--- _id: '7314' abstract: - lang: eng text: 'The electrolyte is one of the greatest challenges facing the development of the non‐aqueous Li–O2 battery. Although ether‐based electrolytes do from Li2O2 on the first discharge, it is shown by various techniques that they also decompose and that decomposition increases while Li2O2 decreases on cycling (see picture). Thus, these electrolytes are not suitable. ' article_processing_charge: No article_type: original author: - first_name: Stefan Alexander full_name: Freunberger, Stefan Alexander id: A8CA28E6-CE23-11E9-AD2D-EC27E6697425 last_name: Freunberger orcid: 0000-0003-2902-5319 - first_name: Yuhui full_name: Chen, Yuhui last_name: Chen - first_name: Nicholas E. full_name: Drewett, Nicholas E. last_name: Drewett - first_name: Laurence J. full_name: Hardwick, Laurence J. last_name: Hardwick - first_name: Fanny full_name: Bardé, Fanny last_name: Bardé - first_name: Peter G. full_name: Bruce, Peter G. last_name: Bruce citation: ama: Freunberger SA, Chen Y, Drewett NE, Hardwick LJ, Bardé F, Bruce PG. The Lithium-Oxygen battery with ether-based electrolytes. Angewandte Chemie International Edition. 2011;50(37):8609-8613. doi:10.1002/anie.201102357 apa: Freunberger, S. A., Chen, Y., Drewett, N. E., Hardwick, L. J., Bardé, F., & Bruce, P. G. (2011). The Lithium-Oxygen battery with ether-based electrolytes. Angewandte Chemie International Edition. Wiley. https://doi.org/10.1002/anie.201102357 chicago: Freunberger, Stefan Alexander, Yuhui Chen, Nicholas E. Drewett, Laurence J. Hardwick, Fanny Bardé, and Peter G. Bruce. “The Lithium-Oxygen Battery with Ether-Based Electrolytes.” Angewandte Chemie International Edition. Wiley, 2011. https://doi.org/10.1002/anie.201102357. ieee: S. A. Freunberger, Y. Chen, N. E. Drewett, L. J. Hardwick, F. Bardé, and P. G. Bruce, “The Lithium-Oxygen battery with ether-based electrolytes,” Angewandte Chemie International Edition, vol. 50, no. 37. Wiley, pp. 8609–8613, 2011. ista: Freunberger SA, Chen Y, Drewett NE, Hardwick LJ, Bardé F, Bruce PG. 2011. The Lithium-Oxygen battery with ether-based electrolytes. Angewandte Chemie International Edition. 50(37), 8609–8613. mla: Freunberger, Stefan Alexander, et al. “The Lithium-Oxygen Battery with Ether-Based Electrolytes.” Angewandte Chemie International Edition, vol. 50, no. 37, Wiley, 2011, pp. 8609–13, doi:10.1002/anie.201102357. short: S.A. Freunberger, Y. Chen, N.E. Drewett, L.J. Hardwick, F. Bardé, P.G. Bruce, Angewandte Chemie International Edition 50 (2011) 8609–8613. date_created: 2020-01-15T12:20:19Z date_published: 2011-09-05T00:00:00Z date_updated: 2021-01-12T08:12:59Z day: '05' doi: 10.1002/anie.201102357 extern: '1' intvolume: ' 50' issue: '37' language: - iso: eng month: '09' oa_version: None page: 8609-8613 publication: Angewandte Chemie International Edition publication_identifier: issn: - 1433-7851 publication_status: published publisher: Wiley quality_controlled: '1' status: public title: The Lithium-Oxygen battery with ether-based electrolytes type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 50 year: '2011' ... --- _id: '7317' abstract: - lang: eng text: Lithium-metal oxides with a high formal Li2O content, such as Li5FeO4 (5Li2O•Fe2O3) and a Li2MnO3•LiFeO2 composite ({Li2O•MnO2}•{Li2O•Fe2O3}) have been explored as electrocatalysts for primary and rechargeable Li-O2 cells. Activation occurs predominantly by Li2O removal, either electrochemically or chemically by acid-treatment. Superior