--- _id: '7902' abstract: - lang: eng text: "Mosaic genetic analysis has been widely used in different model organisms such as the fruit fly to study gene-function in a cell-autonomous or tissue-specific fashion. More recently, and less easily conducted, mosaic genetic analysis in mice has also been enabled with the ambition to shed light on human gene function and disease. These genetic tools are of particular interest, but not restricted to, the study of the brain. Notably, the MADM technology offers a genetic approach in mice to visualize and concomitantly manipulate small subsets of genetically defined cells at a clonal level and single cell resolution. MADM-based analysis has already advanced the study of genetic mechanisms regulating brain development and is expected that further MADM-based analysis of genetic alterations will continue to reveal important insights on the fundamental principles of development and disease to potentially assist in the development of new therapies or treatments.\r\nIn summary, this work completed and characterized the necessary genome-wide genetic tools to perform MADM-based analysis at single cell level of the vast majority of mouse genes in virtually any cell type and provided a protocol to perform lineage tracing using the novel MADM resource. Importantly, this work also explored and revealed novel aspects of biologically relevant events in an in vivo context, such as the chromosome-specific bias of chromatid sister segregation pattern, the generation of cell-type diversity in the cerebral cortex and in the cerebellum and finally, the relevance of the interplay between the cell-autonomous gene function and cell-non-autonomous (community) effects in radial glial progenitor lineage progression.\r\nThis work provides a foundation and opens the door to further elucidating the molecular mechanisms underlying neuronal diversity and astrocyte generation." acknowledged_ssus: - _id: PreCl - _id: Bio alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Ximena full_name: Contreras, Ximena id: 475990FE-F248-11E8-B48F-1D18A9856A87 last_name: Contreras citation: ama: Contreras X. Genetic dissection of neural development in health and disease at single cell resolution. 2020. doi:10.15479/AT:ISTA:7902 apa: Contreras, X. (2020). Genetic dissection of neural development in health and disease at single cell resolution. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7902 chicago: Contreras, Ximena. “Genetic Dissection of Neural Development in Health and Disease at Single Cell Resolution.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7902. ieee: X. Contreras, “Genetic dissection of neural development in health and disease at single cell resolution,” Institute of Science and Technology Austria, 2020. ista: Contreras X. 2020. Genetic dissection of neural development in health and disease at single cell resolution. Institute of Science and Technology Austria. mla: Contreras, Ximena. Genetic Dissection of Neural Development in Health and Disease at Single Cell Resolution. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7902. short: X. Contreras, Genetic Dissection of Neural Development in Health and Disease at Single Cell Resolution, Institute of Science and Technology Austria, 2020. date_created: 2020-05-29T08:27:32Z date_published: 2020-06-05T00:00:00Z date_updated: 2023-10-18T08:45:16Z day: '05' ddc: - '570' degree_awarded: PhD department: - _id: SiHi doi: 10.15479/AT:ISTA:7902 ec_funded: 1 file: - access_level: closed checksum: 43c172bf006c95b65992d473c7240d13 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: xcontreras date_created: 2020-06-05T08:18:08Z date_updated: 2021-06-07T22:30:03Z embargo_to: open_access file_id: '7927' file_name: PhDThesis_Contreras.docx file_size: 53134142 relation: source_file - access_level: open_access checksum: addfed9128271be05cae3608e03a6ec0 content_type: application/pdf creator: xcontreras date_created: 2020-06-05T08:18:07Z date_updated: 2021-06-07T22:30:03Z embargo: 2021-06-06 file_id: '7928' file_name: PhDThesis_Contreras.pdf file_size: 35117191 relation: main_file file_date_updated: 2021-06-07T22:30:03Z has_accepted_license: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: '214' project: - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '6830' relation: dissertation_contains status: public - id: '28' relation: dissertation_contains status: public - id: '7815' relation: dissertation_contains status: public status: public supervisor: - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 title: Genetic dissection of neural development in health and disease at single cell resolution type: dissertation user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8311' abstract: - lang: eng text: 'One of the core promises of blockchain technology is that of enabling trustworthy data dissemination in a trustless environment. What current blockchain systems deliver, however, is slow dissemination of public data, rendering blockchain technology unusable in settings where latency, transaction capacity, or data confidentiality are