TY - JOUR AB - The combination of high-resolution atomic force microscopy (AFM) imaging and single-molecule force-spectroscopy was employed to unfold single bacteriorhodopsins (BR) from native purple membrane patches at various physiologically relevant temperatures. The unfolding spectra reveal detailed insight into the stability of individual structural elements of BR against mechanical unfolding. Intermittent states in the unfolding process are associated with the stepwise unfolding of alpha-helices, whereas other states are associated with the unfolding of polypeptide loops connecting the alpha-helices. It was found that the unfolding forces of the secondary structures considerably decreased upon increasing the temperature from 8 to 52°C. Associated with this effect, the probability of individual unfolding pathways of BR was significantly influenced by the temperature. At lower temperatures, transmembrane alpha-helices and extracellular polypeptide loops exhibited sufficient stability to individually establish potential barriers against unfolding, whereas they predominantly unfolded collectively at elevated temperatures. This suggests that increasing the temperature decreases the mechanical stability of secondary structural elements and changes molecular interactions between secondary structures, thereby forcing them to act as grouped structures. AU - Harald Janovjak AU - Kessler, Max AU - Oesterhelt, Dieter AU - Gaub, Hermann AU - Mueller, Daniel J ID - 3725 IS - 19 JF - EMBO Journal TI - Unfolding pathways of native bacteriorhodopsin depend on temperature VL - 22 ER - TY - JOUR AB - Kv3 channels are thought to be essential for the fast-spiking (FS) phenotype in GABAergic interneurons, but how these channels confer the ability to generate action potentials (APs) at high frequency is unknown. To address this question, we developed a fast dynamic-clamp system (approximately 50 kHz) that allowed us to add a Kv3 model conductance to CA1 oriens alveus (OA) interneurons in hippocampal slices. Selective pharmacological block of Kv3 channels by 0.3 mm 4-aminopyridine or 1 mm tetraethylammonium ions led to a marked broadening of APs during trains of short stimuli and a reduction in AP frequency during 1 sec stimuli. The addition of artificial Kv3 conductance restored the original AP pattern. Subtraction of Kv3 conductance by dynamic clamp mimicked the effects of the blockers. Application of artificial Kv3 conductance also led to FS in OA interneurons after complete K+ channel block and even induced FS in hippocampal pyramidal neurons in the absence of blockers. Adding artificial Kv3 conductance with altered deactivation kinetics revealed a nonmonotonic relationship between mean AP frequency and deactivation rate, with a maximum slightly above the original value. Insertion of artificial Kv3 conductance with either lowered activation threshold or inactivation also led to a reduction in the mean AP frequency. However, the mechanisms were distinct. Shifting the activation threshold induced adaptation, whereas adding inactivation caused frequency-dependent AP broadening. In conclusion, Kv3 channels are necessary for the FS phenotype of OA interneurons, and several of their gating properties appear to be optimized for high-frequency repetitive activity. AU - Lien, Cheng-Chang AU - Peter Jonas ID - 3804 IS - 6 JF - Journal of Neuroscience TI - Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons VL - 23 ER - TY - JOUR AB - To probe exocytosis at a cortical glutamatergic synapse, we made capacitance measurements in whole-cell recorded hippocampal mossy fiber terminals. Evaluation of different methods by using a morphology-based equivalent electrical model revealed that quantitative capacitance measurements are possible in this presynaptic structure. Voltage pulses leading to presynaptic Ca2+ inflow evoked large capacitance signals that showed saturation with increasing pulse duration. The mean peak capacitance increase was 100 fF, corresponding to a pool of approximately 1,400 releasable vesicles. Thus hippocampal mossy fiber synapses have a vesicular "maxipool." Large pool size and rapid vesicle recycling may underlie the uniquely large extent of activity-dependent plasticity in this synapse. AU - Hallermann, Stefan AU - Pawlu, Christian AU - Peter Jonas AU - Heckmann, Manfred ID - 3806 IS - 15 JF - PNAS TI - A large pool of releasable vesicles in a cortical glutamatergic synapse VL - 100 ER - TY - JOUR AB - Unlike most social insects, many Cardiocondyla ant species have two male morphs: wingless (ergatoid) males, who remain in the natal nest, and winged males who disperse but, strangely, before leaving may also mate within the nest. Whereas ergatoid males are highly intolerant of each other and fight among themselves, they tend to tolerate their winged counterparts. This is despite the fact that these winged males, like ergatoid males, represent mating competition. Why should ergatoid males tolerate their winged rivals? We developed a mathematical model to address this question. Our model focuses on a number of factors likely toinfluence whether ergatoid males are tolerant of winged males: ergatoid male–winged male relatedness, number of virgin queens, number of winged males, and the number of ejaculates a winged male has (winged males are sperm limited, whereas ergatoid males have lifelong spermatogenesis). Surprisingly, we found that increasing the number of virgin queens favors a kill strategy, whereas an increase in the other factors favors a let-live strategy; these predictions appear true for C. obscurior and for a number of other Cardiocondyla species. Two further aspects, unequal insemination success and multiple mating in queens, were also incorporated into the model and predictions made about their effects on toleration of winged males. The model is applicable more generally in species that have dimorphic males, such as some other ants, bees, and fig wasps. AU - Anderson, Carl AU - Cremer, Sylvia AU - Heinze, Jürgen ID - 3921 IS - 1 JF - Behavioral Ecology TI - Live and let die: Why fighter males of the ant Cardiocondyla kill each other but tolerate their winged rivals VL - 14 ER - TY - JOUR AB - Dispersal is advantageous, but, at the same time, it implies high costs and risks. Due to these counteracting selection pressures, many species evolved dispersal polymorphisms, which, in ants, are typically restricted to the female sex (queens). Male polymorphism is presently only known from a few genera, such as Cardiocondyla, in which winged dispersing males coexist with wingless fighter males that mate exclusively inside their maternal nests. We studied the developmental mechanisms underlying these alternative male morphs and found that, first, male dimorphism is not genetically determined, but is induced by environmental conditions (decreasing temperature and density). Second, male morph is not yet fixed at the egg stage, but it differentiates during larval development. This flexible developmental pattern of male morphs allows Cardiocondyla ant colonies to react quickly to changes in their environment. Under good conditions, they invest exclusively in philopatric wingless males. But, when environmental conditions turn bad, colonies start to produce winged dispersal males, even though these males require a many times higher investment by the colony than their much smaller wingless counterparts. Cardiocondyla ants share this potential of optimal resource allocation with other colonial animals and some seed dimorphic plants. AU - Cremer, Sylvia AU - Heinze, Jürgen ID - 3922 IS - 3 JF - Current Biology TI - Stress grows wings: Environmental induction of winged dispersal males in Cardiocondyla ants VL - 13 ER - TY - JOUR AB - Male dimorphism is not genetically determined, but is induced by environmental conditions particularly decreasing temperature and density. AU - Cremer, Sylvia AU - Heinze, Jürgen ID - 3917 IS - 15 JF - Blick in die Wissenschaft TI - Zwischen Hochzeitsflug und Brudermord: reproduktive Taktiken bei Ameisenmännchen VL - 12 ER - TY - THES AB - Methods for the formal specification and verification of systems are indispensible for the development of complex yet correct systems. In formal verification, the designer describes the system in a modeling language with a well-defined semantics, and this system description is analyzed against a set of correctness requirements. Model checking is an algorithmic technique to check that a system description indeed satisfies correctness requirements given as logical specifications. While successful in hardware verification, the potential for model checking for software and embedded systems has not yet been realized. This is because traditional model checking focuses on systems modeled as finite state-transition graphs. While a natural model for hardware (especially synchronous hardware), state-transition graphs often do not capture software and embedded systems at an appropriate level of granularity. This dissertation considers two orthogonal extensions to finite state-transition graphs making model checking techniques applicable to both a wider class of systems and a wider class of properties. The first direction is an extension to infinite-state structures finitely represented using constraints and operations on constraints. Infinite state arises when we wish to model variables with unbounded range (e.g., integers), or data structures, or real time. We provide a uniform framework of symbolic region algebras to study model checking of infinite-state systems. We also provide sufficient language-independent termination conditions for symbolic model checking algorithms on infinite state systems. The second direction supplements verification with game theoretic reasoning. Games are natural models for interactions between components. We study game theoretic behavior with winning conditions given by temporal logic objectives both in the deterministic and in the probabilistic context. For deterministic games, we provide an extremal model characterization of fixpoint algorithms