electrochemical behavior is obtained if activation occurs by acid-treatment; Li2MnO3•LiFeO2 catalysts provide 2516 mAh/g (carbon) corresponding to 931 mAh/g (electrocatalyst + carbon) during the initial discharge. The reaction is reasonably reversible during the early cycles. The approach has implications for designing electrocatalysts that participate through electrochemical Li2O extraction/reformation reactions, offering exceptionally high capacities. article_number: A64 article_processing_charge: No article_type: original author: - first_name: L. full_name: Trahey, L. last_name: Trahey - first_name: C. S. full_name: Johnson, C. S. last_name: Johnson - first_name: J. T. full_name: Vaughey, J. T. last_name: Vaughey - first_name: S.-H. full_name: Kang, S.-H. last_name: Kang - first_name: L. J. full_name: Hardwick, L. J. last_name: Hardwick - first_name: Stefan Alexander full_name: Freunberger, Stefan Alexander id: A8CA28E6-CE23-11E9-AD2D-EC27E6697425 last_name: Freunberger orcid: 0000-0003-2902-5319 - first_name: P. G. full_name: Bruce, P. G. last_name: Bruce - first_name: M. M. full_name: Thackeray, M. M. last_name: Thackeray citation: ama: Trahey L, Johnson CS, Vaughey JT, et al. Activated Lithium-Metal-Oxides as catalytic electrodes for Li–O2 cells. Electrochemical and Solid-State Letters. 2011;14(5). doi:10.1149/1.3555366 apa: Trahey, L., Johnson, C. S., Vaughey, J. T., Kang, S.-H., Hardwick, L. J., Freunberger, S. A., … Thackeray, M. M. (2011). Activated Lithium-Metal-Oxides as catalytic electrodes for Li–O2 cells. Electrochemical and Solid-State Letters. The Electrochemical Society. https://doi.org/10.1149/1.3555366 chicago: Trahey, L., C. S. Johnson, J. T. Vaughey, S.-H. Kang, L. J. Hardwick, Stefan Alexander Freunberger, P. G. Bruce, and M. M. Thackeray. “Activated Lithium-Metal-Oxides as Catalytic Electrodes for Li–O2 Cells.” Electrochemical and Solid-State Letters. The Electrochemical Society, 2011. https://doi.org/10.1149/1.3555366. ieee: L. Trahey et al., “Activated Lithium-Metal-Oxides as catalytic electrodes for Li–O2 cells,” Electrochemical and Solid-State Letters, vol. 14, no. 5. The Electrochemical Society, 2011. ista: Trahey L, Johnson CS, Vaughey JT, Kang S-H, Hardwick LJ, Freunberger SA, Bruce PG, Thackeray MM. 2011. Activated Lithium-Metal-Oxides as catalytic electrodes for Li–O2 cells. Electrochemical and Solid-State Letters. 14(5), A64. mla: Trahey, L., et al. “Activated Lithium-Metal-Oxides as Catalytic Electrodes for Li–O2 Cells.” Electrochemical and Solid-State Letters, vol. 14, no. 5, A64, The Electrochemical Society, 2011, doi:10.1149/1.3555366. short: L. Trahey, C.S. Johnson, J.T. Vaughey, S.-H. Kang, L.J. Hardwick, S.A. Freunberger, P.G. Bruce, M.M. Thackeray, Electrochemical and Solid-State Letters 14 (2011). date_created: 2020-01-15T12:20:54Z date_published: 2011-03-02T00:00:00Z date_updated: 2021-01-12T08:13:00Z day: '02' doi: 10.1149/1.3555366 extern: '1' intvolume: ' 14' issue: '5' language: - iso: eng month: '03' oa_version: None publication: Electrochemical and Solid-State Letters publication_identifier: issn: - 1099-0062 publication_status: published publisher: The Electrochemical Society quality_controlled: '1' status: public title: Activated Lithium-Metal-Oxides as catalytic electrodes for Li–O2 cells type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2011' ... --- _id: '7316' abstract: - lang: eng text: The nonaqueous rechargeable lithium–O2 battery containing an alkyl carbonate