important. In this thesis we focus on providing solutions on two of the most pressing problems blockchain technology currently faces: scalability and data confidentiality. To address the scalability issue, we present OMNILEDGER, a novel scale-out distributed ledger that preserves long-term security under permissionless operation. It ensures security and correctness by using a bias-resistant public-randomness protocol for choosing large, statistically representative shards that process transactions, and by introducing an efficient cross-shard commit protocol that atomically handles transactions affecting multiple shards. To enable secure sharing of confidential data we present CALYPSO, the first fully decentralized, auditable access-control framework for secure blockchain-based data sharing which builds upon two abstractions. First, on-chain secrets enable collective management of (verifiably shared) secrets under a Byzantine adversary where an access-control blockchain enforces user-specific access rules and a secret-management cothority administers encrypted data. Second, skipchain-based identity and access management enables efficient administration of dynamic, sovereign identities and access policies and, in particular, permits clients to maintain long-term relationships with respect to evolving user identities thanks to the trust-delegating forward links of skipchains. In order to build OMNILEDGER and CALYPSO, we first build a set of tools for efficient decentralization, which are presented in Part II of this dissertation. These tools can be used in decentralized and distributed systems to achieve (1) scalable consensus (BYZCOIN), (2) bias- resistant distributed randomness creations (RANDHOUND), and (3) relationship-keeping between independently updating communication endpoints (SKIPCHAINIAC). Although we use this tools in the scope off this thesis, they can be (and already have been) used in a far wider scope.' article_processing_charge: No author: - first_name: Eleftherios full_name: Kokoris Kogias, Eleftherios id: f5983044-d7ef-11ea-ac6d-fd1430a26d30 last_name: Kokoris Kogias citation: ama: Kokoris Kogias E. Secure, confidential blockchains providing high throughput and low latency. 2019. doi:10.5075/epfl-thesis-7101 apa: Kokoris Kogias, E. (2019). Secure, confidential blockchains providing high throughput and low latency. École Polytechnique Fédérale de Lausanne. https://doi.org/10.5075/epfl-thesis-7101 chicago: Kokoris Kogias, Eleftherios. “Secure, Confidential Blockchains Providing High Throughput and Low Latency.” École Polytechnique Fédérale de Lausanne, 2019. https://doi.org/10.5075/epfl-thesis-7101. ieee: E. Kokoris Kogias, “Secure, confidential blockchains providing high throughput and low latency,” École Polytechnique Fédérale de Lausanne, 2019. ista: Kokoris Kogias E. 2019. Secure, confidential blockchains providing high throughput and low latency. École Polytechnique Fédérale de Lausanne. mla: Kokoris Kogias, Eleftherios. Secure, Confidential Blockchains Providing High Throughput and Low Latency. École Polytechnique Fédérale de Lausanne, 2019, doi:10.5075/epfl-thesis-7101. short: E. Kokoris Kogias, Secure, Confidential Blockchains Providing High Throughput and Low Latency, École Polytechnique Fédérale de Lausanne, 2019. date_created: 2020-08-27T11:22:24Z date_published: 2019-09-27T00:00:00Z date_updated: 2021-12-20T15:30:47Z day: '27' degree_awarded: PhD doi: 10.5075/epfl-thesis-7101 extern: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://www.doi.org/10.5075/epfl-thesis-7101 month: '09' oa: 1 oa_version: Published Version page: '244' publication_status: published publisher: École Polytechnique Fédérale de Lausanne status: public supervisor: - first_name: Bryan Alexander full_name: Ford, Bryan Alexander last_name: Ford title: Secure, confidential blockchains providing high throughput and low latency type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2019' ... --- _id: '6957' abstract: - lang: eng text: "In many shear flows like pipe flow, plane Couette flow, plane Poiseuille flow, etc. turbulence emerges subcritically. Here, when subjected to strong enough perturbations, the flow becomes turbulent in spite of the laminar base flow being linearly stable. The nature of this instability has puzzled the scientific community for decades. At onset, turbulence appears in localized patches and flows are spatio-temporally intermittent. In pipe flow the localized turbulent structures are referred to as puffs and in planar flows like plane Couette and channel flow, patches arise in the form of localized oblique bands. In this thesis, we study the onset of turbulence in channel flow in direct numerical simulations from a dynamical system theory perspective, as well as by performing experiments in a large aspect ratio channel.