that tolerate asynchrony. Yet, in the real world, networks experience asynchrony and other timing anomalies. In this paper, we address the question of how to efficiently transform an algorithm that relies on synchronous timing into an algorithm that tolerates asynchronous executions. We introduce a transformation technique from synchronous algorithms to indulgent algorithms (Guerraoui, in PODC, pp. 289-297, 2000), which induces only a constant overhead in terms of time complexity in well-behaved executions. Our technique is based on a new abstraction we call an asynchrony detector, which the participating processes implement collectively. The resulting transformation works for the class of colorless distributed tasks, including consensus and set agreement. Interestingly, we also show that our technique is relevant for colored tasks, by applying it to the renaming problem, to obtain the first indulgent renaming algorithm.}, author = {Alistarh, Dan-Adrian and Gilbert, Seth and Guerraoui, Rachid and Travers, Corentin}, journal = {Theory of Computing Systems}, number = {4}, pages = {404 -- 424}, publisher = {Elsevier}, title = {{Generating Fast Indulgent Algorithms}}, doi = {10.1007/s00224-012-9407-2}, volume = {51}, year = {2012}, } @article{7749, abstract = {Although studies on laboratory species and natural populations of vertebrates have shown reproduction to impair later performance, little is known of the age‐specific associations between reproduction and survival, and how such findings apply to the ageing of large, long‐lived species. Herein we develop a framework to examine population‐level patterns of reproduction and survival across lifespan in long‐lived organisms, and decompose those changes into individual‐level effects, and the effects of age‐specific trade‐offs between fitness components. We apply this to an extensive longitudinal dataset on female semi‐captive Asian timber elephants (Elephas maximus) and report the first evidence of age‐specific fitness declines that are driven by age‐specific associations between fitness components in a long‐lived mammal. Associations between reproduction and survival are positive in early life, but negative in later life with up to 71% of later‐life survival declines associated with investing in the production of offspring within this population of this critically endangered species.}, author = {Robinson, Matthew Richard and Mar, Khyne U and Lummaa, Virpi}, issn = {1461-023X}, journal = {Ecology Letters}, number = {3}, pages = {260--266}, publisher = {Wiley}, title = {{Senescence and age-specific trade-offs between reproduction and survival in female Asian elephants}}, doi = {10.1111/j.1461-0248.2011.01735.x}, volume = {15}, year = {2012}, } @article{7748, abstract = {Female mate choice acts as an important evolutionary force, yet the influence of the environment on both its expression and the selective pressures acting upon it remains unknown. We found consistent heritable differences between females in their choice of mate based on ornament size during a 25‐year study of a population of collared flycatchers. However, the fitness consequences of mate choice were dependent on environmental conditions experienced whilst breeding. Females breeding with highly ornamented males experienced high relative fitness during dry summer conditions, but low relative fitness during wetter years. Our results imply that sexual selection within a population can be highly variable and dependent upon the prevailing weather conditions experienced by individuals.}, author = {Robinson, Matthew Richard and Sander van Doorn, G. and Gustafsson, Lars and Qvarnström, Anna}, issn = {1461-023X}, journal = {Ecology Letters}, number = {6}, pages = {611--618}, publisher = {Wiley}, title = {{Environment-dependent selection on mate choice in a natural population of birds}}, doi = {10.1111/j.1461-0248.2012.01780.x}, volume = {15}, year = {2012}, } @article{7776, abstract = {We present an analysis of finite-size effects in jammed packings of N soft, frictionless spheres at zero temperature. There is a 1/N correction to the discrete jump in the contact number at the transition so that jammed packings exist only above isostaticity. As a result, the canonical power-law scalings of the contact number and elastic moduli break down at low pressure. These quantities exhibit scaling collapse with a nontrivial scaling function, demonstrating that the jamming transition can be considered a phase transition. Scaling is achieved as a function of N in both two and three dimensions, indicating an upper critical dimension of 2.}, author = {Goodrich, Carl Peter and Liu, Andrea J. and Nagel, Sidney R.}, issn = {0031-9007}, journal = {Physical Review Letters}, number = {9}, publisher = {American Physical Society}, title = {{Finite-size scaling at the jamming transition}}, doi = {10.1103/physrevlett.109.095704}, volume = {109}, year = {2012}, } @article{801, abstract = {Fungal cell walls frequently contain a polymer of mannose and galactose called galactomannan. In the pathogenic filamentous fungus Aspergillus fumigatus, this polysaccharide is made of a linear mannan backbone with side chains of galactofuran and is anchored to the plasma membrane via a glycosylphosphatidylinositol or is covalently linked to the cell wall. To date, the biosynthesis and significance of this polysaccharide are unknown. The present data demonstrate that deletion of the Golgi UDP-galactofuranose transporter GlfB or the GDP-mannose transporter GmtA leads to the absence of galactofuran or galactomannan, respectively. This indicates that the biosynthesis of galactomannan probably occurs in the lumen of the Golgi apparatus and thus contrasts with the biosynthesis of other fungal cell wall polysaccharides studied to date that takes place at the plasma membrane. Transglycosylation of galactomannan from the membrane to the cell wall is hypothesized because both the cell wall-bound and membrane-bound polysaccharide forms are affected in the generated mutants. Considering the severe growth defect of the A. fumigatus GmtA-deficient mutant, proving this paradigm might provide new targets for antifungal therapy.