TY - JOUR AB - A study was conducted on the one-dimensional (1D) bosons in three-dimensional (3D) traps. A rigorous analysis was carried out on the parameter regions in which various types of 1D or 3D behavior occurred in the ground state. The four parameter regions include density, transverse, longitudinal dimensions and scattering length. AU - Lieb, Élliott H AU - Robert Seiringer AU - Yngvason, Jakob ID - 2358 IS - 15 JF - Physical Review Letters TI - One-dimensional Bosons in three-dimensional traps VL - 91 ER - TY - THES AU - Uli Wagner ID - 2414 TI - On k-Sets and Their Applications ER - TY - CONF AB - We introduce the adaptive neighborhood graph as a data structure for modeling a smooth manifold M embedded in some (potentially very high-dimensional) Euclidean space ℝd. We assume that M is known to us only through a finite sample P ⊂ M, as it is often the case in applications. The adaptive neighborhood graph is a geometric graph on P. Its complexity is at most min{2O(k)(n, n2}, where n = |P| and k = dim M, as opposed to the n⌈d/2⌉ complexity of the Delaunay triangulation, which is often used to model manifolds. We show that we can provably correctly infer the connectivity of M and the dimension of M from the adaptive neighborhood graph provided a certain standard sampling condition is fulfilled. The running time of the dimension detection algorithm is d2O(k7 log k) for each connected component of M. If the dimension is considered constant, this is a constant-time operation, and the adaptive neighborhood graph is of linear size. Moreover, the exponential dependence of the constants is only on the intrinsic dimension k, not on the ambient dimension d. This is of particular interest if the co-dimension is high, i.e., if k is much smaller than d, as is the case in many applications. The adaptive neighborhood graph also allows us to approximate the geodesic distances between the points in P. AU - Giesen, Joachim AU - Uli Wagner ID - 2424 TI - Shape dimension and intrinsic metric from samples of manifolds with high co-dimension ER - TY - CONF AB - A finite set N ⊃ Rd is a weak ε-net for an n-point set X ⊃ Rd (with respect to convex sets) if N intersects every convex set K with |K ∩ X| ≥ εn. We give an alternative, and arguably simpler, proof of the fact, first shown by Chazelle et al. [7], that every point set X in Rd admits a weak ε-net of cardinality O(ε-d polylog(1/ε)). Moreover, for a number of special point sets (e.g., for points on the moment curve), our method gives substantially better bounds. The construction yields an algorithm to construct such weak ε-nets in time O(n ln(1/ε)). We also prove, by a different method, a near-linear upper bound for points uniformly distributed on the (d - 1)-dimensional sphere. AU - Matoušek, Jiří AU - Uli Wagner ID - 2423 TI - New constructions of weak epsilon-nets ER - TY - CONF AB - We prove a lower bound of 0.3288(4 n) for the rectilinear crossing number cr̄(Kn) of a complete graph on n vertices, or in other words, for the minimum number of convex quadrilaterals in any set of n points in general position in the Euclidean plane. As we see it, the main contribution of this paper is not so much the concrete numerical improvement over earlier bounds, as the novel method of proof, which is not based on bounding cr̄(Kn) for some small n. AU - Uli Wagner ID - 2422 TI - On the rectilinear crossing number of complete graphs ER -