\r\n\r\nThe aim of the experimental work is to determine the critical Reynolds number where turbulence first becomes sustained. Recently, the onset of turbulence has been described in analogy to absorbing state phase transition (i.e. directed percolation). In particular, it has been shown that the critical point can be estimated from the competition between spreading and decay processes. Here, by performing experiments, we identify the mechanisms underlying turbulence proliferation in channel flow and find the critical Reynolds number, above which turbulence becomes sustained. Above the critical point, the continuous growth at the tip of the stripes outweighs the stochastic shedding of turbulent patches at the tail and the stripes expand. For growing stripes, the probability to decay decreases while the probability of stripe splitting increases. Consequently, and unlike for the puffs in pipe flow, neither of these two processes is time-independent i.e. memoryless. Coupling between stripe expansion and creation of new stripes via splitting leads to a significantly lower critical point ($Re_c=670+/-10$) than most earlier studies suggest. \r\n\r\nWhile the above approach sheds light on how turbulence first becomes sustained, it provides no insight into the origin of the stripes themselves. In the numerical part of the thesis we investigate how turbulent stripes form from invariant solutions of the Navier-Stokes equations. The origin of these turbulent stripes can be identified by applying concepts from the dynamical system theory. In doing so, we identify the exact coherent structures underlying stripes and their bifurcations and how they give rise to the turbulent attractor in phase space. We first report a family of localized nonlinear traveling wave solutions of the Navier-Stokes equations in channel flow. These solutions show structural similarities with turbulent stripes in experiments like obliqueness, quasi-streamwise streaks and vortices, etc. A parametric study of these traveling wave solution is performed, with parameters like Reynolds number, stripe tilt angle and domain size, including the stability of the solutions. These solutions emerge through saddle-node bifurcations and form a phase space skeleton for the turbulent stripes observed in the experiments. The lower branches of these TW solutions at different tilt angles undergo Hopf bifurcation and new solutions branches of relative periodic orbits emerge. These RPO solutions do not belong to the same family and therefore the routes to chaos for different angles are different. \r\n\r\nIn shear flows, turbulence at onset is transient in nature. \ Consequently,turbulence can not be tracked to lower Reynolds numbers, where the dynamics may simplify. Before this happens, turbulence becomes short-lived and laminarizes. In the last part of the thesis, we show that using numerical simulations we can continue turbulent stripes in channel flow past the 'relaminarization barrier' all the way to their origin. Here, turbulent stripe dynamics simplifies and the fluctuations are no longer stochastic and the stripe settles down to a relative periodic orbit. This relative periodic orbit originates from the aforementioned traveling wave solutions. Starting from the relative periodic orbit, a small increase in speed i.e. Reynolds number gives rise to chaos and the attractor dimension sharply increases in contrast to the classical transition scenario where the instabilities affect the flow globally and give rise to much more gradual route to turbulence." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Chaitanya S full_name: Paranjape, Chaitanya S id: 3D85B7C4-F248-11E8-B48F-1D18A9856A87 last_name: Paranjape citation: ama: Paranjape CS. Onset of turbulence in plane Poiseuille flow. 2019. doi:10.15479/AT:ISTA:6957 apa: Paranjape, C. S. (2019). Onset of turbulence in plane Poiseuille flow. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6957 chicago: Paranjape, Chaitanya S. “Onset of Turbulence in Plane Poiseuille Flow.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6957. ieee: C. S. Paranjape, “Onset of turbulence in plane Poiseuille flow,” Institute of Science and Technology Austria, 2019. ista: Paranjape CS. 2019. Onset of turbulence in plane Poiseuille flow. Institute of Science and Technology Austria. mla: Paranjape, Chaitanya S. Onset of Turbulence in Plane Poiseuille Flow. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6957. short: C.S. Paranjape, Onset of Turbulence in Plane Poiseuille Flow, Institute of Science and Technology Austria, 2019. date_created: 2019-10-22T12:08:43Z date_published: 2019-10-24T00:00:00Z date_updated: 2023-09-07T12:53:25Z day: '24' ddc: - '532' degree_awarded: PhD department: - _id: BjHo doi: 10.15479/AT:ISTA:6957 file: - access_level: closed checksum: 7ba298ba0ce7e1d11691af6b8eaf0a0a content_type: application/zip creator: cparanjape date_created: 2019-10-23T09:54:43Z date_updated: 2020-07-14T12:47:46Z file_id: '6962' file_name: Chaitanya_Paranjape_source_files_tex_figures.zip file_size: 45828099 relation: source_file - access_level: open_access checksum: 642697618314e31ac31392da7909c2d9 content_type: application/pdf creator: cparanjape date_created: 2019-10-23T10:37:09Z date_updated: 2020-07-14T12:47:46Z file_id: '6963' file_name: Chaitanya_Paranjape_Thesis.pdf file_size: 19504197 