that link solutions of verification problems to solutions for games. For probabilistic games we study fixpoint characterization of winning probabilities for games with omega-regular winning objectives, and construct (epsilon-)optimal winning strategies. AU - Majumdar, Ritankar ID - 4416 TI - Symbolic algorithms for verification and control ER - TY - THES AB - Giotto provides a time-triggered programmer’s model for the implementation of embedded control systems with hard real-time constraints. Giotto’s precise semantics and predictabil- ity make it suitable for safety-critical applications. Giotto is based around the idea that time-triggered task invocation together with time-triggered mode switching can form a useful programming model for real-time systems. To substantiate this claim, we describe the use of Giotto to refactor the software of a small, autonomous helicopter. The ease with which Giotto expresses the existing software provides evidence that Giotto is an appropriate programming language for control systems. Since Giotto is a real-time programming language, ensuring that Giotto programs meet their deadlines is crucial. To study precedence-constrained Giotto scheduling, we first examine single-mode, single-processor scheduling. We extend to an infinite, periodic setting the classical problem of meeting deadlines for a set of tasks with release times, deadlines, precedence constraints, and preemption. We then develop an algorithm for scheduling Giotto programs on a single processor by representing Giotto programs as instances of the extended scheduling problem. Next, we study multi-mode, single-processor Giotto scheduling. This problem is different from classical scheduling problems, since in our precedence-constrained approach, the deadlines of tasks may vary depending on the mode switching behavior of the program. We present conditional scheduling models which capture this varying-deadline behavior. We develop polynomial-time algorithms for some conditional scheduling models, and prove oth- ers to be computationally hard. We show how to represent multi-mode Giotto programs as instances of the model, resulting in an algorithm for scheduling multi-mode Giotto programs on a single processor. Finally, we show that the problem of scheduling Giotto programs for multiple net- worked processors is strongly NP-hard. AU - Horowitz, Benjamin ID - 4425 TI - Giotto: A time-triggered language for embedded programming ER - TY - JOUR AB - We study the free expansion of a pancake-shaped Bose-condensed gas, which is initially trapped under harmonic confinement and containing a vortex at its centre. In the case of a radial expansion holding the axial confinement fixed we consider various models for the interactions, depending on the thickness of the condensate relative to the value of the scattering length. We are thus able to evaluate different scattering regimes ranging from quasi-three-dimensional (Q3D) to strictly two-dimensional (2D). We find that as the system goes from Q3D to 2D the expansion rate of the condensate increases whereas that of the vortex core decreases. In the Q3D scattering regime we also examine a fully free expansion in 3D and find oscillatory behaviour for the vortex core radius: an initial fast expansion of the vortex core is followed by a slowing down. Such a nonuniform expansion rate of the vortex core implies that the timing of its observation should be chosen appropriately. AU - Onur Hosten AU - Vignolo, Patrizia AU - Minguzzi, Anna AU - Tanatar, Bilal AU - Tosi, Mario P ID - 576 IS - 12 JF - Journal of Physics B: Atomic, Molecular and Optical Physics TI - Free expansion of two-dimensional condensates with a vortex VL - 36 ER - TY - JOUR AB - Social and solitary feeding in natural Caenorhabditis elegans isolates are associated with two alleles of the orphan G-protein-coupled receptor (GPCR) NPR-1: social feeders contain NPR-1 215F, whereas solitary feeders contain NPR-1 215V. Here we identify FMRFamide-related neuropeptides (FaRPs) encoded by the flp-18 and flp-21 genes as NPR-1 ligands and show that these peptides can differentially activate the NPR-1 215F and NPR-1 215V receptors. Multicopy overexpression of flp-21 transformed wild social animals into solitary feeders. Conversely, a flp-21 deletion partially phenocopied the npr-1(null) phenotype, which is consistent with NPR-1 activation by FLP-21 in vivo but also implicates other ligands for NPR-1. Phylogenetic studies indicate that the dominant npr-1 215V allele likely arose from an ancestral npr-1 215F gene in C. elegans. Our data suggest a model in which solitary feeding evolved in an ancestral social strain of C. elegans by a gain-of-function mutation that modified the response of NPR-1 to FLP-18 and FLP-21 ligands. AU - Rogers, Candida AU - Reale, Vincenzina AU - Kim, Kyuhyung AU - Chatwin, Heather AU - Li, Chris AU - Evans, Peter AU - de Bono, Mario ID - 6156 IS - 11 JF - Nature Neuroscience SN - 1097-6256 TI - Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1 VL - 6 ER -