}, author = {Engel, Jakob and Schmalhorst, Philipp S and Routier, Françoise}, journal = {Journal of Biological Chemistry}, number = {53}, pages = {44418 -- 44424}, publisher = {American Society for Biochemistry and Molecular Biology}, title = {{Biosynthesis of the fungal cell wall polysaccharide galactomannan requires intraluminal GDP-mannose}}, doi = {10.1074/jbc.M112.398321}, volume = {287}, year = {2012}, } @article{8024, abstract = {In dynamical models of cortical networks, the recurrent connectivity can amplify the input given to the network in two distinct ways. One is induced by the presence of near-critical eigenvalues in the connectivity matrix W, producing large but slow activity fluctuations along the corresponding eigenvectors (dynamical slowing). The other relies on W not being normal, which allows the network activity to make large but fast excursions along specific directions. Here we investigate the trade-off between non-normal amplification and dynamical slowing in the spontaneous activity of large random neuronal networks composed of excitatory and inhibitory neurons. We use a Schur decomposition of W to separate the two amplification mechanisms. Assuming linear stochastic dynamics, we derive an exact expression for the expected amount of purely non-normal amplification. We find that amplification is very limited if dynamical slowing must be kept weak. We conclude that, to achieve strong transient amplification with little slowing, the connectivity must be structured. We show that unidirectional connections between neurons of the same type together with reciprocal connections between neurons of different types, allow for amplification already in the fast dynamical regime. Finally, our results also shed light on the differences between balanced networks in which inhibition exactly cancels excitation and those where inhibition dominates.}, author = {Hennequin, Guillaume and Vogels, Tim P and Gerstner, Wulfram}, issn = {1539-3755}, journal = {Physical Review E}, number = {1}, publisher = {American Physical Society}, title = {{Non-normal amplification in random balanced neuronal networks}}, doi = {10.1103/physreve.86.011909}, volume = {86}, year = {2012}, } @article{808, abstract = {Using correlated live-cell imaging and electron tomography we found that actin branch junctions in protruding and treadmilling lamellipodia are not concentrated at the front as previously supposed, but link actin filament subsets in which there is a continuum of distances from a junction to the filament plus ends, for up to at least 1 mm. When branch sites were observed closely spaced on the same filament their separation was commonly a multiple of the actin helical repeat of 36 nm. Image averaging of branch junctions in the tomograms yielded a model for the in vivo branch at 2.9 nm resolution, which was comparable with that derived for the in vitro actin- Arp2/3 complex. Lamellipodium initiation was monitored in an intracellular wound-healing model and was found to involve branching from the sides of actin filaments oriented parallel to the plasmalemma. Many filament plus ends, presumably capped, terminated behind the lamellipodium tip and localized on the dorsal and ventral surfaces of the actin network. These findings reveal how branching events initiate and maintain a network of actin filaments of variable length, and provide the first structural model of the branch junction in vivo. A possible role of filament capping in generating the lamellipodium leaflet is discussed and a mathematical model of protrusion is also presented.}, author = {Vinzenz, Marlene and Nemethova, Maria and Schur, Florian and Mueller, Jan and Narita, Akihiro and Urban, Edit and Winkler, Christoph and Schmeiser, Christian and Koestler, Stefan and Rottner, Klemens and Resch, Guenter and Maéda, Yuichiro and Small, John}, journal = {Journal of Cell Science}, number = {11}, pages = {2775 -- 2785}, publisher = {Company of Biologists}, title = {{Actin branching in the initiation and maintenance of lamellipodia}}, doi = {10.1242/jcs.107623}, volume = {125}, year = {2012}, } @article{8246, abstract = {The Staphylococcus aureus cell wall stress stimulon (CWSS) is activated by cell envelope-targeting antibiotics or depletion of essential cell wall biosynthesis enzymes. The functionally uncharacterized S. aureus LytR-CpsA-Psr (LCP) proteins, MsrR, SA0908 and SA2103, all belong to the CWSS. Although not essential, deletion of all three LCP proteins severely impairs cell division. We show here that VraSR-dependent CWSS expression was up to 250-fold higher in single, double and triple LCP mutants than in wild type S. aureus in the absence of external stress. The LCP triple mutant was virtually depleted of wall teichoic acids (WTA), which could be restored to different degrees by any of the single LCP proteins. Subinhibitory concentrations of tunicamycin, which inhibits the first WTA synthesis enzyme TarO (TagO), could partially complement the severe growth defect of the LCP triple mutant. Both of the latter findings support a role for S. aureus LCP proteins in late WTA synthesis, as in Bacillus subtilis where LCP proteins were recently proposed to transfer WTA from lipid carriers to the cell wall peptidoglycan. Intrinsic activation of the CWSS upon LCP deletion and the fact that LCP proteins were essential for WTA-loading of the cell wall, highlight their important role(s) in S. aureus cell envelope biogenesis.