electrolyte discharges by formation of C3H6(OCO2Li)2, Li2CO3, HCO2Li, CH3CO2Li, CO2, and H2O at the cathode, due to electrolyte decomposition. Charging involves oxidation of C3H6(OCO2Li)2, Li2CO3, HCO2Li, CH3CO2Li accompanied by CO2 and H2O evolution. Mechanisms are proposed for the reactions on discharge and charge. The different pathways for discharge and charge are consistent with the widely observed voltage gap in Li–O2 cells. Oxidation of C3H6(OCO2Li)2 involves terminal carbonate groups leaving behind the OC3H6O moiety that reacts to form a thick gel on the Li anode. Li2CO3, HCO2Li, CH3CO2Li, and C3H6(OCO2Li)2 accumulate in the cathode on cycling correlating with capacity fading and cell failure. The latter is compounded by continuous consumption of the electrolyte on each discharge. article_processing_charge: No article_type: original author: - first_name: Stefan Alexander full_name: Freunberger, Stefan Alexander id: A8CA28E6-CE23-11E9-AD2D-EC27E6697425 last_name: Freunberger orcid: 0000-0003-2902-5319 - first_name: Yuhui full_name: Chen, Yuhui last_name: Chen - first_name: Zhangquan full_name: Peng, Zhangquan last_name: Peng - first_name: John M. full_name: Griffin, John M. last_name: Griffin - first_name: Laurence J. full_name: Hardwick, Laurence J. last_name: Hardwick - first_name: Fanny full_name: Bardé, Fanny last_name: Bardé - first_name: Petr full_name: Novák, Petr last_name: Novák - first_name: Peter G. full_name: Bruce, Peter G. last_name: Bruce citation: ama: Freunberger SA, Chen Y, Peng Z, et al. Reactions in the rechargeable Lithium–O2 battery with alkyl carbonate electrolytes. Journal of the American Chemical Society. 2011;133(20):8040-8047. doi:10.1021/ja2021747 apa: Freunberger, S. A., Chen, Y., Peng, Z., Griffin, J. M., Hardwick, L. J., Bardé, F., … Bruce, P. G. (2011). Reactions in the rechargeable Lithium–O2 battery with alkyl carbonate electrolytes. Journal of the American Chemical Society. ACS. https://doi.org/10.1021/ja2021747 chicago: Freunberger, Stefan Alexander, Yuhui Chen, Zhangquan Peng, John M. Griffin, Laurence J. Hardwick, Fanny Bardé, Petr Novák, and Peter G. Bruce. “Reactions in the Rechargeable Lithium–O2 Battery with Alkyl Carbonate Electrolytes.” Journal of the American Chemical Society. ACS, 2011. https://doi.org/10.1021/ja2021747. ieee: S. A. Freunberger et al., “Reactions in the rechargeable Lithium–O2 battery with alkyl carbonate electrolytes,” Journal of the American Chemical Society, vol. 133, no. 20. ACS, pp. 8040–8047, 2011. ista: Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ, Bardé F, Novák P, Bruce PG. 2011. Reactions in the rechargeable Lithium–O2 battery with alkyl carbonate electrolytes. Journal of the American Chemical Society. 133(20), 8040–8047. mla: Freunberger, Stefan Alexander, et al. “Reactions in the Rechargeable Lithium–O2 Battery with Alkyl Carbonate Electrolytes.” Journal of the American Chemical Society, vol. 133, no. 20, ACS, 2011, pp. 8040–47, doi:10.1021/ja2021747. short: S.A. Freunberger, Y. Chen, Z. Peng, J.M. Griffin, L.J. Hardwick, F. Bardé, P. Novák, P.G. Bruce, Journal of the American Chemical Society 133 (2011) 8040–8047. date_created: 2020-01-15T12:20:43Z date_published: 2011-04-27T00:00:00Z date_updated: 2021-01-12T08:13:00Z day: '27' doi: 10.1021/ja2021747 extern: '1' intvolume: ' 133' issue: '20' language: - iso: eng month: '04' oa_version: None page: 8040-8047 publication: Journal of the American Chemical Society publication_identifier: issn: - 