relation: main_file file_date_updated: 2020-07-14T12:47:46Z has_accepted_license: '1' keyword: - Instabilities - Turbulence - Nonlinear dynamics language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: '138' publication_identifier: eissn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 title: Onset of turbulence in plane Poiseuille flow type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '7186' abstract: - lang: eng text: "Tissue morphogenesis in developmental or physiological processes is regulated by molecular\r\nand mechanical signals. While the molecular signaling cascades are increasingly well\r\ndescribed, the mechanical signals affecting tissue shape changes have only recently been\r\nstudied in greater detail. To gain more insight into the mechanochemical and biophysical\r\nbasis of an epithelial spreading process (epiboly) in early zebrafish development, we studied\r\ncell-cell junction formation and actomyosin network dynamics at the boundary between\r\nsurface layer epithelial cells (EVL) and the yolk syncytial layer (YSL). During zebrafish epiboly,\r\nthe cell mass sitting on top of the yolk cell spreads to engulf the yolk cell by the end of\r\ngastrulation. It has been previously shown that an actomyosin ring residing within the YSL\r\npulls on the EVL tissue through a cable-constriction and a flow-friction motor, thereby\r\ndragging the tissue vegetal wards. Pulling forces are likely transmitted from the YSL\r\nactomyosin ring to EVL cells; however, the nature and formation of the junctional structure\r\nmediating this process has not been well described so far. Therefore, our main aim was to\r\ndetermine the nature, dynamics and potential function of the EVL-YSL junction during this\r\nepithelial tissue spreading. Specifically, we show that the EVL-YSL junction is a\r\nmechanosensitive structure, predominantly made of tight junction (TJ) proteins. The process\r\nof TJ mechanosensation depends on the retrograde flow of non-junctional, phase-separated\r\nZonula Occludens-1 (ZO-1) protein clusters towards the EVL-YSL boundary. Interestingly, we\r\ncould demonstrate that ZO-1 is present in a non-junctional pool on the surface of the yolk\r\ncell, and ZO-1 undergoes a phase separation process that likely renders the protein\r\nresponsive to flows. These flows are directed towards the junction and mediate proper\r\ntension-dependent recruitment of ZO-1. Upon reaching the EVL-YSL junction ZO-1 gets\r\nincorporated into the junctional pool mediated through its direct actin-binding domain.\r\nWhen the non-junctional pool and/or ZO-1 direct actin binding is absent, TJs fail in their\r\nproper mechanosensitive responses resulting in slower tissue spreading. We could further\r\ndemonstrate that depletion of ZO proteins within the YSL results in diminished actomyosin\r\nring formation. This suggests that a mechanochemical feedback loop is at work during\r\nzebrafish epiboly: ZO proteins help in proper actomyosin ring formation and actomyosin\r\ncontractility and flows positively influence ZO-1 junctional recruitment. Finally, such a\r\nmesoscale polarization process mediated through the flow of phase-separated protein\r\nclusters might have implications for other processes such as immunological synapse\r\nformation, C. elegans zygote polarization and wound healing." acknowledged_ssus: - _id: Bio - _id: LifeSc - _id: EM-Fac - _id: SSU alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Cornelia full_name: Schwayer, Cornelia id: 3436488C-F248-11E8-B48F-1D18A9856A87 last_name: Schwayer orcid: 0000-0001-5130-2226 citation: ama: Schwayer C. Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. 2019. doi:10.15479/AT:ISTA:7186 apa: Schwayer, C. (2019). Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7186 chicago: Schwayer, Cornelia. “Mechanosensation of Tight Junctions Depends on ZO-1 Phase Separation and Flow.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:7186. ieee: C. Schwayer, “Mechanosensation of tight junctions depends on ZO-1 phase separation and flow,” Institute of Science and Technology Austria, 2019. ista: Schwayer C. 2019. Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. Institute of Science and Technology Austria. mla: Schwayer, Cornelia. Mechanosensation of Tight Junctions Depends on ZO-1 Phase Separation and Flow. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:7186. short: C. Schwayer, Mechanosensation of Tight Junctions Depends on ZO-1 Phase Separation and Flow, Institute of Science and Technology Austria, 2019. date_created: 2019-12-16T14:26:14Z date_published: 2019-12-16T00:00:00Z date_updated: 2023-09-07T12:56:42Z day: '16' ddc: - '570' degree_awarded: PhD department: - _id: CaHe doi: 10.15479/AT:ISTA:7186 file: - access_level: closed checksum: 585583c1c875c5d9525703a539668a7c content_type: application/zip creator: cschwayer date_created: 2019-12-19T15:18:11Z date_updated: 2020-07-14T12:47:52Z file_id: '7194' file_name: DocumentSourceFiles.zip file_size: 19431292 relation: source_file - access_level: open_access checksum: 9b9b24351514948d27cec659e632e2cd