TY - JOUR AB - Male dimorphism is not genetically determined, but is induced by environmental conditions particularly decreasing temperature and density. AU - Cremer, Sylvia AU - Heinze, Jürgen ID - 3917 IS - 15 JF - Blick in die Wissenschaft TI - Zwischen Hochzeitsflug und Brudermord: reproduktive Taktiken bei Ameisenmännchen VL - 12 ER - TY - THES AB - Methods for the formal specification and verification of systems are indispensible for the development of complex yet correct systems. In formal verification, the designer describes the system in a modeling language with a well-defined semantics, and this system description is analyzed against a set of correctness requirements. Model checking is an algorithmic technique to check that a system description indeed satisfies correctness requirements given as logical specifications. While successful in hardware verification, the potential for model checking for software and embedded systems has not yet been realized. This is because traditional model checking focuses on systems modeled as finite state-transition graphs. While a natural model for hardware (especially synchronous hardware), state-transition graphs often do not capture software and embedded systems at an appropriate level of granularity. This dissertation considers two orthogonal extensions to finite state-transition graphs making model checking techniques applicable to both a wider class of systems and a wider class of properties. The first direction is an extension to infinite-state structures finitely represented using constraints and operations on constraints. Infinite state arises when we wish to model variables with unbounded range (e.g., integers), or data structures, or real time. We provide a uniform framework of symbolic region algebras to study model checking of infinite-state systems. We also provide sufficient language-independent termination conditions for symbolic model checking algorithms on infinite state systems. The second direction supplements verification with game theoretic reasoning. Games are natural models for interactions between components. We study game theoretic behavior with winning conditions given by temporal logic objectives both in the deterministic and in the probabilistic context. For deterministic games, we provide an extremal model characterization of fixpoint algorithms that link solutions of verification problems to solutions for games. For probabilistic games we study fixpoint characterization of winning probabilities for games with omega-regular winning objectives, and construct (epsilon-)optimal winning strategies. AU - Majumdar, Ritankar ID - 4416 TI - Symbolic algorithms for verification and control ER - TY - THES AB - Giotto provides a time-triggered programmer’s model for the implementation of embedded control systems with hard real-time constraints. Giotto’s precise semantics and predictabil- ity make it suitable for safety-critical applications. Giotto is based around the idea that time-triggered task invocation together with time-triggered mode switching can form a useful programming model for real-time systems. To substantiate this claim, we describe the use of Giotto to refactor the software of a small, autonomous helicopter. The ease with which Giotto expresses the existing software provides evidence that Giotto is an appropriate programming language for control systems. Since Giotto is a real-time programming language, ensuring that Giotto programs meet their deadlines is crucial. To study precedence-constrained Giotto scheduling, we first examine single-mode, single-processor scheduling. We extend to an infinite, periodic setting the classical problem of meeting deadlines for a set of tasks with release times, deadlines, precedence constraints, and preemption. We then develop an algorithm for scheduling Giotto programs on a single processor by representing Giotto programs as instances of the extended scheduling problem. Next, we study multi-mode, single-processor Giotto scheduling. This problem is different from classical scheduling problems, since in our precedence-constrained approach, the deadlines of tasks may vary depending on the mode switching behavior of the program. We present conditional scheduling models which capture this varying-deadline behavior. We develop polynomial-time algorithms for some conditional scheduling models, and prove oth- ers to be computationally hard. We show how to represent multi-mode Giotto programs as instances of the model, resulting in an algorithm for scheduling multi-mode Giotto programs on a single processor. Finally, we show that the problem of scheduling Giotto programs for multiple net- worked processors is strongly NP-hard. AU - Horowitz, Benjamin ID - 4425 TI - Giotto: A time-triggered language for embedded programming ER - TY - JOUR AB - We study the free expansion of a pancake-shaped Bose-condensed gas, which is initially trapped under harmonic confinement and containing a vortex at its centre. In the case of a radial expansion holding the axial confinement fixed we consider various models for the interactions, depending on the thickness of the condensate relative to the value of the scattering length. We are thus able to evaluate different scattering regimes ranging from quasi-three-dimensional (Q3D) to strictly two-dimensional (2D). We find that as the system goes from Q3D to 2D the expansion rate of the condensate increases whereas that of the vortex core decreases. In the Q3D scattering regime we also examine a fully free expansion in 3D and find oscillatory behaviour for the vortex core radius: an initial fast expansion of the vortex core is followed by a slowing down. Such a nonuniform expansion rate of the vortex core implies that the timing of its observation should be chosen appropriately. AU - Onur Hosten AU - Vignolo, Patrizia AU - Minguzzi, Anna AU - Tanatar, Bilal AU - Tosi, Mario P ID - 576 IS - 12 JF - Journal of Physics B: Atomic, Molecular and Optical Physics TI - Free expansion of two-dimensional condensates with a vortex VL - 36 ER - TY - JOUR AB - Social and solitary feeding in natural Caenorhabditis elegans isolates are associated with two alleles of the orphan G-protein-coupled receptor (GPCR) NPR-1: social feeders contain NPR-1 215F, whereas solitary feeders contain NPR-1 215V. Here we identify FMRFamide-related neuropeptides (FaRPs) encoded by the flp-18 and flp-21 genes as NPR-1 ligands and show that these peptides can differentially activate the NPR-1 215F and NPR-1 215V receptors. Multicopy overexpression of flp-21 transformed wild social animals into solitary feeders. Conversely, a flp-21 deletion partially phenocopied the npr-1(null) phenotype, which is consistent with NPR-1 activation by FLP-21 in vivo but also implicates other ligands for NPR-1. Phylogenetic studies indicate that the dominant npr-1 215V allele likely arose from an ancestral npr-1 215F gene in C. elegans. Our data suggest a model in which solitary feeding evolved in an ancestral social strain of C. elegans by a gain-of-function mutation that modified the response of NPR-1 to FLP-18 and FLP-21 ligands. AU - Rogers, Candida AU - Reale, Vincenzina AU - Kim, Kyuhyung AU - Chatwin, Heather AU - Li, Chris AU - Evans, Peter AU - de Bono, Mario ID - 6156 IS - 11 JF - Nature Neuroscience SN - 1097-6256 TI - Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1 VL - 6 ER - TY - JOUR AB - In many animal species individuals aggregate to live in groups. A range of experimental approaches in different animals, including studies of social feeding in nematodes, maternal behavior in rats and sheep, and pair-bonding in voles, are providing insights into the neural bases for these behaviors. These studies are delineating multiple neural circuits and gene networks in the brain that interact in ways that are as yet poorly understood to coordinate social behavior. AU - de Bono, Mario ID - 6157 IS - 1 JF - Journal of Neurobiology SN - 0022-3034 TI - Molecular approaches to aggregation behavior and social attachment VL - 54 ER - TY - JOUR AB - The accumulation of genome-wide information on single nucleotide polymorphisms in humans provides an unprecedented opportunity to detect the evolutionary forces responsible for heterogeneity of the level of genetic variability across loci. Previous studies have shown that history of recombination events has produced long haplotype blocks in the human genome, which contribute to this heterogeneity. Other factors, however, such as natural selection or the heterogeneity of mutation rates across loci, may also lead to heterogeneity of genetic variability. We compared synonymous and non-synonymous variability within human genes with their divergence from murine orthologs. We separately analyzed the non-synonymous variants predicted to damage protein structure or function and the variants predicted to be functionally benign. The predictions were based on comparative sequence analysis and, in some cases, on the analysis of protein structure. A strong correlation between non-synonymous, benign variability and non-synonymous human-mouse divergence suggests that selection played an important role in shaping the pattern of variability in coding regions of human genes. However, the lack of correlation between deleterious variability and evolutionary divergence shows that a substantial proportion of the observed non-synonymous single-nucleotide polymorphisms reduces fitness and never reaches fixation. Evolutionary and medical implications of the impact of selection on human polymorphisms are discussed. AU - Sunyaev, Shamil R AU - Fyodor Kondrashov AU - Bork, Peer AU - Ramensky, Vasily ID - 847 IS - 24 JF - Human Molecular Genetics TI - Impact of selection, mutation rate and genetic drift on human genetic variation VL - 12 ER - TY - JOUR AB - Alternative splicing is thought to be a major source of functional diversity in animal proteins. We analyzed the evolutionary conservation of proteins encoded by alternatively spliced genes and predicted the ancestral state for 73 cases of alternative splicing (25 insertions and 48 deletions). The amino acid sequences of most of the inserts in proteins produced by alternative splicing are as conserved as the surrounding sequences. Thus, alternative splicing often creates novel isoforms by the insertion of new, functional protein sequences that probably originated from noncoding sequences of introns. AU - Fyodor Kondrashov AU - Koonin, Eugene V ID - 876 IS - 3 JF - Trends in Genetics TI - Evolution of alternative splicing: Deletions, insertions and origin of functional parts of proteins from intron sequences VL - 19 ER - TY - JOUR AB - RNA interference is a conserved process in which double-stranded RNA is processed into 21–25 nucleotide siRNAs that trigger posttranscriptional gene silencing. In addition, plants display a phenomenon termed RNA-directed DNA methylation (RdDM) in which DNA with sequence identity to silenced RNA is de novo methylated at its cytosine residues. This methylation is not only at canonical CpG sites but also at cytosines in CpNpG and asymmetric sequence contexts. In this report, we study the role of the DRM and CMT3 DNA methyltransferase genes in the initiation and maintenance of RdDM. Neither drm nor cmt3 mutants affected the maintenance of preestablished RNA-directed CpG methylation. However, drm mutants showed a nearly complete loss of asymmetric methylation and a partial loss of CpNpG methylation. The remaining asymmetric and CpNpG methylation was dependent on the activity of CMT3, showing that DRM and CMT3 act redundantly to maintain non-CpG methylation. These DNA methyltransferases appear to act downstream of siRNAs, since drm1 drm2 cmt3 triple mutants show a lack of non-CpG methylation but elevated levels of siRNAs. Finally, we demonstrate that DRM activity is required for the initial establishment of RdDM in all sequence contexts including CpG, CpNpG, and asymmetric sites. AU - Cao, Xiaofeng AU - Aufsatz, Werner AU - Zilberman, Daniel AU - Mette, M.Florian AU - Huang, Michael S. AU - Matzke, Marjori AU - Jacobsen, Steven E. ID - 9495 IS - 24 JF - Current Biology SN - 0960-9822 TI - Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation VL - 13 ER - TY - JOUR AU - Kaloshin, Vadim ID - 8519 IS - 3 JF - Inventiones mathematicae KW - General Mathematics SN - 0020-9910 TI - The existential Hilbert 16-th problem and an estimate for cyclicity of elementary polycycles VL - 151 ER -