0002-7863 - 1520-5126 publication_status: published publisher: ACS quality_controlled: '1' status: public title: Reactions in the rechargeable Lithium–O2 battery with alkyl carbonate electrolytes type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 133 year: '2011' ... --- _id: '7315' abstract: - lang: eng text: 'Spectroscopic data (see picture) provide direct evidence that in non‐aqueous Li+ electrolyte, O2 is reduced to O2−, which then forms LiO2 on the electrode surface which disproportionates to Li2O2. On charging, Li2O2 decomposes directly, in a one‐step reaction to evolve O2 and does not pass through LiO2 as an intermediate. ' article_processing_charge: No article_type: original author: - first_name: Zhangquan full_name: Peng, Zhangquan last_name: Peng - first_name: Stefan Alexander full_name: Freunberger, Stefan Alexander id: A8CA28E6-CE23-11E9-AD2D-EC27E6697425 last_name: Freunberger orcid: 0000-0003-2902-5319 - first_name: Laurence J. full_name: Hardwick, Laurence J. last_name: Hardwick - first_name: Yuhui full_name: Chen, Yuhui last_name: Chen - first_name: Vincent full_name: Giordani, Vincent last_name: Giordani - first_name: Fanny full_name: Bardé, Fanny last_name: Bardé - first_name: Petr full_name: Novák, Petr last_name: Novák - first_name: Duncan full_name: Graham, Duncan last_name: Graham - first_name: Jean-Marie full_name: Tarascon, Jean-Marie last_name: Tarascon - first_name: Peter G. full_name: Bruce, Peter G. last_name: Bruce citation: ama: Peng Z, Freunberger SA, Hardwick LJ, et al. Oxygen reactions in a non-aqueous Li+ electrolyte. Angewandte Chemie International Edition. 2011;50(28):6351-6355. doi:10.1002/anie.201100879 apa: Peng, Z., Freunberger, S. A., Hardwick, L. J., Chen, Y., Giordani, V., Bardé, F., … Bruce, P. G. (2011). Oxygen reactions in a non-aqueous Li+ electrolyte. Angewandte Chemie International Edition. Wiley. https://doi.org/10.1002/anie.201100879 chicago: Peng, Zhangquan, Stefan Alexander Freunberger, Laurence J. Hardwick, Yuhui Chen, Vincent Giordani, Fanny Bardé, Petr Novák, Duncan Graham, Jean-Marie Tarascon, and Peter G. Bruce. “Oxygen Reactions in a Non-Aqueous Li+ Electrolyte.” Angewandte Chemie International Edition. Wiley, 2011. https://doi.org/10.1002/anie.201100879. ieee: Z. Peng et al., “Oxygen reactions in a non-aqueous Li+ electrolyte,” Angewandte Chemie International Edition, vol. 50, no. 28. Wiley, pp. 6351–6355, 2011. ista: Peng Z, Freunberger SA, Hardwick LJ, Chen Y, Giordani V, Bardé F, Novák P, Graham D, Tarascon J-M, Bruce PG. 2011. Oxygen reactions in a non-aqueous Li+ electrolyte. Angewandte Chemie International Edition. 50(28), 6351–6355. mla: Peng, Zhangquan, et al. “Oxygen Reactions in a Non-Aqueous Li+ Electrolyte.” Angewandte Chemie International Edition, vol. 50, no. 28, Wiley, 2011, pp. 6351–55, doi:10.1002/anie.201100879. short: Z. Peng, S.A. Freunberger, L.J. Hardwick, Y. Chen, V. Giordani, F. Bardé, P. Novák, D. Graham, J.-M. Tarascon, P.G. Bruce, Angewandte Chemie International Edition 50 (2011) 6351–6355. date_created: 2020-01-15T12:20:31Z date_published: 2011-07-04T00:00:00Z date_updated: 2021-01-12T08:12:59Z day: '04' doi: 10.1002/anie.201100879 extern: '1' intvolume: ' 50' issue: '28' language: - iso: eng month: '07' oa_version: None page: 6351-6355 publication: Angewandte Chemie International Edition publication_identifier: issn: - 1433-7851 publication_status: published publisher: Wiley status: public title: Oxygen reactions in a non-aqueous Li+ electrolyte type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 50 year: '2011' ... --- _id: '757' abstract: - lang: eng text: Synchronous distributed algorithms are easier to design and prove correct than algorithms that tolerate asynchrony. Yet, in the real world, networks experience asynchrony and other timing anomalies. In this paper, we address the question of how to efficiently transform an algorithm that relies on synchronization into an algorithm that tolerates asynchronous executions. We introduce a transformation technique from synchronous algorithms to indulgent algorithms [1], which induces only a constant overhead in terms of time complexity in well-behaved executions. Our technique is based on a new abstraction we call an asynchrony detector, which the participating processes implement collectively. The resulting transformation works for a large class of colorless tasks, including consensus and set agreement. Interestingly, we also show that our technique is relevant for colored tasks, by applying it to the renaming problem, to obtain the first indulgent renaming algorithm. acknowledgement: "The authors would like to thank Prof. Hagit Attiya and Nikola\r\nKneˇ\r\nzevi ́\r\nc for their help on previous drafts of this paper, and the anonymous reviewers\r\nfor their useful feedback." alternative_title: - LNCS article_processing_charge: No author: - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: Seth full_name: Gilbert, Seth last_name: Gilbert - first_name: Rachid full_name: Guerraoui, Rachid last_name: Guerraoui - first_name: Corentin full_name: Travers, Corentin last_name: Travers citation: ama: 'Alistarh D-A, Gilbert S, Guerraoui R, Travers C. Generating fast indulgent algorithms. In: Vol 6522 LNCS. Springer; 2011:41-52. doi:10.1007/978-3-642-17679-1_4' apa: 'Alistarh, D.-A., Gilbert, S., Guerraoui, R., & Travers, C. (2011). Generating fast indulgent algorithms (Vol. 6522 LNCS, pp. 41–52). Presented at the ICDCN: International Conference on Distributed Computing and Networking, Springer. https://doi.org/10.1007/978-3-642-17679-1_4' chicago: Alistarh, Dan-Adrian, Seth Gilbert, Rachid Guerraoui, and Corentin Travers. “Generating Fast Indulgent Algorithms,” 6522 LNCS:41–52. Springer, 2011. https://doi.org/10.1007/978-3-642-17679-1_4. ieee: 'D.-A. Alistarh, S. Gilbert, R. Guerraoui, and C. Travers, “Generating fast indulgent algorithms,” presented at the ICDCN: International Conference on Distributed Computing and Networking, 2011, vol. 6522 LNCS, pp. 41–52.' ista: 'Alistarh D-A, Gilbert S, Guerraoui R, Travers C. 2011. Generating fast indulgent algorithms. ICDCN: International Conference on Distributed Computing and Networking, LNCS, vol. 6522 LNCS, 41–52.' mla: Alistarh, Dan-Adrian, et al. Generating Fast Indulgent Algorithms. Vol. 6522 LNCS, Springer, 2011, pp. 41–52, doi:10.1007/978-3-642-17679-1_4. short: D.-A. Alistarh, S. Gilbert, R. Guerraoui, C. Travers, in:, Springer, 2011, pp. 41–52. conference: name: 'ICDCN: International Conference on Distributed Computing and Networking' date_created: 2018-12-11T11:48:20Z date_published: 2011-01-01T00:00:00Z date_updated: 2023-02-23T13:11:09Z day: '01' doi: 10.1007/978-3-642-17679-1_4 extern: '1' language: - iso: eng month: '01' oa_version: None page: 41 - 52 publication_status: published publisher: Springer publist_id: '6898' status: public title: Generating fast indulgent algorithms type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6522 LNCS year: '2011' ...