}, author = {Dengler, Vanina and Meier, Patricia Stutzmann and Heusser, Ronald and Kupferschmied, Peter and Fazekas, Judit and Friebe, Sarah and Staufer, Sibylle Burger and Majcherczyk, Paul A. and Moreillon, Philippe and Berger-Bächi, Brigitte and McCallum, Nadine}, issn = {0378-1097}, journal = {FEMS Microbiology Letters}, number = {2}, pages = {109--120}, publisher = {Oxford University Press}, title = {{Deletion of hypothetical wall teichoic acid ligases in Staphylococcus aureus activates the cell wall stress response}}, doi = {10.1111/j.1574-6968.2012.02603.x}, volume = {333}, year = {2012}, } @article{826, abstract = {Plants exhibit a unique developmental flexibility to ever-changing environmental conditions. To achieve their profound adaptability, plants are able to maintain permanent stem cell populations and form new organs during the entire plant life cycle. Signaling substances, called plant hormones, such as auxin, cytokinin, abscisic acid, brassinosteroid, ethylene, gibberellin, jasmonic acid, and strigolactone, govern and coordinate these developmental processes. Physiological and genetic studies have dissected the molecular components of signal perception and transduction of the individual hormonal pathways. However, over recent years it has become evident that hormones do not act only in a linear pathway. Hormonal pathways are interconnected by a complex network of interactions and feedback circuits that determines the final outcome of the individual hormone actions. This raises questions about the molecular mechanisms underlying hormonal cross talk and about how these hormonal networks are established, maintained, and modulated throughout plant development.}, author = {Vanstraelen, Marleen and Eva Benková}, journal = {Annual Review of Cell and Developmental Biology}, pages = {463 -- 487}, publisher = {Annual Reviews}, title = {{Hormonal interactions in the regulation of plant development}}, doi = {10.1146/annurev-cellbio-101011-155741}, volume = {28}, year = {2012}, } @article{829, abstract = {The architecture of a plant's root system, established postembryonically, results from both coordinated root growth and lateral root branching. The plant hormones auxin and cytokinin are central endogenous signaling molecules that regulate lateral root organogenesis positively and negatively, respectively. Tight control and mutual balance of their antagonistic activities are particularly important during the early phases of lateral root organogenesis to ensure continuous lateral root initiation (LRI) and proper development of lateral root primordia (LRP). Here, we show that the early phases of lateral root organogenesis, including priming and initiation, take place in root zones with a repressed cytokinin response. Accordingly, ectopic overproduction of cytokinin in the root basal meristem most efficiently inhibits LRI. Enhanced cytokinin responses in pericycle cells between existing LRP might restrict LRI near existing LRP and, when compromised, ectopic LRI occurs. Furthermore, our results demonstrate that young LRP are more sensitive to perturbations in the cytokinin activity than are developmentally more advanced primordia. We hypothesize that the effect of cytokinin on the development of primordia possibly depends on the robustness and stability of the auxin gradient.}, author = {Bielach, Agnieszka and Podlesakova, Katerina and Peter Marhavy and Duclercq, Jérôme and Candela Cuesta and Muller, Bruno and Grunewald, Wim and Tarkowski, Petr and Eva Benková}, journal = {The Plant Cell}, number = {10}, pages = {3967 -- 3981}, publisher = {American Society of Plant Biologists}, title = {{Spatiotemporal regulation of lateral root organogenesis in Arabidopsis by cytokinin}}, doi = {10.1105/tpc.112.103044}, volume = {24}, year = {2012}, } @article{846, abstract = {Whether or not evolutionary change is inherently irreversible remains a controversial topic. Some examples of evolutionary irreversibility are known; however, this question has not been comprehensively addressed at the molecular level. Here, we use data from 221 human genes with known pathogenic mutations to estimate the rate of irreversibility in protein evolution. For these genes, we reconstruct ancestral amino acid sequences along the mammalian phylogeny and identify ancestral amino acid states that match known pathogenic mutations. Such cases represent inherent evolutionary irreversibility because, at the present moment, reversals to these ancestral amino acid states are impossible for the human lineage. We estimate that approximately 10% of all amino acid substitutions along the mammalian phylogeny are irreversible, such that a return to the ancestral amino acid state would lead to a pathogenic phenotype. For a subset of 51 genes with high rates of irreversibility, as much as 40% of all amino acid evolution was estimated to be irreversible. Because pathogenic phenotypes do not resemble ancestral phenotypes, the molecular nature of the high rate of irreversibility in proteins is best explained by evolution with a high prevalence of compensatory, epistatic interactions between amino acid sites. Under such mode of protein evolution, once an amino acid substitution is fixed, the probability of its reversal declines as the protein sequence accumulates changes that affect the phenotypic manifestation of the ancestral state. The prevalence of epistasis in evolution indicates that the observed high rate of irreversibility in protein evolution is an inherent property of protein structure and function.}, author = {Soylemez, Onuralp and Fyodor Kondrashov}, journal = {Genome Biology and Evolution}, number = {12}, pages = {1213 -- 1222}, publisher = {Oxford University Press}, title = {{Estimating the rate of irreversibility in protein evolution}}, doi = {10.1093/gbe/evs096}, volume = {4}, year = {2012}, } @article{8463, abstract = {The 1H dipolar network, which is the major obstacle for applying proton detection in the solid-state, can be reduced by deuteration, employing the RAP (Reduced Adjoining Protonation) labeling scheme, which yields random protonation at non-exchangeable sites. We present here a systematic study on the optimal degree of random sidechain protonation in RAP samples as a function of the MAS (magic angle spinning) frequency. In particular, we compare 1H sensitivity and linewidth of a microcrystalline protein, the SH3 domain of chicken α-spectrin, for samples, prepared with 5–25 % H2O in the E. coli growth medium, in the MAS frequency range of 20–60 kHz. At an external field of 19.96 T (850 MHz), we find that using a proton concentration between 15 and 25 % in the M9 medium yields the best compromise in terms of sensitivity and resolution, with an achievable average 1H linewidth on the order of 40–50 Hz. Comparing sensitivities at a MAS frequency of 60 versus 20 kHz, a gain in sensitivity by a factor of 4–4.5 is observed in INEPT-based 1H detected 1D 1H,13C correlation experiments. In total, we find that spectra recorded with a 1.3 mm rotor at 60 kHz have almost the same sensitivity as spectra recorded with a fully packed 3.2 mm rotor at 20 kHz, even though ~20× less material is employed. The improved sensitivity is attributed to 1H line narrowing due to fast MAS and to the increased efficiency of the 1.3 mm coil.}, author = {Asami, Sam and Szekely, Kathrin and Schanda, Paul and Meier, Beat H. and Reif, Bernd}, issn = {0925-2738}, journal = {Journal of Biomolecular NMR}, number = {2}, pages = {155--168}, publisher = {Springer Nature}, title = {{Optimal degree of protonation for 1H detection of aliphatic sites in randomly deuterated proteins as a function of the MAS frequency}}, doi = {10.1007/s10858-012-9659-9}, volume = {54}, year = {2012}, } @article{8465, abstract = {We demonstrate that conformational exchange processes in proteins on microsecond-to-millisecond time scales can be detected and quantified by solid-state NMR spectroscopy. We show two independent approaches that measure the effect of conformational exchange on transverse relaxation parameters, namely Carr–Purcell–Meiboom–Gill relaxation-dispersion experiments and measurement of differential multiple-quantum coherence decay. Long coherence lifetimes, as required for these experiments, are achieved by the use of highly deuterated samples and fast magic-angle spinning. The usefulness of the approaches is demonstrated by application to microcrystalline ubiquitin. We detect a conformational exchange process in a region of the protein for which dynamics have also been observed in solution. Interestingly, quantitative analysis of the data reveals that the exchange process is more than 1 order of magnitude slower than in solution, and this points to the impact of the crystalline environment on free energy barriers.}, author = {Tollinger, Martin and Sivertsen, Astrid C. and Meier, Beat H. and Ernst, Matthias and Schanda, Paul}, issn = {0002-7863}, journal = {Journal of the American Chemical Society}, number = {36}, pages = {14800--14807}, publisher = {American Chemical Society}, title = {{Site-resolved measurement of microsecond-to-millisecond conformational-exchange processes in proteins by solid-state NMR spectroscopy}}, doi = {10.1021/ja303591y}, volume = {134}, year = {2012}, } @article{8466, abstract = {Recent advances in NMR spectroscopy and the availability of high magnetic field strengths now offer the possibility to record real-time 3D NMR spectra of short-lived protein states, e.g., states that become transiently populated during protein folding. Here we present a strategy for obtaining sequential NMR assignments as well as atom-resolved information on structural and dynamic features within a folding intermediate of the amyloidogenic protein β2-microglobulin that has a half-lifetime of only 20 min.}, author = {Rennella, Enrico and Cutuil, Thomas and Schanda, Paul and Ayala, Isabel and Forge, Vincent and Brutscher, Bernhard}, issn = {0002-7863}, journal = {Journal of the American Chemical Society}, number = {19}, pages = {8066--8069}, publisher = {American Chemical Society}, title = {{Real-time NMR characterization of structure and dynamics in a transiently populated protein folding intermediate}}, doi = {10.1021/ja302598j}, volume = {134}, year = {2012}, } @article{8467, abstract = {Partial deuteration is a powerful tool to increase coherence life times and spectral resolution in proton solid-state NMR. The J coupling to deuterium needs, however, to be decoupled to maintain the good resolution in the (usually indirect) 13C dimension(s). We present a simple and reversible way to expand a commercial 1.3 mm HCN MAS probe with a 2H channel with sufficient field strength for J-decoupling of deuterium, namely 2–3 kHz. The coil is placed at the outside of the stator and requires no significant modifications to the probe. The performance and the realizable gains in sensitivity and resolution are demonstrated using perdeuterated ubiquitin, with selectively CHD2-labeled methyl groups.}, author = {Huber, Matthias and With, Oliver and Schanda, Paul and Verel, René and Ernst, Matthias and Meier, Beat H.