content_type: application/pdf creator: cschwayer date_created: 2019-12-19T15:19:21Z date_updated: 2020-07-14T12:47:52Z file_id: '7195' file_name: Thesis_CS_final.pdf file_size: 19226428 relation: main_file file_date_updated: 2020-07-14T12:47:52Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: '107' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '1096' relation: dissertation_contains status: public - id: '7001' relation: part_of_dissertation status: public status: public supervisor: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 title: Mechanosensation of tight junctions depends on ZO-1 phase separation and flow type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6681' abstract: - lang: eng text: "The first part of the thesis considers the computational aspects of the homotopy groups πd(X) of a topological space X. It is well known that there is no algorithm to decide whether the fundamental group π1(X) of a given finite simplicial complex X is trivial. On the other hand, there are several algorithms that, given a finite simplicial complex X that is simply connected (i.e., with π1(X) trivial), compute the higher homotopy group πd(X) for any given d ≥ 2.\r\nHowever, these algorithms come with a caveat: They compute the isomorphism type of πd(X), d ≥ 2 as an abstract finitely generated abelian group given by generators and relations, but they work with very implicit representations of the elements of πd(X). We present an algorithm that, given a simply connected space X, computes πd(X) and represents its elements as simplicial maps from suitable triangulations of the d-sphere Sd to X. For fixed d, the algorithm runs in time exponential in size(X), the number of simplices of X. Moreover, we prove that this is optimal: For every fixed d ≥ 2,\r\nwe construct a family of simply connected spaces X such that for any simplicial map representing a generator of πd(X), the size of the triangulation of S d on which the map is defined, is exponential in size(X).\r\nIn the second part of the thesis, we prove that the following question is algorithmically undecidable for d < ⌊3(k+1)/2⌋, k ≥ 5 and (k, d) ̸= (5, 7), which covers essentially everything outside the meta-stable range: Given a finite simplicial complex K of dimension k, decide whether there exists a piecewise-linear (i.e., linear on an arbitrarily fine subdivision of K) embedding f : K ↪→ Rd of K into a d-dimensional Euclidean space." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Stephan Y full_name: Zhechev, Stephan Y id: 3AA52972-F248-11E8-B48F-1D18A9856A87 last_name: Zhechev citation: ama: Zhechev SY. Algorithmic aspects of homotopy theory and embeddability. 2019. doi:10.15479/AT:ISTA:6681 apa: Zhechev, S. Y. (2019). Algorithmic aspects of homotopy theory and embeddability. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6681 chicago: Zhechev, Stephan Y. “Algorithmic Aspects of Homotopy Theory and Embeddability.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6681. ieee: S. Y. Zhechev, “Algorithmic aspects of homotopy theory and embeddability,” Institute of Science and Technology Austria, 2019. ista: Zhechev SY. 2019. Algorithmic aspects of homotopy theory and embeddability. Institute of Science and Technology Austria. mla: Zhechev, Stephan Y. Algorithmic Aspects of Homotopy Theory and Embeddability. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6681. short: S.Y. Zhechev, Algorithmic Aspects of Homotopy Theory and Embeddability, Institute of Science and Technology Austria, 2019. date_created: 2019-07-26T11:14:34Z date_published: 2019-08-08T00:00:00Z date_updated: 2023-09-07T13:10:36Z day: '08' ddc: - '514' degree_awarded: PhD department: - _id: UlWa doi: 10.15479/AT:ISTA:6681 file: - access_level: open_access checksum: 3231e7cbfca3b5687366f84f0a57a0c0 content_type: application/pdf creator: szhechev date_created: 2019-08-07T13:02:50Z date_updated: 2020-07-14T12:47:37Z file_id: '6771' file_name: Stephan_Zhechev_thesis.pdf file_size: 1464227 relation: main_file - access_level: closed checksum: 85d65eb27b4377a9e332ee37a70f08b6 content_type: application/octet-stream creator: szhechev date_created: 2019-08-07T13:03:22Z date_updated: 2020-07-14T12:47:37Z file_id: '6772' file_name: Stephan_Zhechev_thesis.tex file_size: 303988 relation: source_file - access_level: closed checksum: 86b374d264ca2dd53e712728e253ee75 content_type: application/zip creator: szhechev date_created: 2019-08-07T13:03:34Z date_updated: 2020-07-14T12:47:37Z file_id: '6773' file_name: supplementary_material.zip file_size: 1087004 relation: supplementary_material file_date_updated: 2020-07-14T12:47:37Z has_accepted_license: '1' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: '104' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '6774' relation: part_of_dissertation status: public status: public supervisor: - first_name: Uli full_name: Wagner, Uli id: 36690CA2-F248-11E8-B48F-1D18A9856A87 last_name: Wagner orcid: 0000-0002-1494-0568 title: Algorithmic aspects of homotopy theory and embeddability tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ...