@article{2480, abstract = {Functional cDNA clones for rat neuromedin K receptor were isolated from a rat brain cDNA library by cross-hybridization with the bovine substance K recepor cDNA. Injection of the mRNA synthesized in vitro from the cloned cDNA into Xenopus oocytes elicited electrophysiological responses to tachykinins, with the most potent sensitivity being to neuromedin K. Ligand-binding displacement in membranes of mammalian COS cells transfected with the cDNA indicated the rank order of affinity of the receptor to tachykinins; neuromedin K > substance K > substance P. The hybridization analysis showed that the neuromedin K receptor mRNA is expressed in both the brain and the peripheral tissues at different levels. The rat neuromedin K receptor consists of 452 amino acid residues and belongs to the family of G protein-coupled receptors, which are thought to have seven transmembrane domains. The sequence comparison of the rat neuromedin K, substance P, and substance K receptors revealed that these receptors are highly conserved in the seven transmembrane domains and the cytoplasmic sides of the receptors. They also show some structural characteristics, including the common presence of histidine residues in transmembrane segments V and VI and the difference in the numbers and distributions of serine and threonine residues as possible phosphorylation sites in the cytoplasmic regions. This paper thus presents the first comprehensive analysis of the molecular nature of the multiple peptide receptors that exhibit similar but pharmacologically distinguishable activities.}, author = {Shigemoto, Ryuichi and Yokota, Yoshifumi and Tsuchida, Kunihiro and Nakanishi, Shigetada}, issn = {1083-351X}, journal = {Journal of Biological Chemistry}, number = {2}, pages = {623 -- 628}, publisher = {American Society for Biochemistry and Molecular Biology}, title = {{Cloning and expression of a rat neuromedin K receptor cDNA}}, doi = {10.1016/s0021-9258(19)40095-1 }, volume = {265}, year = {1990}, } @article{2481, abstract = {The family of mammalian tachykinin receptors consists of substance P receptor (SPR), neuromedin K receptor (NKR) and substance K receptor (SKR). In this investigation, tissue and regional distributions of the mRNAs for the three rat tachykinin receptors were investigated by blot-hybridization and RNase-protection analyses using the previously cloned receptor cDNAs. SPR mRNA is widely distributed in both the nervous system and peripheral tissues and is expressed abundantly in the hypothalamus and olfactory buld, as well as in the urinary bladder, salivary glands and small and large intestines. In contrast, NKR mRNA is predominantly expressed in the nervous system, particularly in the cortex, hypothalamus and cerebellum, whereas SKR mRNA expression is restricted to the peripheral tissues, being abundant in the urinary bladder, large intestine, stomach and adenal glands. Thus, the mRNAs for the three tachykinin receptors show distinct patterns of expression between the nervous system and peripheral tissues. Blot-hybridization analysis in combination with S1 nuclease protection and primer-extension analyses revealed that there are two large forms of SKR mRNA expressed commonly in the peripheral tissues, and two additional small forms of the mRNA expressed specifically in the adrenal gland and eye. These analyses also showed that the multiple forms of SKR mRNA differ in the lengths of the 5' mRNA portions, and that the two small forms of the mRNA, if translated, encode a truncated SKR polypeptide lacking the first two transmembrane domains. This investigation thus provides the comprehensive analysis of the distribution and mode of expression of the mRNAs for the multiple peptide receptors and offers a new basis on which to interpret the diverse functions of multiple tachykinin peptides in the CNS and peripheral tissues.}, author = {Tsuchida, Kunihiro and Shigemoto, Ryuichi and Yokota, Yoshifumi and Nakanishi, Shigetada}, issn = {1432-1033}, journal = {European Journal of Biochemistry}, number = {3}, pages = {751 -- 757}, publisher = {Wiley-Blackwell}, title = {{Tissue distribution and quantitation of the mRNAs for three rat tachykinin receptors}}, doi = {10.1111/j.1432-1033.1990.tb19396.x}, volume = {193}, year = {1990}, } @article{2528, abstract = {We previously reported a novel rat membrane protein that exhibits a voltage-dependent potassium channel activity on the basis of molecular cloning combined with an electrophysiological assay. This protein, termed I(sK) protein, is small and different from the conventional potassium channel proteins but induces selective permeation of potassium ions on its expression in Xenopus oocytes. In this investigation, we examined cellular localization of rat I(sK) protein by preparing three different types of antibody that specifically reacts with a distinct part of rat I(sK) protein. Immunohistochemical analysis using these antibody preparations demonstrated that rat I(sK) protein is confined to the apical membrane portion of epithelial cells in the proximal tubule of the kidney, the submandibular duct and the uterine endometrium. The observed tissue distribution of rat I(sK) protein was consistent with that of the I(sK) protein mRNA determined by blot hybridization analysis. In epithelial cells, the sodium, potassium-ATPase pump in the basolateral membrane generates a sodium gradient across the epithelial cell and allows sodium ions to enter the cell through the apical membrane. Thus, taking into account the cellular localization of the I(sK) protein, together with its electrophysiological properties, we discussed a possible function of the I(sK) protein, namely that this protein is involved in potassium permeation in the apical membrane of epithelial cells through the depolarizing effect of sodium entry.}, author = {Sugimoto, Tetsuo and Tanabe, Yasuto and Shigemoto, Ryuichi and Iwai, Masazumi and Takumi, Toru and Ohkubo, Hiroaki and Nakanishi, Shigetada}, issn = {1432-1424}, journal = {Journal of Membrane Biology}, number = {1}, pages = {39 -- 47}, publisher = {Springer}, title = {{Immunohistochemical study of a rat membrane protein which induces a selective potassium permeation: Its localization in the apical membrane portion of epithelial cells}}, doi = {10.1007/BF01869604}, volume = {113}, year = {1990}, } @article{2721, abstract = {We consider a multidimensional system consisting of a particle of mass M and radius r (molecule), surrounded by an infinite ideal gas of point particles of mass m (atoms). The molecule is confined to the unit ball and interacts with its boundary (barrier) via elastic collision, while the atoms are not affected by the boundary. We obtain convergence to equilibrium for the molecule from almost every initial distribution on its position and velocity. Furthermore, we prove that the infinite composite system of the molecule and the atoms is Bernoulli.}, author = {Erdös, László and Tuyen, Dao}, issn = {1572-9613}, journal = {Journal of Statistical Physics}, number = {5-6}, pages = {1589 -- 1602}, publisher = {Springer}, title = {{Ergodic properties of the multidimensional rayleigh gas with a semipermeable barrier}}, doi = {10.1007/BF01334766}, volume = {59}, year = {1990}, } @article{3650, abstract = {Hybrid zones can yield estimates of natural selection and gene flow. The width of a cline in gene frequency is approximately proportional to gene flow (σ) divided by the square root of per-locus selection ( &s). Gene flow also causes gametic correlations (linkage disequilibria) between genes that differ across hybrid zones. Correlations are stronger when the hybrid zone is narrow, and rise to a maximum roughly equal to s. Thus cline width and gametic correlations combine to give estimates of gene flow and selection. These indirect measures of σ and s are especially useful because they can be made from collections, and require no field experiments. The method was applied to hybrid zones between color pattern races in a pair of Peruvian Heliconius butterfly species. The species are Mullerian mimics of one another, and both show the same changes in warning color pattern across their respective hybrid zones. The expectations of cline width and gametic correlation were generated using simulations of clines stabilized by strong frequency-dependent selection. In the hybrid zone in Heliconius erato, clines at three major color pattern loci were between 8.5 and 10.2 km wide, and the pairwise gametic correlations peaked at R & 0.35. These measures suggest that s & 0.23 per locus, and that σ & 2.6 km. In erato, the shapes of the clines agreed with that expected on the basis of dominance. Heliconius melpomene has a nearly coincident hybrid zone. In this species, cline widths at four major color pattern loci varied between 11.7 and 13.4 km. Pairwise gametic correlations peaked near R & 1.00 for tightly linked genes, and at R & 0.40 for unlinked genes, giving s & 0.25 per locus and σ & 3.7 km. In melpomene, cline shapes did not perfectly fit theoretical shapes based on dominance; this deviation might be explained by long-distance migration and/or strong epistasis. Compared with erato, sample sizes in melpomene are lower and the genetics of its color patterns are less well understood. In spite of these problems, selection and gene flow are clearly of the same order of magnitude in the two species. The relatively high per locus selection coefficients agree with ``major gene'' theories for the evolution of Mullerian mimicry, but the genetic architecture of the color patterns does not. These results show that the genetics and evolution of mimicry are still only sketchily understood.}, author = {Mallet, James and Barton, Nicholas H and Lamas, Gerado and Santisteban, José and Muedas, Manuel and Eeley, Harriet}, issn = {0016-6731}, journal = {Genetics}, number = {4}, pages = {921 -- 936}, publisher = {Genetics Society of America}, title = {{Estimates of selection and gene flow from measures of cline width and linkage disequilibrium in Heliconius hybrid zones}}, doi = {10.1093/genetics/124.4.921}, volume = {124}, year = {1990}, }