}, issn = {1090-7807}, journal = {Journal of Magnetic Resonance}, pages = {76--80}, publisher = {Elsevier}, title = {{A supplementary coil for 2H decoupling with commercial HCN MAS probes}}, doi = {10.1016/j.jmr.2011.10.010}, volume = {214}, year = {2012}, } @article{8502, abstract = {The famous ergodic hypothesis suggests that for a typical Hamiltonian on a typical energy surface nearly all trajectories are dense. KAM theory disproves it. Ehrenfest (The Conceptual Foundations of the Statistical Approach in Mechanics. Ithaca, NY: Cornell University Press, 1959) and Birkhoff (Collected Math Papers. Vol 2, New York: Dover, pp 462–465, 1968) stated the quasi-ergodic hypothesis claiming that a typical Hamiltonian on a typical energy surface has a dense orbit. This question is wide open. Herman (Proceedings of the International Congress of Mathematicians, Vol II (Berlin, 1998). Doc Math 1998, Extra Vol II, Berlin: Int Math Union, pp 797–808, 1998) proposed to look for an example of a Hamiltonian near H0(I)=⟨I,I⟩2 with a dense orbit on the unit energy surface. In this paper we construct a Hamiltonian H0(I)+εH1(θ,I,ε) which has an orbit dense in a set of maximal Hausdorff dimension equal to 5 on the unit energy surface.}, author = {Kaloshin, Vadim and Saprykina, Maria}, issn = {0010-3616}, journal = {Communications in Mathematical Physics}, keywords = {Mathematical Physics, Statistical and Nonlinear Physics}, number = {3}, pages = {643--697}, publisher = {Springer Nature}, title = {{An example of a nearly integrable Hamiltonian system with a trajectory dense in a set of maximal Hausdorff dimension}}, doi = {10.1007/s00220-012-1532-x}, volume = {315}, year = {2012}, } @article{858, abstract = {ackground: The evolution and genomic stop codon frequencies have not been rigorously studied with the exception of coding of non-canonical amino acids. Here we study the rate of evolution and frequency distribution of stop codons in bacterial genomes.Results: We show that in bacteria stop codons evolve slower than synonymous sites, suggesting the action of weak negative selection. However, the frequency of stop codons relative to genomic nucleotide content indicated that this selection regime is not straightforward. The frequency of TAA and TGA stop codons is GC-content dependent, with TAA decreasing and TGA increasing with GC-content, while TAG frequency is independent of GC-content. Applying a formal, analytical model to these data we found that the relationship between stop codon frequencies and nucleotide content cannot be explained by mutational biases or selection on nucleotide content. However, with weak nucleotide content-dependent selection on TAG, -0.5 < Nes < 1.5, the model fits all of the data and recapitulates the relationship between TAG and nucleotide content. For biologically plausible rates of mutations we show that, in bacteria, TAG stop codon is universally associated with lower fitness, with TAA being the optimal for G-content < 16% while for G-content > 16% TGA has a higher fitness than TAG.Conclusions: Our data indicate that TAG codon is universally suboptimal in the bacterial lineage, such that TAA is likely to be the preferred stop codon for low GC content while the TGA is the preferred stop codon for high GC content. The optimization of stop codon usage may therefore be useful in genome engineering or gene expression optimization applications.Reviewers: This article was reviewed by Michail Gelfand, Arcady Mushegian and Shamil Sunyaev. For the full reviews, please go to the Reviewers' Comments section.}, author = {Povolotskaya, Inna and Fyodor Kondrashov and Ledda, Alice and Vlasov, Peter K}, journal = {Biology Direct}, publisher = {BioMed Central}, title = {{Stop codons in bacteria are not selectively equivalent}}, doi = {10.1186/1745-6150-7-30}, volume = {7}, year = {2012}, } @article{900, abstract = {The main forces directing long-term molecular evolution remain obscure. A sizable fraction of amino-acid substitutions seem to be fixed by positive selection, but it is unclear to what degree long-term protein evolution is constrained by epistasis, that is, instances when substitutions that are accepted in one genotype are deleterious in another. Here we obtain a quantitative estimate of the prevalence of epistasis in long-term protein evolution by relating data on amino-acid usage in 14 organelle proteins and 2 nuclear-encoded proteins to their rates of short-term evolution. We studied multiple alignments of at least 1,000 orthologues for each of these 16 proteins from species from a diverse phylogenetic background and found that an average site contained approximately eight different amino acids. Thus, without epistasis an average site should accept two-fifths of all possible amino acids, and the average rate of amino-acid substitutions should therefore be about three-fifths lower than the rate of neutral evolution. However, we found that the measured rate of amino-acid substitution in recent evolution is 20 times lower than the rate of neutral evolution and an order of magnitude lower than that expected in the absence of epistasis. These data indicate that epistasis is pervasive throughout protein evolution: about 90 per cent of all amino-acid substitutions have a neutral or beneficial impact only in the genetic backgrounds in which they occur, and must therefore be deleterious in a different background of other species. Our findings show that most amino-acid substitutions have different fitness effects in different species and that epistasis provides the primary conceptual framework to describe the tempo and mode of long-term protein evolution.}, author = {Breen, Michael S and Kemena, Carsten and Vlasov, Peter K and Notredame, Cédric and Fyodor Kondrashov}, journal = {Nature}, number = {7421}, pages = {535 -- 538}, publisher = {Nature Publishing Group}, title = {{Epistasis as the primary factor in molecular evolution}}, doi = {10.1038/nature11510}, volume = {490}, year = {2012}, } @article{9014, abstract = {In this Letter, we explore experimentally the phase behavior of a dense active suspension of self-propelled colloids. In addition to a solidlike and gaslike phase observed for high and low densities, a novel cluster phase is reported at intermediate densities. This takes the form of a stationary assembly of dense aggregates—resulting from a permanent dynamical merging and separation of active colloids—whose average size grows with activity as a linear function of the self-propelling velocity. While different possible scenarios can be considered to account for these observations—such as a generic velocity weakening instability recently put forward—we show that the experimental results are reproduced mathematically by a chemotactic aggregation mechanism, originally introduced to account for bacterial aggregation and accounting here for diffusiophoretic chemical interaction between colloidal swimmers.}, author = {Theurkauff, I. and Cottin-Bizonne, C. and Palacci, Jérémie A and Ybert, C. and Bocquet, L.}, issn = {10797114}, journal = {Physical Review Letters}, number = {26}, publisher = {American Physical Society }, title = {{Dynamic clustering in active colloidal suspensions with chemical signaling}}, doi = {10.1103/physrevlett.108.268303}, volume = {108}, year = {2012}, } @article{91, abstract = {We demonstrate how to appropriately estimate the zero-frequency (static) hyperpolarizability of an organic molecule from its charge distribution, and we explore applications of these estimates for identifying and evaluating new organic nonlinear optical (NLO) materials. First, we calculate hyperpolarizabilities from Hartree-Fock-derived charge distributions and find order-of-magnitude agreement with experimental values. We show that these simple arithmetic calculations will enable systematic searches for new organic NLO molecules. Second, we derive hyperpolarizabilities from crystallographic data using a multipolar charge-density analysis and find good agreement with empirical calculations. This demonstrates an experimental determination of the full static hyperpolarizability tensor in a solid-state sample. }, author = {Higginbotham, Andrew P and Cole, Jacqueline and Blood Forsythe, Martin and Hickstein, Daniel}, journal = {Journal of Applied Physics}, number = {3}, publisher = {American Institute of Physics}, title = {{Identifying and evaluating organic nonlinear optical materials via molecular moments}}, doi = {10.1063/1.3678593}, volume = {111}, year = {2012}, } @article{9142, abstract = {In models of radiative–convective equilibrium it is known that convection can spontaneously aggregate into one single localized moist region if the domain is large enough. The large changes in the mean climate state and radiative fluxes accompanying this self-aggregation raise questions as to what simulations at lower resolutions with parameterized convection, in similar homogeneous geometries, should be expected to produce to be considered successful in mimicking a cloud-resolving model. The authors investigate this self-aggregation in a nonrotating, three-dimensional cloud-resolving model on a square domain without large-scale forcing. It is found that self-aggregation is sensitive not only to the domain size, but also to the horizontal resolution. With horizontally homogeneous initial conditions, convective aggregation only occurs on domains larger than about 200km and with resolutions coarser than about 2km in the model examined. The system exhibits hysteresis, so that with aggregated initial conditions, convection remains aggregated even at our finest resolution, 500m, as long as the domain is greater than 200–300km. The sensitivity of self-aggregation to resolution and domain size in this model is due to the sensitivity of the distribution of low clouds to these two parameters. Indeed, the mechanism responsible for the aggregation of convection is the dynamical response to the longwave radiative cooling from low clouds. Strong longwave cooling near cloud top in dry regions forces downward motion, which by continuity generates inflow near cloud top and near-surface outflow from dry regions. This circulation results in the net export of moist static energy from regions with low moist static energy, yielding a positive feedback.}, author = {Muller, Caroline J and Held, Isaac M.}, issn = {0022-4928}, journal = {Journal of the Atmospheric Sciences}, keywords = {Atmospheric Science}, number = {8}, pages = {2551--2565}, publisher = {American Meteorological Society}, title = {{Detailed investigation of the self-aggregation of convection in cloud-resolving simulations}}, doi = {10.1175/jas-d-11-0257.1}, volume = {69}, year = {2012}, } @article{9451, abstract = {The Arabidopsis thaliana central cell, the companion cell of the egg, undergoes DNA demethylation before fertilization, but the targeting preferences, mechanism, and biological significance of this process remain unclear. Here, we show that active DNA demethylation mediated by the DEMETER DNA glycosylase accounts for all of the demethylation in the central cell and preferentially targets small, AT-rich, and nucleosome-depleted euchromatic transposable elements. The vegetative cell, the companion cell of sperm, also undergoes DEMETER-dependent demethylation of similar sequences, and lack of DEMETER in vegetative cells causes reduced small RNA–directed DNA methylation of transposons in sperm. Our results demonstrate that demethylation in companion cells reinforces transposon methylation in plant gametes and likely contributes to stable silencing of transposable elements across generations.}, author = {Ibarra, Christian A. and Feng, Xiaoqi and Schoft, Vera K. and Hsieh, Tzung-Fu and Uzawa, Rie and Rodrigues, Jessica A. and Zemach, Assaf and Chumak, Nina and Machlicova, Adriana and Nishimura, Toshiro and Rojas, Denisse and Fischer, Robert L. and Tamaru, Hisashi and Zilberman, Daniel}, issn = {1095-9203}, journal = {Science}, number = {6100}, pages = {1360--1364}, publisher = {American Association for the Advancement of Science}, title = {{Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes}}, doi = {10.1126/science.1224839}, volume = {337}, year = {2012}, } @article{9535, abstract = {The most well-studied function of DNA methylation in eukaryotic cells is the transcriptional silencing of genes and transposons. More recent results showed that many eukaryotes methylate the bodies of genes as well and that this methylation correlates with transcriptional activity rather than repression. The purpose of gene body methylation remains mysterious, but is potentially related to the histone variant H2A.Z. Studies in plants and animals have shown that the genome-wide distributions of H2A.Z and DNA methylation are strikingly anticorrelated. Furthermore, we and other investigators have shown that this relationship is likely to be the result of an ancient but unknown mechanism by which DNA methylation prevents the incorporation of H2A.Z. Recently, we discovered strong correlations between the presence of H2A.Z within gene bodies, the degree to which a gene's expression varies across tissue types or environmental conditions, and transcriptional misregulation in an h2a.z mutant. We propose that one basal function of gene body methylation is the establishment of constitutive expression patterns within housekeeping genes by excluding H2A.Z from their bodies.}, author = {Coleman-Derr, D. and Zilberman, Daniel}, issn = {1943-4456}, journal = {Cold Spring Harbor Symposia on Quantitative Biology}, pages = {147--154}, publisher = {Cold Spring Harbor Laboratory Press}, title = {{DNA methylation, H2A.Z, and the regulation of constitutive expression}}, doi = {10.1101/sqb.2012.77.014944}, volume = {77}, year = {2012}, } @article{3242, abstract = {Due to the omnipresent risk of epidemics, insect societies have evolved sophisticated disease defences at the individual and colony level. An intriguing yet little understood phenomenon is that social contact to pathogen-exposed individuals reduces susceptibility of previously naive nestmates to this pathogen. We tested whether such social immunisation in Lasius ants against the entomopathogenic fungus Metarhizium anisopliae is based on active upregulation of the immune system of nestmates following contact to an infectious individual or passive protection via transfer of immune effectors among group members—that is, active versus passive immunisation. We found no evidence for involvement of passive immunisation via transfer of antimicrobials among colony members. Instead, intensive allogrooming behaviour between naive and pathogen-exposed ants before fungal conidia firmly attached to their cuticle suggested passage of the pathogen from the exposed individuals to their nestmates. By tracing fluorescence-labelled conidia we indeed detected frequent pathogen transfer to the nestmates, where they caused low-level infections as revealed by growth of small numbers of fungal colony forming units from their dissected body content. These infections rarely led to death, but instead promoted an enhanced ability to inhibit fungal growth and an active upregulation of immune genes involved in antifungal defences (defensin and prophenoloxidase, PPO). Contrarily, there was no upregulation of the gene cathepsin L, which is associated with antibacterial and antiviral defences, and we found no increased antibacterial activity of nestmates of fungus-exposed ants. This indicates that social immunisation after fungal exposure is specific, similar to recent findings for individual-level immune priming in invertebrates. Epidemiological modeling further suggests that active social immunisation is adaptive, as it leads to faster elimination of the disease and lower death rates than passive immunisation. Interestingly, humans have also utilised the protective effect of low-level infections to fight smallpox by intentional transfer of low pathogen doses (“variolation” or “inoculation”).}, author = {Konrad, Matthias and Vyleta, Meghan and Theis, Fabian and Stock, Miriam and Tragust, Simon and Klatt, Martina and Drescher, Verena and Marr, Carsten and Ugelvig, Line V and Cremer, Sylvia}, journal = {PLoS Biology}, number = {4}, publisher = {Public Library of Science}, title = {{Social transfer of pathogenic fungus promotes active immunisation in ant colonies}}, doi = {10.1371/journal.pbio.1001300}, volume = {10}, year = {2012}, } @misc{9755, abstract = {Due to the omnipresent risk of epidemics, insect societies have evolved sophisticated disease defences at the individual and colony level. An intriguing yet little understood phenomenon is that social contact to pathogen-exposed individuals reduces susceptibility of previously naive nestmates to this pathogen. We tested whether such social immunisation in Lasius ants against the entomopathogenic fungus Metarhizium anisopliae is based on active upregulation of the immune system of nestmates following contact to an infectious individual or passive protection via transfer of immune effectors among group members—that is, active versus passive immunisation. We found no evidence for involvement of passive immunisation via transfer of antimicrobials among colony members. Instead, intensive allogrooming behaviour between naive and pathogen-exposed ants before fungal conidia firmly attached to their cuticle suggested passage of the pathogen from the exposed individuals to their nestmates. By tracing fluorescence-labelled conidia we indeed detected frequent pathogen transfer to the nestmates, where they caused low-level infections as revealed by growth of small numbers of fungal colony forming units from their dissected body content. These infections rarely led to death, but instead promoted an enhanced ability to inhibit fungal growth and an active upregulation of immune genes involved in antifungal defences (defensin and prophenoloxidase, PPO). Contrarily, there was no upregulation of the gene cathepsin L, which is associated with antibacterial and antiviral defences, and we found no increased antibacterial activity of nestmates of fungus-exposed ants. This indicates that social immunisation after fungal exposure is specific, similar to recent findings for individual-level immune priming in invertebrates. Epidemiological modeling further suggests that active social immunisation is adaptive, as it leads to faster elimination of the disease and lower death rates than passive immunisation. Interestingly, humans have also utilised the protective effect of low-level infections to fight smallpox by intentional transfer of low pathogen doses (“variolation” or “inoculation”).}, author = {Konrad, Matthias and Vyleta, Meghan and Theis, Fabian and Stock, Miriam and Klatt, Martina and Drescher, Verena and Marr, Carsten and Ugelvig, Line V and Cremer, Sylvia}, publisher = {Dryad}, title = {{Data from: Social transfer of pathogenic fungus promotes active immunisation in ant colonies}}, doi = {10.5061/dryad.sv37s}, year = {2012}, } @misc{9758, abstract = {We propose a two-step procedure for estimating multiple migration rates in an approximate Bayesian computation (ABC) framework, accounting for global nuisance parameters. The approach is not limited to migration, but generally of interest for inference problems with multiple parameters and a modular structure (e.g. independent sets of demes or loci). We condition on a known, but complex demographic model of a spatially subdivided population, motivated by the reintroduction of Alpine ibex (Capra ibex) into Switzerland. In the first step, the global parameters ancestral mutation rate and male mating skew have been estimated for the whole population in Aeschbacher et al. (Genetics 2012; 192: 1027). In the second step, we estimate in this study the migration rates independently for clusters of demes putatively connected by migration. For large clusters (many migration rates), ABC faces the problem of too many summary statistics. We therefore assess by simulation if estimation per pair of demes is a valid alternative. We find that the trade-off between reduced dimensionality for the pairwise estimation on the one hand and lower accuracy due to the assumption of pairwise independence on the other depends on the number of migration rates to be inferred: the accuracy of the pairwise approach increases with the number of parameters, relative to the joint estimation approach. To distinguish between low and zero migration, we perform ABC-type model comparison between a model with migration and one without. Applying the approach to microsatellite data from Alpine ibex, we find no evidence for substantial gene flow via migration, except for one pair of demes in one direction.}, author = {Aeschbacher, Simon and Futschik, Andreas and Beaumont, Mark}, publisher = {Dryad}, title = {{Data from: Approximate Bayesian computation for modular inference problems with many parameters: the example of migration rates}}, doi = {10.5061/dryad.274b1}, year = {2012}, } @misc{9757, abstract = {To fight infectious diseases, host immune defences are employed at multiple levels. Sanitary behaviour, such as pathogen avoidance and removal, acts as a first line of defence to prevent infection [1] before activation of the physiological immune system. Insect societies have evolved a wide range of collective hygiene measures and intensive health care towards pathogen-exposed group members [2]. One of the most common behaviours is allogrooming, in which nestmates remove infectious particles from the body surfaces of exposed individuals [3]. Here we show that, in invasive garden ants, grooming of fungus-exposed brood is effective beyond the sheer mechanical removal of fungal conidiospores as it also includes chemical disinfection through the application of poison produced by the ants themselves. Formic acid is the main active component of the poison. It inhibits fungal growth of conidiospores remaining on the brood surface after grooming and also those collected in the mouth of the grooming ant. This dual function is achieved by uptake of the poison droplet into the mouth through acidopore self-grooming and subsequent application onto the infectious brood via brood grooming. This extraordinary behaviour extends current understanding of grooming and the establishment of social immunity in insect societies.}, author = {Tragust, Simon and Mitteregger, Barbara and Barone, Vanessa and Konrad, Matthias and Ugelvig, Line V and Cremer, Sylvia}, publisher = {Dryad}, title = {{Data from: Ants disinfect fungus-exposed brood by oral uptake and spread of their poison}}, doi = {10.5061/dryad.61649}, year = {2012}, } @article{8504, abstract = {In this paper we present a surprising example of a Cr unimodal map of an interval f:I→I whose number of periodic points Pn(f)=∣{x∈I:fnx=x}∣ grows faster than any ahead given sequence along a subsequence nk=3k. This example also shows that ‘non-flatness’ of critical points is necessary for the Martens–de Melo–van Strien theorem [M. Martens, W. de Melo and S. van Strien. Julia–Fatou–Sullivan theory for real one-dimensional dynamics. Acta Math.168(3–4) (1992), 273–318] to hold.}, author = {Kaloshin, Vadim and KOZLOVSKI, O. S.}, issn = {0143-3857}, journal = {Ergodic Theory and Dynamical Systems}, keywords = {Applied Mathematics, General Mathematics}, number = {1}, pages = {159--165}, publisher = {Cambridge University Press}, title = {{A Cr unimodal map with an arbitrary fast growth of the number of periodic points}}, doi = {10.1017/s0143385710000817}, volume = {32}, year = {2012}, }