--- _id: '14506' abstract: - lang: eng text: "Payment channel networks are a promising approach to improve the scalability bottleneck\r\nof cryptocurrencies. Two design principles behind payment channel networks are\r\nefficiency and privacy. Payment channel networks improve efficiency by allowing users\r\nto transact in a peer-to-peer fashion along multi-hop routes in the network, avoiding\r\nthe lengthy process of consensus on the blockchain. Transacting over payment channel\r\nnetworks also improves privacy as these transactions are not broadcast to the blockchain.\r\nDespite the influx of recent protocols built on top of payment channel networks and\r\ntheir analysis, a common shortcoming of many of these protocols is that they typically\r\nfocus only on either improving efficiency or privacy, but not both. Another limitation\r\non the efficiency front is that the models used to model actions, costs and utilities of\r\nusers are limited or come with unrealistic assumptions.\r\nThis thesis aims to address some of the shortcomings of recent protocols and algorithms\r\non payment channel networks, particularly in their privacy and efficiency aspects. We\r\nfirst present a payment route discovery protocol based on hub labelling and private\r\ninformation retrieval that hides the route query and is also efficient. We then present\r\na rebalancing protocol that formulates the rebalancing problem as a linear program\r\nand solves the linear program using multiparty computation so as to hide the channel\r\nbalances. The rebalancing solution as output by our protocol is also globally optimal.\r\nWe go on to develop more realistic models of the action space, costs, and utilities of\r\nboth existing and new users that want to join the network. In each of these settings,\r\nwe also develop algorithms to optimise the utility of these users with good guarantees\r\non the approximation and competitive ratios." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Michelle X full_name: Yeo, Michelle X id: 2D82B818-F248-11E8-B48F-1D18A9856A87 last_name: Yeo citation: ama: Yeo MX. Advances in efficiency and privacy in payment channel network analysis. 2023. doi:10.15479/14506 apa: Yeo, M. X. (2023). Advances in efficiency and privacy in payment channel network analysis. Institute of Science and Technology Austria. https://doi.org/10.15479/14506 chicago: Yeo, Michelle X. “Advances in Efficiency and Privacy in Payment Channel Network Analysis.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/14506. ieee: M. X. Yeo, “Advances in efficiency and privacy in payment channel network analysis,” Institute of Science and Technology Austria, 2023. ista: Yeo MX. 2023. Advances in efficiency and privacy in payment channel network analysis. Institute of Science and Technology Austria. mla: Yeo, Michelle X. Advances in Efficiency and Privacy in Payment Channel Network Analysis. Institute of Science and Technology Austria, 2023, doi:10.15479/14506. short: M.X. Yeo, Advances in Efficiency and Privacy in Payment Channel Network Analysis, Institute of Science and Technology Austria, 2023. date_created: 2023-11-10T08:10:43Z date_published: 2023-11-10T00:00:00Z date_updated: 2023-11-30T10:54:51Z day: '10' ddc: - '000' degree_awarded: PhD department: - _id: GradSch - _id: KrPi doi: 10.15479/14506 ec_funded: 1 file: - access_level: closed checksum: 521c72818d720a52b377207b2ee87b6a content_type: application/x-zip-compressed creator: cchlebak date_created: 2023-11-23T10:29:55Z date_updated: 2023-11-23T10:29:55Z file_id: '14598' file_name: thesis_yeo.zip file_size: 3037720 relation: source_file - access_level: open_access checksum: 0ed5d16899687aecf13d843c9878c9f2 content_type: application/pdf creator: cchlebak date_created: 2023-11-23T10:30:08Z date_updated: 2023-11-23T10:30:08Z file_id: '14599' file_name: thesis_yeo.pdf file_size: 2717256 relation: main_file success: 1 file_date_updated: 2023-11-23T10:30:08Z has_accepted_license: '1' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: '162' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '9969' relation: part_of_dissertation status: public - id: '13238' relation: part_of_dissertation status: public - id: '14490' relation: part_of_dissertation status: public status: public supervisor: - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 title: Advances in efficiency and privacy in payment channel network analysis type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '12726' abstract: - lang: eng text: "Most motions of many-body systems at any scale in nature with sufficient degrees\r\nof freedom tend to be chaotic; reaching from the orbital motion of planets, the air\r\ncurrents in our atmosphere, down to the water flowing through our pipelines or\r\nthe movement of a population of bacteria. To the observer it is therefore intriguing\r\nwhen a moving collective exhibits order. Collective motion of flocks of birds, schools\r\nof fish or swarms of self-propelled particles or robots have been studied extensively\r\nover the past decades but the mechanisms involved in the transition from chaos to\r\norder remain unclear. Here, the interactions, that in most systems give rise to chaos,\r\nsustain order. In this thesis we investigate mechanisms that preserve, destabilize\r\nor lead to the ordered state. We show that endothelial cells migrating in circular\r\nconfinements transition to a collective rotating state and concomitantly synchronize\r\nthe frequencies of nucleating actin waves within individual cells. Consequently,\r\nthe frequency dependent cell migration speed uniformizes across the population.\r\nComplementary to the WAVE dependent nucleation of traveling actin waves, we\r\nshow that in leukocytes the actin polymerization depending on WASp generates\r\npushing forces locally at stationary patches. Next, in pipe flows, we study methods\r\nto disrupt the self–sustaining cycle of turbulence and therefore relaminarize the\r\nflow. While we find in pulsating flow conditions that turbulence emerges through a\r\nhelical instability during the decelerating phase. Finally, we show quantitatively in\r\nbrain slices of mice that wild-type control neurons can compensate the migratory\r\ndeficits of a genetically modified neuronal sub–population in the developing cortex." acknowledged_ssus: - _id: M-Shop - _id: Bio alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Michael full_name: Riedl, Michael id: 3BE60946-F248-11E8-B48F-1D18A9856A87 last_name: Riedl orcid: 0000-0003-4844-6311 citation: ama: Riedl M. Synchronization in collectively moving active matter. 2023. doi:10.15479/at:ista:12726 apa: Riedl, M. (2023). Synchronization in collectively moving active matter. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12726 chicago: Riedl, Michael. “Synchronization in Collectively Moving Active Matter.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:12726. ieee: M. Riedl, “Synchronization in collectively moving active matter,” Institute of Science and Technology Austria, 2023. ista: Riedl M. 2023. Synchronization in collectively moving active matter. Institute of Science and Technology Austria. mla: Riedl, Michael. Synchronization in Collectively Moving Active Matter. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:12726. short: M. Riedl, Synchronization in Collectively Moving Active Matter, Institute of Science and Technology Austria, 2023. date_created: 2023-03-15T13:22:13Z date_published: 2023-03-23T00:00:00Z date_updated: 2023-11-30T10:55:13Z day: '23' ddc: - '530' degree_awarded: PhD department: - _id: GradSch - _id: BjHo doi: 10.15479/at:ista:12726 file: - access_level: closed checksum: eba0e19fe57a8c15e7aeab55a845efb7 content_type: application/pdf creator: cchlebak date_created: 2023-03-23T12:49:23Z date_updated: 2023-11-24T11:57:46Z description: the main file is missing the bibliography. See new thesis record 14530 for updated files. file_id: '12745' file_name: Thesis_Riedl_2023.pdf file_size: 63734746 relation: main_file - access_level: closed checksum: 0eb7b650cc8ae843bcec7c8a6109ae03 content_type: application/octet-stream creator: cchlebak date_created: 2023-03-23T12:54:34Z date_updated: 2023-09-24T22:30:03Z embargo_to: open_access file_id: '12746' file_name: Thesis_Riedl_2023_source.rar file_size: 339473651 relation: source_file file_date_updated: 2023-11-24T11:57:46Z has_accepted_license: '1' language: - iso: eng month: '03' oa_version: None page: '260' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '10703' relation: part_of_dissertation status: public - id: '10791' relation: part_of_dissertation status: public - id: '7932' relation: part_of_dissertation status: public - id: '461' relation: part_of_dissertation status: public - id: '14530' relation: new_edition status: public status: public supervisor: - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 title: Synchronization in collectively moving active matter type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '14530' abstract: - lang: eng text: 'Most motions of many-body systems at any scale in nature with sufficient degrees of freedom tend to be chaotic; reaching from the orbital motion of planets, the air currents in our atmosphere, down to the water flowing through our pipelines or the movement of a population of bacteria. To the observer it is therefore intriguing when a moving collective exhibits order. Collective motion of flocks of birds, schools of fish or swarms of self-propelled particles or robots have been studied extensively over the past decades but the mechanisms involved in the transition from chaos to order remain unclear. Here, the interactions, that in most systems give rise to chaos, sustain order. In this thesis we investigate mechanisms that preserve, destabilize or lead to the ordered state. We show that endothelial cells migrating in circular confinements transition to a collective rotating state and concomitantly synchronize the frequencies of nucleating actin waves within individual cells. Consequently, the frequency dependent cell migration speed uniformizes across the population. Complementary to the WAVE dependent nucleation of traveling actin waves, we show that in leukocytes the actin polymerization depending on WASp generates pushing forces locally at stationary patches. Next, in pipe flows, we study methods to disrupt the self--sustaining cycle of turbulence and therefore relaminarize the flow. While we find in pulsating flow conditions that turbulence emerges through a helical instability during the decelerating phase. Finally, we show quantitatively in brain slices of mice that wild-type control neurons can compensate the migratory deficits of a genetically modified neuronal sub--population in the developing cortex. ' acknowledged_ssus: - _id: M-Shop - _id: Bio alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Michael full_name: Riedl, Michael id: 3BE60946-F248-11E8-B48F-1D18A9856A87 last_name: Riedl orcid: 0000-0003-4844-6311 citation: ama: Riedl M. Synchronization in collectively moving active matter. 2023. doi:10.15479/14530 apa: Riedl, M. (2023). Synchronization in collectively moving active matter. Institute of Science and Technology Austria. https://doi.org/10.15479/14530 chicago: Riedl, Michael. “Synchronization in Collectively Moving Active Matter.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/14530. ieee: M. Riedl, “Synchronization in collectively moving active matter,” Institute of Science and Technology Austria, 2023. ista: Riedl M. 2023. Synchronization in collectively moving active matter. Institute of Science and Technology Austria. mla: Riedl, Michael. Synchronization in Collectively Moving Active Matter. Institute of Science and Technology Austria, 2023, doi:10.15479/14530. short: M. Riedl, Synchronization in Collectively Moving Active Matter, Institute of Science and Technology Austria, 2023. date_created: 2023-11-15T09:59:03Z date_published: 2023-11-16T00:00:00Z date_updated: 2023-11-30T10:55:13Z day: '16' ddc: - '530' - '570' degree_awarded: PhD department: - _id: GradSch - _id: MiSi doi: 10.15479/14530 file: - access_level: open_access checksum: 52e1d0ab6c1abe59c82dfe8c9ff5f83a content_type: application/pdf creator: mriedl date_created: 2023-11-15T09:52:54Z date_updated: 2023-11-15T09:52:54Z file_id: '14536' file_name: Thesis_Riedl_2023_corr.pdf file_size: 36743942 relation: main_file success: 1 file_date_updated: 2023-11-15T09:52:54Z has_accepted_license: '1' keyword: - Synchronization - Collective Movement - Active Matter - Cell Migration - Active Colloids language: - iso: eng month: '11' oa: 1 oa_version: Updated Version page: '260' publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '10703' relation: part_of_dissertation status: public - id: '10791' relation: part_of_dissertation status: public - id: '7932' relation: part_of_dissertation status: public - id: '461' relation: part_of_dissertation status: public - id: '12726' relation: old_edition status: public status: public supervisor: - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 title: Synchronization in collectively moving active matter type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '14547' abstract: - lang: eng text: "Superconductor-semiconductor heterostructures currently capture a significant amount of research interest and they serve as the physical platform in many proposals towards topological quantum computation.\r\nDespite being under extensive investigations, historically using transport techniques, the basic properties of the interface between the superconductor and the semiconductor remain to be understood.\r\n\r\nIn this thesis, two separate studies on the Al-InAs heterostructures are reported with the first focusing on the physics of the material motivated by the emergence of a new phase, the Bogoliubov-Fermi surface. \r\nThe second focuses on a technological application, a gate-tunable Josephson parametric amplifier.\r\n\r\nIn the first study, we investigate the hypothesized unconventional nature of the induced superconductivity at the interface between the Al thin film and the InAs quantum well.\r\nWe embed a two-dimensional Al-InAs hybrid system in a resonant microwave circuit allowing measurements of change in inductance.\r\nThe behaviour of the resonance in a range of temperature and in-plane magnetic field has been studied and compared with the theory of conventional s-wave superconductor and a two-component theory that includes both contribution of the $s$-wave pairing in Al and the intraband $p \\pm ip$ pairing in InAs.\r\nMeasuring the temperature dependence of resonant frequency, no discrepancy is found between data and the conventional theory.\r\nWe observe the breakdown of superconductivity due to an applied magnetic field which contradicts the conventional theory.\r\nIn contrast, the data can be captured quantitatively by fitting to a two-component model.\r\nWe find the evidence of the intraband $p \\pm ip$ pairing in the InAs and the emergence of the Bogoliubov-Fermi surfaces due to magnetic field with the characteristic value $B^* = 0.33~\\mathrm{T}$.\r\nFrom the fits, the sheet resistance of Al, the carrier density and mobility in InAs are determined.\r\nBy systematically studying the anisotropy of the circuit response, we find weak anisotropy for $B < B^*$ and increasingly strong anisotropy for $B > B^*$ resulting in a pronounced two-lobe structure in polar plot of frequency versus field angle.\r\nStrong resemblance between the field dependence of dissipation and superfluid density hints at a hidden signature of the Bogoliubov-Fermi surface that is burried in the dissipation data.\r\n\r\nIn the second study, we realize a parametric amplifier with a Josephson field effect transistor as the active element.\r\nThe device's modest construction consists of a gated SNS weak link embedded at the center of a coplanar waveguide resonator.\r\nBy applying a gate voltage, the resonant frequency is field-effect tunable over a range of 2 GHz.\r\nModelling the JoFET minimally as a parallel RL circuit, the dissipation introduced by the JoFET can be quantitatively related to the gate voltage.\r\nWe observed gate-tunable Kerr nonlinearity qualitatively in line with expectation.\r\nThe JoFET amplifier has 20 dB of gain, 4 MHz of instantaneous bandwidth, and a 1dB compression point of -125.5 dBm when operated at a fixed resonant frequency.\r\nIn general, the signal-to-noise ratio is improved by 5-7 dB when the JoFET amplifier is activated compared.\r\nThe noise of the measurement chain and insertion loss of relevant circuit elements are calibrated to determine the expected and the real noise performance of the JoFET amplifier.\r\nAs a quantification of the noise performance, the measured total input-referred noise of the JoFET amplifier is in good agreement with the estimated expectation which takes device loss into account.\r\nWe found that the noise performance of the device reported in this document approaches one photon of total input-referred added noise which is the quantum limit imposed in nondegenerate parametric amplifier." acknowledged_ssus: - _id: NanoFab - _id: Bio alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Duc T full_name: Phan, Duc T id: 29C8C0B4-F248-11E8-B48F-1D18A9856A87 last_name: Phan citation: ama: Phan DT. Resonant microwave spectroscopy of Al-InAs. 2023. doi:10.15479/14547 apa: Phan, D. T. (2023). Resonant microwave spectroscopy of Al-InAs. Institute of Science and Technology Austria. https://doi.org/10.15479/14547 chicago: Phan, Duc T. “Resonant Microwave Spectroscopy of Al-InAs.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/14547. ieee: D. T. Phan, “Resonant microwave spectroscopy of Al-InAs,” Institute of Science and Technology Austria, 2023. ista: Phan DT. 2023. Resonant microwave spectroscopy of Al-InAs. Institute of Science and Technology Austria. mla: Phan, Duc T. Resonant Microwave Spectroscopy of Al-InAs. Institute of Science and Technology Austria, 2023, doi:10.15479/14547. short: D.T. Phan, Resonant Microwave Spectroscopy of Al-InAs, Institute of Science and Technology Austria, 2023. date_created: 2023-11-17T13:45:26Z date_published: 2023-11-16T00:00:00Z date_updated: 2023-11-30T10:56:04Z day: '16' ddc: - '530' degree_awarded: PhD department: - _id: GradSch - _id: AnHi doi: 10.15479/14547 file: - access_level: open_access checksum: db0c37d213bc002125bd59690e9db246 content_type: application/pdf creator: pduc date_created: 2023-11-17T13:36:44Z date_updated: 2023-11-22T09:46:06Z file_id: '14548' file_name: Phan_Thesis_pdfa.pdf file_size: 34828019 relation: main_file - access_level: closed checksum: 8d3bd6afa279a0078ffd13e06bb6d56d content_type: application/zip creator: pduc date_created: 2023-11-17T13:44:53Z date_updated: 2023-11-17T13:47:54Z file_id: '14549' file_name: dissertation_src.zip file_size: 279319709 relation: source_file file_date_updated: 2023-11-22T09:46:06Z has_accepted_license: '1' keyword: - superconductor-semiconductor - superconductivity - Al - InAs - p-wave - superconductivity - JPA - microwave language: - iso: eng license: https://creativecommons.org/licenses/by-nc-sa/4.0/ month: '11' oa: 1 oa_version: Published Version page: '80' publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '10851' relation: part_of_dissertation status: public - id: '13264' relation: part_of_dissertation status: public status: public supervisor: - first_name: Andrew P full_name: Higginbotham, Andrew P id: 4AD6785A-F248-11E8-B48F-1D18A9856A87 last_name: Higginbotham orcid: 0000-0003-2607-2363 title: Resonant microwave spectroscopy of Al-InAs tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '14058' abstract: - lang: eng text: "Females and males across species are subject to divergent selective pressures arising\r\nfrom di↵erent reproductive interests and ecological niches. This often translates into a\r\nintricate array of sex-specific natural and sexual selection on traits that have a shared\r\ngenetic basis between both sexes, causing a genetic sexual conflict. The resolution of\r\nthis conflict mostly relies on the evolution of sex-specific expression of the shared genes,\r\nleading to phenotypic sexual dimorphism. Such sex-specific gene expression is thought\r\nto evolve via modifications of the genetic networks ultimately linked to sex-determining\r\ntranscription factors. Although much empirical and theoretical evidence supports this\r\nstandard picture of the molecular basis of sexual conflict resolution, there still are a\r\nfew open questions regarding the complex array of selective forces driving phenotypic\r\ndi↵erentiation between the sexes, as well as the molecular mechanisms underlying sexspecific adaptation. I address some of these open questions in my PhD thesis.\r\nFirst, how do patterns of phenotypic sexual dimorphism vary within populations,\r\nas a response to the temporal and spatial changes in sex-specific selective forces? To\r\ntackle this question, I analyze the patterns of sex-specific phenotypic variation along\r\nthree life stages and across populations spanning the whole geographical range of Rumex\r\nhastatulus, a wind-pollinated angiosperm, in the first Chapter of the thesis.\r\nSecond, how do gene expression patterns lead to phenotypic dimorphism, and what\r\nare the molecular mechanisms underlying the observed transcriptomic variation? I\r\naddress this question by examining the sex- and tissue-specific expression variation in\r\nnewly-generated datasets of sex-specific expression in heads and gonads of Drosophila\r\nmelanogaster. I additionally used two complementary approaches for the study of the\r\ngenetic basis of sex di↵erences in gene expression in the second and third Chapters of\r\nthe thesis.\r\nThird, how does intersex correlation, thought to be one of the main aspects constraining the ability for the two sexes to decouple, interact with the evolution of sexual\r\ndimorphism? I develop models of sex-specific stabilizing selection, mutation and drift\r\nto formalize common intuition regarding the patterns of covariation between intersex\r\ncorrelation and sexual dimorphism in the fourth Chapter of the thesis.\r\nAlltogether, the work described in this PhD thesis provides useful insights into the\r\nlinks between genetic, transcriptomic and phenotypic layers of sex-specific variation,\r\nand contributes to our general understanding of the dynamics of sexual dimorphism\r\nevolution." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Gemma full_name: Puixeu Sala, Gemma id: 33AB266C-F248-11E8-B48F-1D18A9856A87 last_name: Puixeu Sala orcid: 0000-0001-8330-1754 citation: ama: 'Puixeu Sala G. The molecular basis of sexual dimorphism: Experimental and theoretical characterization of phenotypic, transcriptomic and genetic patterns of sex-specific adaptation. 2023. doi:10.15479/at:ista:14058' apa: 'Puixeu Sala, G. (2023). The molecular basis of sexual dimorphism: Experimental and theoretical characterization of phenotypic, transcriptomic and genetic patterns of sex-specific adaptation. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:14058' chicago: 'Puixeu Sala, Gemma. “The Molecular Basis of Sexual Dimorphism: Experimental and Theoretical Characterization of Phenotypic, Transcriptomic and Genetic Patterns of Sex-Specific Adaptation.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:14058.' ieee: 'G. Puixeu Sala, “The molecular basis of sexual dimorphism: Experimental and theoretical characterization of phenotypic, transcriptomic and genetic patterns of sex-specific adaptation,” Institute of Science and Technology Austria, 2023.' ista: 'Puixeu Sala G. 2023. The molecular basis of sexual dimorphism: Experimental and theoretical characterization of phenotypic, transcriptomic and genetic patterns of sex-specific adaptation. Institute of Science and Technology Austria.' mla: 'Puixeu Sala, Gemma. The Molecular Basis of Sexual Dimorphism: Experimental and Theoretical Characterization of Phenotypic, Transcriptomic and Genetic Patterns of Sex-Specific Adaptation. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:14058.' short: 'G. Puixeu Sala, The Molecular Basis of Sexual Dimorphism: Experimental and Theoretical Characterization of Phenotypic, Transcriptomic and Genetic Patterns of Sex-Specific Adaptation, Institute of Science and Technology Austria, 2023.' date_created: 2023-08-15T10:20:40Z date_published: 2023-08-15T00:00:00Z date_updated: 2023-12-13T12:15:36Z day: '15' ddc: - '576' degree_awarded: PhD department: - _id: GradSch - _id: NiBa - _id: BeVi doi: 10.15479/at:ista:14058 ec_funded: 1 file: - access_level: closed checksum: 4e44e169f2724ee8c9324cd60bcc2b71 content_type: application/zip creator: gpuixeus date_created: 2023-08-16T18:15:17Z date_updated: 2023-08-17T06:55:24Z file_id: '14075' file_name: Thesis_latex_forpdfa.zip file_size: 10891454 relation: source_file - access_level: open_access checksum: e10b04cd8f3fecc0d9ef6e6868b6e1e8 content_type: application/pdf creator: gpuixeus date_created: 2023-08-18T10:47:55Z date_updated: 2023-08-18T10:47:55Z file_id: '14079' file_name: PhDThesis_PuixeuG.pdf file_size: 19856686 relation: main_file success: 1 file_date_updated: 2023-08-18T10:47:55Z has_accepted_license: '1' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: '230' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 9B9DFC9E-BA93-11EA-9121-9846C619BF3A grant_number: '25817' name: 'Sexual conflict: resolution, constraints and biomedical implications' publication_identifier: isbn: - 978-3-99078-035-0 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '9803' relation: research_data status: public - id: '12933' relation: research_data status: public - id: '6831' relation: part_of_dissertation status: public - id: '14077' relation: part_of_dissertation status: public status: public supervisor: - first_name: Beatriz full_name: Vicoso, Beatriz id: 49E1C5C6-F248-11E8-B48F-1D18A9856A87 last_name: Vicoso orcid: 0000-0002-4579-8306 - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 title: 'The molecular basis of sexual dimorphism: Experimental and theoretical characterization of phenotypic, transcriptomic and genetic patterns of sex-specific adaptation' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '14622' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Stefan full_name: Sack, Stefan id: dd622248-f6e0-11ea-865d-ce382a1c81a5 last_name: Sack orcid: 0000-0001-5400-8508 citation: ama: 'Sack S. Improving variational quantum algorithms: Innovative initialization techniques and extensions to qudit systems. 2023. doi:10.15479/at:ista:14622' apa: 'Sack, S. (2023). Improving variational quantum algorithms: Innovative initialization techniques and extensions to qudit systems. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:14622' chicago: 'Sack, Stefan. “Improving Variational Quantum Algorithms: Innovative Initialization Techniques and Extensions to Qudit Systems.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:14622.' ieee: 'S. Sack, “Improving variational quantum algorithms: Innovative initialization techniques and extensions to qudit systems,” Institute of Science and Technology Austria, 2023.' ista: 'Sack S. 2023. Improving variational quantum algorithms: Innovative initialization techniques and extensions to qudit systems. Institute of Science and Technology Austria.' mla: 'Sack, Stefan. Improving Variational Quantum Algorithms: Innovative Initialization Techniques and Extensions to Qudit Systems. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:14622.' short: 'S. Sack, Improving Variational Quantum Algorithms: Innovative Initialization Techniques and Extensions to Qudit Systems, Institute of Science and Technology Austria, 2023.' date_created: 2023-11-28T10:58:13Z date_published: 2023-11-30T00:00:00Z date_updated: 2023-12-13T14:47:25Z day: '30' ddc: - '530' degree_awarded: PhD department: - _id: GradSch - _id: MaSe doi: 10.15479/at:ista:14622 ec_funded: 1 file: - access_level: closed checksum: 068fd3570506ec42b2faa390de784bc4 content_type: application/pdf creator: ssack date_created: 2023-11-30T15:53:10Z date_updated: 2023-12-01T11:10:46Z embargo: 2024-11-30 embargo_to: open_access file_id: '14635' file_name: PhD_Thesis.pdf file_size: 11947523 relation: main_file - access_level: closed checksum: 0fa3bc0d108aed0ac59d2c6beef2220a content_type: application/zip creator: ssack date_created: 2023-11-30T15:54:11Z date_updated: 2023-12-01T11:10:46Z file_id: '14636' file_name: PhD Thesis (1).zip file_size: 18422964 relation: source_file file_date_updated: 2023-12-01T11:10:46Z has_accepted_license: '1' language: - iso: eng month: '11' oa_version: Published Version page: '142' project: - _id: bd660c93-d553-11ed-ba76-fb0fb6f49c0d name: Quantum_Quantum Circuits and Software_Variational quantum algorithms on NISQ devices - _id: 23841C26-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '850899' name: 'Non-Ergodic Quantum Matter: Universality, Dynamics and Control' publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '11471' relation: part_of_dissertation status: public - id: '13125' relation: part_of_dissertation status: public - id: '9760' relation: part_of_dissertation status: public status: public supervisor: - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 title: 'Improving variational quantum algorithms: Innovative initialization techniques and extensions to qudit systems' tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '14697' acknowledged_ssus: - _id: LifeSc - _id: Bio alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Julian A full_name: Stopp, Julian A id: 489E3F00-F248-11E8-B48F-1D18A9856A87 last_name: Stopp citation: ama: 'Stopp JA. Neutrophils on the hunt: Migratory strategies employed by neutrophils to fulfill their effector function. 2023. doi:10.15479/at:ista:14697' apa: 'Stopp, J. A. (2023). Neutrophils on the hunt: Migratory strategies employed by neutrophils to fulfill their effector function. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:14697' chicago: 'Stopp, Julian A. “Neutrophils on the Hunt: Migratory Strategies Employed by Neutrophils to Fulfill Their Effector Function.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:14697.' ieee: 'J. A. Stopp, “Neutrophils on the hunt: Migratory strategies employed by neutrophils to fulfill their effector function,” Institute of Science and Technology Austria, 2023.' ista: 'Stopp JA. 2023. Neutrophils on the hunt: Migratory strategies employed by neutrophils to fulfill their effector function. Institute of Science and Technology Austria.' mla: 'Stopp, Julian A. Neutrophils on the Hunt: Migratory Strategies Employed by Neutrophils to Fulfill Their Effector Function. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:14697.' short: 'J.A. Stopp, Neutrophils on the Hunt: Migratory Strategies Employed by Neutrophils to Fulfill Their Effector Function, Institute of Science and Technology Austria, 2023.' date_created: 2023-12-18T19:14:28Z date_published: 2023-12-20T00:00:00Z date_updated: 2023-12-21T14:30:02Z day: '20' ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: MiSi doi: 10.15479/at:ista:14697 ec_funded: 1 file: - access_level: closed checksum: 457927165d5d556305d3086f6b83e5c7 content_type: application/pdf creator: jstopp date_created: 2023-12-20T09:35:34Z date_updated: 2023-12-20T09:35:34Z embargo: 2024-12-20 embargo_to: open_access file_id: '14699' file_name: Thesis.pdf file_size: 51585778 relation: main_file - access_level: closed checksum: e8d26449ac461f5e8478a62c9507506f content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: jstopp date_created: 2023-12-20T09:35:35Z date_updated: 2023-12-20T10:41:42Z file_id: '14700' file_name: Thesis.docx file_size: 69625950 relation: source_file file_date_updated: 2023-12-20T10:41:42Z has_accepted_license: '1' language: - iso: eng month: '12' oa_version: Published Version page: '226' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication_identifier: isbn: - 978-3-99078-038-1 issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '6328' relation: part_of_dissertation status: public - id: '7885' relation: part_of_dissertation status: public - id: '12272' relation: part_of_dissertation status: public - id: '14274' relation: part_of_dissertation status: public - id: '14360' relation: part_of_dissertation status: public status: public supervisor: - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 title: 'Neutrophils on the hunt: Migratory strategies employed by neutrophils to fulfill their effector function' type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '14651' abstract: - lang: eng text: 'For self-incompatibility (SI) to be stable in a population, theory predicts that sufficient inbreeding depression (ID) is required: the fitness of offspring from self-mated individuals must be low enough to prevent the spread of self-compatibility (SC). Reviews of natural plant populations have supported this theory, with SI species generally showing high levels of ID. However, there is thought to be an under-sampling of self-incompatible taxa in the current literature. In this thesis, I study inbreeding depression in the SI plant species Antirrhinum majus using both greenhouse crosses and a large collected field dataset. Additionally, the gametophytic S-locus of A. majus is highly heterozygous and polymorphic, thus making assembly and discovery of S-alleles very difficult. Here, 206 new alleles of the male component SLFs are presented, along with a phylogeny showing the high conservation with alleles from another Antirrhinum species. Lastly, selected sites within the protein structure of SLFs are investigated, with one site in particular highlighted as potentially being involved in the SI recognition mechanism.' acknowledged_ssus: - _id: ScienComp alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Louise S full_name: Arathoon, Louise S id: 2CFCFF98-F248-11E8-B48F-1D18A9856A87 last_name: Arathoon orcid: 0000-0003-1771-714X citation: ama: Arathoon LS. Investigating inbreeding depression and the self-incompatibility locus of Antirrhinum majus. 2023. doi:10.15479/at:ista:14651 apa: Arathoon, L. S. (2023). Investigating inbreeding depression and the self-incompatibility locus of Antirrhinum majus. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:14651 chicago: Arathoon, Louise S. “Investigating Inbreeding Depression and the Self-Incompatibility Locus of Antirrhinum Majus.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:14651. ieee: L. S. Arathoon, “Investigating inbreeding depression and the self-incompatibility locus of Antirrhinum majus,” Institute of Science and Technology Austria, 2023. ista: Arathoon LS. 2023. Investigating inbreeding depression and the self-incompatibility locus of Antirrhinum majus. Institute of Science and Technology Austria. mla: Arathoon, Louise S. Investigating Inbreeding Depression and the Self-Incompatibility Locus of Antirrhinum Majus. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:14651. short: L.S. Arathoon, Investigating Inbreeding Depression and the Self-Incompatibility Locus of Antirrhinum Majus, Institute of Science and Technology Austria, 2023. date_created: 2023-12-11T19:30:37Z date_published: 2023-12-12T00:00:00Z date_updated: 2023-12-22T11:04:45Z day: '12' ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: NiBa doi: 10.15479/at:ista:14651 ec_funded: 1 file: - access_level: open_access checksum: 520bdb61e95e66070e02824947d2c5fa content_type: application/pdf creator: larathoo date_created: 2023-12-13T15:37:55Z date_updated: 2023-12-13T15:37:55Z file_id: '14684' file_name: Phd_Thesis_LA.pdf file_size: 34101468 relation: main_file success: 1 - access_level: closed checksum: d8e59afd0817c98fba2564a264508e5c content_type: application/zip creator: larathoo date_created: 2023-12-13T15:42:23Z date_updated: 2023-12-14T08:58:18Z file_id: '14685' file_name: Phd_Thesis_LA.zip file_size: 31052872 relation: source_file - access_level: closed checksum: 9a778c949932286f4519e1f1fca2820d content_type: application/zip creator: larathoo date_created: 2023-12-11T19:24:59Z date_updated: 2023-12-14T08:58:18Z file_id: '14681' file_name: Supplementary_Materials.zip file_size: 10713896 relation: supplementary_material file_date_updated: 2023-12-14T08:58:18Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: '96' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '11411' relation: part_of_dissertation status: public status: public supervisor: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 title: Investigating inbreeding depression and the self-incompatibility locus of Antirrhinum majus type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '14539' abstract: - lang: eng text: "Stochastic systems provide a formal framework for modelling and quantifying uncertainty in systems and have been widely adopted in many application domains. Formal\r\nverification and control of finite state stochastic systems, a subfield of formal methods\r\nalso known as probabilistic model checking, is well studied. In contrast, formal verification and control of infinite state stochastic systems have received comparatively\r\nless attention. However, infinite state stochastic systems commonly arise in practice.\r\nFor instance, probabilistic models that contain continuous probability distributions such\r\nas normal or uniform, or stochastic dynamical systems which are a classical model for\r\ncontrol under uncertainty, both give rise to infinite state systems.\r\nThe goal of this thesis is to contribute to laying theoretical and algorithmic foundations\r\nof fully automated formal verification and control of infinite state stochastic systems,\r\nwith a particular focus on systems that may be executed over a long or infinite time.\r\nWe consider formal verification of infinite state stochastic systems in the setting of\r\nstatic analysis of probabilistic programs and formal control in the setting of controller\r\nsynthesis in stochastic dynamical systems. For both problems, we present some of the\r\nfirst fully automated methods for probabilistic (a.k.a. quantitative) reachability and\r\nsafety analysis applicable to infinite time horizon systems. We also advance the state\r\nof the art of probability 1 (a.k.a. qualitative) reachability analysis for both problems.\r\nFinally, for formal controller synthesis in stochastic dynamical systems, we present a\r\nnovel framework for learning neural network control policies in stochastic dynamical\r\nsystems with formal guarantees on correctness with respect to quantitative reachability,\r\nsafety or reach-avoid specifications.\r\n" alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 citation: ama: Zikelic D. Automated verification and control of infinite state stochastic systems. 2023. doi:10.15479/14539 apa: Zikelic, D. (2023). Automated verification and control of infinite state stochastic systems. Institute of Science and Technology Austria. https://doi.org/10.15479/14539 chicago: Zikelic, Dorde. “Automated Verification and Control of Infinite State Stochastic Systems.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/14539. ieee: D. Zikelic, “Automated verification and control of infinite state stochastic systems,” Institute of Science and Technology Austria, 2023. ista: Zikelic D. 2023. Automated verification and control of infinite state stochastic systems. Institute of Science and Technology Austria. mla: Zikelic, Dorde. Automated Verification and Control of Infinite State Stochastic Systems. Institute of Science and Technology Austria, 2023, doi:10.15479/14539. short: D. Zikelic, Automated Verification and Control of Infinite State Stochastic Systems, Institute of Science and Technology Austria, 2023. date_created: 2023-11-15T13:39:10Z date_published: 2023-11-15T00:00:00Z date_updated: 2024-01-16T11:58:15Z day: '15' ddc: - '000' degree_awarded: PhD department: - _id: KrCh - _id: GradSch doi: 10.15479/14539 ec_funded: 1 file: - access_level: open_access checksum: f23e002b0059ca78e1fbb864da52dd7e content_type: application/pdf creator: cchlebak date_created: 2023-11-15T13:43:28Z date_updated: 2023-11-15T13:43:28Z file_id: '14540' file_name: main.pdf file_size: 2116426 relation: main_file success: 1 - access_level: closed checksum: 80ca37618a3c7b59866875f8be9b15ed content_type: application/x-zip-compressed creator: cchlebak date_created: 2023-11-15T13:44:24Z date_updated: 2023-11-15T13:44:24Z file_id: '14541' file_name: thesis_source.zip file_size: 35884057 relation: source_file file_date_updated: 2023-11-15T13:44:24Z language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: '256' project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication_identifier: isbn: - 978-3-99078-036-7 issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '1194' relation: part_of_dissertation status: public - id: '12000' relation: part_of_dissertation status: public - id: '9644' relation: part_of_dissertation status: public - id: '12511' relation: part_of_dissertation status: public - id: '14600' relation: part_of_dissertation status: public - id: '14601' relation: part_of_dissertation status: public - id: '10414' relation: part_of_dissertation status: public status: public supervisor: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X title: Automated verification and control of infinite state stochastic systems tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '13107' abstract: - lang: eng text: "Within the human body, the brain exhibits the highest rate of energy consumption amongst all organs, with the majority of generated ATP being utilized to sustain neuronal activity. Therefore, the metabolism of the mature cerebral cortex is geared towards preserving metabolic homeostasis whilst generating significant amounts of energy. This requires a precise interplay between diverse metabolic pathways, spanning from a tissue-wide scale to the level of individual neurons. Disturbances to this delicate metabolic equilibrium, such as those resulting from maternal malnutrition\r\nor mutations affecting metabolic enzymes, often result in neuropathological variants of neurodevelopment. For instance, mutations in SLC7A5, a transporter of metabolically essential large neutral amino acids (LNAAs), have been associated with autism and microcephaly. However, despite recent progress in the field, the extent of metabolic restructuring that occurs within the developing brain and the corresponding alterations in nutrient demands during various critical periods remain largely unknown. To investigate this, we performed metabolomic profiling of the murine cerebral cortex to characterize the metabolic state of the forebrain at different developmental stages. We found that the developing cortex undergoes substantial metabolic reprogramming, with specific sets of metabolites displaying stage-specific changes. According to our observations, we determined a distinct temporal period in postnatal development during which the cortex displays heightened reliance on LNAAs. Hence, using a conditional knock-out mouse model, we deleted Slc7a5 in neural cells, allowing us to monitor the impact of a perturbed neuronal metabolic state across multiple developmental stages of corticogenesis. We found that manipulating the levels of essential LNAAs in cortical neurons in vivo affects one particular perinatal developmental period critical for cortical network refinement. Abnormally low intracellular LNAA levels result in cell-autonomous alterations in neuronal lipid metabolism, excitability, and survival during this particular time window. Although most of the effects of Slc7a5 deletion on neuronal physiology are transient, derailment of these processes during this brief but crucial window leads to long-term circuit dysfunction in mice. In conclusion, out data indicate that the cerebral cortex undergoes significant metabolic reorganization during development. This process involves the intricate integration of multiple metabolic pathways to ensure optimal neuronal function throughout different developmental stages. Our findings offer a paradigm for understanding how neurons synchronize the expression of nutrient-related genes with their activity to allow proper brain maturation. Further, our results demonstrate that disruptions in these precisely calibrated metabolic processes during critical periods of brain development may result in neuropathological outcomes in mice and in humans." acknowledged_ssus: - _id: PreCl - _id: Bio - _id: EM-Fac alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Lisa full_name: Knaus, Lisa id: 3B2ABCF4-F248-11E8-B48F-1D18A9856A87 last_name: Knaus citation: ama: 'Knaus L. The metabolism of the developing brain : How large neutral amino acids modulate perinatal neuronal excitability and survival. 2023. doi:10.15479/at:ista:13107' apa: 'Knaus, L. (2023). The metabolism of the developing brain : How large neutral amino acids modulate perinatal neuronal excitability and survival. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:13107' chicago: 'Knaus, Lisa. “The Metabolism of the Developing Brain : How Large Neutral Amino Acids Modulate Perinatal Neuronal Excitability and Survival.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:13107.' ieee: 'L. Knaus, “The metabolism of the developing brain : How large neutral amino acids modulate perinatal neuronal excitability and survival,” Institute of Science and Technology Austria, 2023.' ista: 'Knaus L. 2023. The metabolism of the developing brain : How large neutral amino acids modulate perinatal neuronal excitability and survival. Institute of Science and Technology Austria.' mla: 'Knaus, Lisa. The Metabolism of the Developing Brain : How Large Neutral Amino Acids Modulate Perinatal Neuronal Excitability and Survival. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:13107.' short: 'L. Knaus, The Metabolism of the Developing Brain : How Large Neutral Amino Acids Modulate Perinatal Neuronal Excitability and Survival, Institute of Science and Technology Austria, 2023.' date_created: 2023-06-01T09:05:24Z date_published: 2023-05-31T00:00:00Z date_updated: 2024-02-07T08:03:33Z day: '31' ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: GaNo doi: 10.15479/at:ista:13107 ec_funded: 1 file: - access_level: closed checksum: 4b69a4ac0bbf4163d59c0b58dcb4f2c3 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: lknaus date_created: 2023-06-01T13:48:41Z date_updated: 2023-06-01T13:48:41Z file_id: '13112' file_name: Thesis_Lisa Knaus_approved_final.docx file_size: 12991551 relation: source_file - access_level: open_access checksum: 6903d152aa01181d87a696085af31c83 content_type: application/pdf creator: lknaus date_created: 2023-06-02T09:47:29Z date_updated: 2023-06-07T08:41:49Z file_id: '13114' file_name: Thesis_Lisa Knaus_approved_final_pdfa2b.pdf file_size: 9309015 relation: main_file file_date_updated: 2023-06-07T08:41:49Z has_accepted_license: '1' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: '147' project: - _id: 25444568-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715508' name: Probing the Reversibility of Autism Spectrum Disorders by Employing in vivo and in vitro Models - _id: 2548AE96-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: W1232-B24 name: Molecular Drug Targets publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '12802' relation: part_of_dissertation status: public status: public supervisor: - first_name: Gaia full_name: Novarino, Gaia id: 3E57A680-F248-11E8-B48F-1D18A9856A87 last_name: Novarino orcid: 0000-0002-7673-7178 title: 'The metabolism of the developing brain : How large neutral amino acids modulate perinatal neuronal excitability and survival' type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '14280' abstract: - lang: eng text: "Cell division in Escherichia coli is performed by the divisome, a multi-protein complex composed of more than 30 proteins. The divisome spans from the cytoplasm through the inner membrane to the cell wall and the outer membrane. Divisome assembly is initiated by a cytoskeletal structure, the so-called Z-ring, which localizes at the center of the E. coli cell and determines the position of the future cell septum. The Z-ring is composed of the highly conserved bacterial tubulin homologue FtsZ, which forms treadmilling filaments. These filaments are recruited to the inner membrane by FtsA, a highly conserved bacterial actin homologue. FtsA interacts with other proteins in the periplasm and thus connects the cytoplasmic and periplasmic components of the divisome. \r\nA previous model postulated that FtsA regulates maturation of the divisome by switching from an oligomeric, inactive state to a monomeric and active state. This model was based mostly on in vivo studies, as a biochemical characterization of FtsA has been hampered by difficulties in purifying the protein. Here, we studied FtsA using an in vitro reconstitution approach and aimed to answer two questions: (i) How are dynamics from cytoplasmic, treadmilling FtsZ filaments coupled to proteins acting in the periplasmic space and (ii) How does FtsA regulate the maturation of the divisome?\r\nWe found that the cytoplasmic peptides of the transmembrane proteins FtsN and FtsQ interact directly with FtsA and can follow the spatiotemporal signal of FtsA/Z filaments. When we investigated the underlying mechanism by imaging single molecules of FtsNcyto, we found the peptide to interact transiently with FtsA. An in depth analysis of the single molecule trajectories helped to postulate a model where PG synthases follow the dynamics of FtsZ by a diffusion and capture mechanism. \r\nFollowing up on these findings we were interested in how the self-interaction of FtsA changes when it encounters FtsNcyto and if we can confirm the proposed oligomer-monomer switch. For this, we compared the behavior of the previously identified, hyperactive mutant FtsA R286W with wildtype FtsA. The mutant outperforms WT in mirroring and transmitting the spatiotemporal signal of treadmilling FtsZ filaments. Surprisingly however, we found that this was not due to a difference in the self-interaction strength of the two variants, but a difference in their membrane residence time. Furthermore, in contrast to our expectations, upon binding of FtsNcyto the measured self-interaction of FtsA actually increased. \r\nWe propose that FtsNcyto induces a rearrangement of the oligomeric architecture of FtsA. In further consequence this change leads to more persistent FtsZ filaments which results in a defined signalling zone, allowing formation of the mature divisome. The observed difference between FtsA WT and R286W is due to the vastly different membrane turnover of the proteins. R286W cycles 5-10x faster compared to WT which allows to sample FtsZ filaments at faster frequencies. These findings can explain the observed differences in toxicity for overexpression of FtsA WT and R286W and help to understand how FtsA regulates divisome maturation." acknowledged_ssus: - _id: Bio - _id: LifeSc alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Philipp full_name: Radler, Philipp id: 40136C2A-F248-11E8-B48F-1D18A9856A87 last_name: Radler orcid: '0000-0001-9198-2182 ' citation: ama: Radler P. Spatiotemporal signaling during assembly of the bacterial divisome. 2023. doi:10.15479/at:ista:14280 apa: Radler, P. (2023). Spatiotemporal signaling during assembly of the bacterial divisome. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:14280 chicago: Radler, Philipp. “Spatiotemporal Signaling during Assembly of the Bacterial Divisome.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:14280. ieee: P. Radler, “Spatiotemporal signaling during assembly of the bacterial divisome,” Institute of Science and Technology Austria, 2023. ista: Radler P. 2023. Spatiotemporal signaling during assembly of the bacterial divisome. Institute of Science and Technology Austria. mla: Radler, Philipp. Spatiotemporal Signaling during Assembly of the Bacterial Divisome. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:14280. short: P. Radler, Spatiotemporal Signaling during Assembly of the Bacterial Divisome, Institute of Science and Technology Austria, 2023. date_created: 2023-09-06T10:58:25Z date_published: 2023-09-25T00:00:00Z date_updated: 2024-02-21T12:35:18Z day: '25' ddc: - '572' degree_awarded: PhD department: - _id: GradSch - _id: MaLo doi: 10.15479/at:ista:14280 ec_funded: 1 file: - access_level: closed checksum: 87eef11fbc5c7df0826f12a3a629b444 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: pradler date_created: 2023-10-04T10:11:53Z date_updated: 2023-10-04T10:28:35Z file_id: '14390' file_name: PhD Thesis_Philipp Radler_20231004.docx file_size: 114932847 relation: source_file - access_level: closed checksum: 3253e099b7126469d941fd9419d68b4f content_type: application/pdf creator: pradler date_created: 2023-10-04T10:11:21Z date_updated: 2023-10-04T10:28:35Z embargo: 2024-10-04 embargo_to: open_access file_id: '14391' file_name: PhD Thesis_Philipp Radler_20231004.pdf file_size: 37838778 relation: main_file file_date_updated: 2023-10-04T10:28:35Z has_accepted_license: '1' keyword: - Cell Division - Reconstitution - FtsZ - FtsA - Divisome - E.coli language: - iso: eng month: '09' oa_version: Published Version page: '156' project: - _id: 2595697A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '679239' name: Self-Organization of the Bacterial Cell - _id: fc38323b-9c52-11eb-aca3-ff8afb4a011d grant_number: P34607 name: "Understanding bacterial cell division by in vitro\r\nreconstitution" - _id: 2596EAB6-B435-11E9-9278-68D0E5697425 grant_number: ALTF 2015-1163 name: Synthesis of bacterial cell wall - _id: 259B655A-B435-11E9-9278-68D0E5697425 grant_number: LT000824/2016 name: Reconstitution of bacterial cell wall sythesis publication_identifier: isbn: - 978-3-99078-033-6 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '11373' relation: part_of_dissertation status: public - id: '7387' relation: part_of_dissertation status: public - id: '10934' relation: research_data status: public status: public supervisor: - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 title: Spatiotemporal signaling during assembly of the bacterial divisome tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '13286' abstract: - lang: eng text: Semiconductor-superconductor hybrid systems are the harbour of many intriguing mesoscopic phenomena. This material combination leads to spatial variations of the superconducting properties, which gives rise to Andreev bound states (ABSs). Some of these states might exhibit remarkable properties that render them highly desirable for topological quantum computing. The most prominent and hunted of such states are Majorana zero modes (MZMs), quasiparticles equals to their own quasiparticles that they follow non-abelian statistics. In this thesis, we first introduce the general framework of such hybrid systems and, then, we unveil a series of mesoscopic phenomena that we discovered. Firstly, we show tunneling spectroscopy experiments on full-shell nanowires (NWs) showing that unwanted quantum-dot states coupled to superconductors (Yu-Shiba-Rusinov states) can mimic MZMs signatures. Then, we introduce a novel protocol which allowed the integration of tunneling spectroscopy with Coulomb spectroscopy within the same device. Employing this approach on both full-shell NWs and partial-shell NWs, we demonstrated that longitudinally confined states reveal charge transport phenomenology similar to the one expected for MZMs. These findings shed light on the intricate interplay between superconductivity and quantum confinement, which brought us to explore another material platform, i.e. a two-dimensional Germanium hole gas. After developing a robust way to induce superconductivity in such system, we showed how to engineer the proximity effect and we revealed a superconducting hard gap. Finally, we created a superconducting radio frequency driven ideal diode and a generator of non-sinusoidal current-phase relations. Our results open the path for the exploration of protected superconducting qubits and more complex hybrid devices in planar Germanium, like Kitaev chains and hybrid qubit devices. acknowledged_ssus: - _id: NanoFab - _id: M-Shop alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Marco full_name: Valentini, Marco id: C0BB2FAC-D767-11E9-B658-BC13E6697425 last_name: Valentini citation: ama: 'Valentini M. Mesoscopic phenomena in hybrid semiconductor-superconductor nanodevices : From full-shell nanowires to two-dimensional hole gas in germanium. 2023. doi:10.15479/at:ista:13286' apa: 'Valentini, M. (2023). Mesoscopic phenomena in hybrid semiconductor-superconductor nanodevices : From full-shell nanowires to two-dimensional hole gas in germanium. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:13286' chicago: 'Valentini, Marco. “Mesoscopic Phenomena in Hybrid Semiconductor-Superconductor Nanodevices : From Full-Shell Nanowires to Two-Dimensional Hole Gas in Germanium.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:13286.' ieee: 'M. Valentini, “Mesoscopic phenomena in hybrid semiconductor-superconductor nanodevices : From full-shell nanowires to two-dimensional hole gas in germanium,” Institute of Science and Technology Austria, 2023.' ista: 'Valentini M. 2023. Mesoscopic phenomena in hybrid semiconductor-superconductor nanodevices : From full-shell nanowires to two-dimensional hole gas in germanium. Institute of Science and Technology Austria.' mla: 'Valentini, Marco. Mesoscopic Phenomena in Hybrid Semiconductor-Superconductor Nanodevices : From Full-Shell Nanowires to Two-Dimensional Hole Gas in Germanium. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:13286.' short: 'M. Valentini, Mesoscopic Phenomena in Hybrid Semiconductor-Superconductor Nanodevices : From Full-Shell Nanowires to Two-Dimensional Hole Gas in Germanium, Institute of Science and Technology Austria, 2023.' date_created: 2023-07-24T14:10:45Z date_published: 2023-07-21T00:00:00Z date_updated: 2024-02-21T12:35:34Z day: '21' ddc: - '530' degree_awarded: PhD department: - _id: GradSch - _id: GeKa doi: 10.15479/at:ista:13286 ec_funded: 1 file: - access_level: closed checksum: 666ee31c7eade89679806287c062fa14 content_type: application/x-zip-compressed creator: mvalenti date_created: 2023-08-11T09:27:39Z date_updated: 2023-08-11T10:01:34Z file_id: '14033' file_name: PhD_thesis_Valentini_final.zip file_size: 56121429 relation: source_file - access_level: open_access checksum: 0992f2ebef152dee8e70055350ebbb55 content_type: application/pdf creator: mvalenti date_created: 2023-08-11T14:39:17Z date_updated: 2023-08-11T14:39:17Z file_id: '14035' file_name: PhD_thesis_Valentini_final_validated.pdf file_size: 38199711 relation: main_file file_date_updated: 2023-08-11T14:39:17Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '184' project: - _id: 262116AA-B435-11E9-9278-68D0E5697425 name: Hybrid Semiconductor - Superconductor Quantum Devices - _id: 237E5020-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862046' name: TOPOLOGICALLY PROTECTED AND SCALABLE QUANTUM BITS - _id: 34a66131-11ca-11ed-8bc3-a31681c6b03e grant_number: F8606 name: Conventional and unconventional topological superconductors publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '13312' relation: part_of_dissertation status: public - id: '12118' relation: part_of_dissertation status: public - id: '8910' relation: part_of_dissertation status: public - id: '12522' relation: research_data status: public status: public supervisor: - first_name: Georgios full_name: Katsaros, Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros orcid: 0000-0001-8342-202X title: 'Mesoscopic phenomena in hybrid semiconductor-superconductor nanodevices : From full-shell nanowires to two-dimensional hole gas in germanium' tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '13984' abstract: - lang: eng text: "Social insects fight disease using their individual immune systems and the cooperative\r\nsanitary behaviors of colony members. These social defenses are well explored against\r\nexternally-infecting pathogens, but little is known about defense strategies against\r\ninternally-infecting pathogens, such as viruses. Viruses are ubiquitous and in the last decades\r\nit has become evident that also many ant species harbor viruses. We present one of the first\r\nstudies addressing transmission dynamics and collective disease defenses against viruses in\r\nants on a mechanistic level. I successfully established an experimental ant host – viral\r\npathogen system as a model for the defense strategies used by social insects against internal\r\npathogen infections, as outlined in the third chapter. In particular, we studied how garden ants\r\n(Lasius neglectus) defend themselves and their colonies against the generalist insect virus\r\nCrPV (cricket paralysis virus). We chose microinjections of virus directly into the ants’\r\nhemolymph because it allowed us to use a defined exposure dose. Here we show that this is a\r\ngood model system, as the virus is replicating and thus infecting the host. The ants mount a\r\nclear individual immune response against the viral infection, which is characterized by a\r\nspecific siRNA pattern, namely siRNAs mapping against the viral genome with a peak of 21\r\nand 22 bp long fragments. The onset of this immune response is consistent with the timeline\r\nof viral replication that starts already within two days post injection. The disease manifests in\r\ndecreased survival over a course of two to three weeks.\r\nRegarding group living, we find that infected ants show a strong individual immune response,\r\nbut that their course of disease is little affected by nestmate presence, as described in chapter\r\nfour. Hence, we do not find social immunity in the context of viral infections in ants.\r\nNestmates, however, can contract the virus. Using Drosophila S2R+ cells in culture, we\r\nshowed that 94 % of the nestmates contract active virus within four days of social contact to\r\nan infected individual. Virus is transmitted in low doses, thus not causing disease\r\ntransmission within the colony. While virus can be transmitted during short direct contacts,\r\nwe also assume transmission from deceased ants and show that the nestmates’ immune\r\nsystem gets activated after contracting a low viral dose. We find considerable potential for\r\nindirect transmission via the nest space. Virus is shed to the nest, where it stays viable for one\r\nweek and is also picked up by other ants. Apart from that, we want to underline the potential\r\nof ant poison as antiviral agent. We determined that ant poison successfully inactivates CrPV\r\nin vitro. However, we found no evidence for effective poison use to sanitize the nest space.\r\nOn the other hand, local application of ant poison by oral poison uptake, which is part of the\r\nants prophylactic behavioral repertoire, probably contributes to keeping the gut of each\r\nindividual sanitized. We hypothesize that oral poison uptake might be the reason why we did\r\nnot find viable virus in the trophallactic fluid.\r\nThe fifth chapter encompasses preliminary data on potential social immunization. However,\r\nour experiments do not confirm an actual survival benefit for the nestmates upon pathogen\r\nchallenge under the given experimental settings. Nevertheless, we do not want to rule out the\r\npossibility for nestmate immunization, but rather emphasize that considering different\r\nexperimental timelines and viral doses would provide a multitude of options for follow-up\r\nexperiments.\r\nIn conclusion, we find that prophylactic individual behaviors, such as oral poison uptake,\r\nmight play a role in preventing viral disease transmission. Compared to colony defense\r\nagainst external pathogens, internal pathogen infections require a stronger component of\r\nindividual physiological immunity than behavioral social immunity, yet could still lead to\r\ncollective protection." acknowledged_ssus: - _id: LifeSc alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Anna full_name: Franschitz, Anna id: 480826C8-F248-11E8-B48F-1D18A9856A87 last_name: Franschitz citation: ama: Franschitz A. Individual and social immunity against viral infections in ants. 2023. doi:10.15479/at:ista:13984 apa: Franschitz, A. (2023). Individual and social immunity against viral infections in ants. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:13984 chicago: Franschitz, Anna. “Individual and Social Immunity against Viral Infections in Ants.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:13984. ieee: A. Franschitz, “Individual and social immunity against viral infections in ants,” Institute of Science and Technology Austria, 2023. ista: Franschitz A. 2023. Individual and social immunity against viral infections in ants. Institute of Science and Technology Austria. mla: Franschitz, Anna. Individual and Social Immunity against Viral Infections in Ants. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:13984. short: A. Franschitz, Individual and Social Immunity against Viral Infections in Ants, Institute of Science and Technology Austria, 2023. date_created: 2023-08-08T15:33:29Z date_published: 2023-08-08T00:00:00Z date_updated: 2024-03-01T15:25:17Z day: '08' ddc: - '570' - '577' degree_awarded: PhD department: - _id: GradSch - _id: SyCr doi: 10.15479/at:ista:13984 file: - access_level: closed checksum: 27220243d5d51c3b0d7d61c0879d7a0c content_type: application/pdf creator: afransch date_created: 2023-08-08T18:01:28Z date_updated: 2024-03-01T08:51:42Z embargo: 2024-08-08 embargo_to: open_access file_id: '13986' file_name: Thesis_AnnaFranschitz_202308.pdf file_size: 10797612 relation: main_file - access_level: closed checksum: 40abf7ccca14a3893f72dc7fb88585d6 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: afransch date_created: 2023-08-08T18:02:25Z date_updated: 2023-08-09T07:25:27Z file_id: '13987' file_name: Thesis_AnnaFranschitz_202308.docx file_size: 2619085 relation: source_file - access_level: closed checksum: 8b991ecc2d59d045cc3cf0d676785ec7 content_type: application/pdf creator: cchlebak date_created: 2024-03-01T08:37:15Z date_updated: 2024-03-01T12:13:29Z description: Minor modifications and clarifications - Feb 2024 embargo: 2024-08-08 embargo_to: open_access file_id: '15042' file_name: Addendum_AnnaFranschitz202402.pdf file_size: 85956 relation: erratum title: Addendum - access_level: closed checksum: 66745aa01f960f17472c024875c049ed content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: cchlebak date_created: 2024-03-01T08:39:20Z date_updated: 2024-03-01T08:51:42Z file_id: '15043' file_name: Addendum_AnnaFranschitz202402.docx file_size: 11818 relation: source_file title: Addendum - source file - access_level: closed checksum: 55c876b73d49db15228a7f571592ec77 content_type: application/pdf creator: cchlebak date_created: 2024-03-01T08:56:06Z date_updated: 2024-03-01T12:58:14Z description: For printing purposes file_id: '15044' file_name: Print_Version_Franschitz_Anna_Thesis.pdf file_size: 10416761 relation: other title: Print Version file_date_updated: 2024-03-01T12:58:14Z has_accepted_license: '1' language: - iso: eng month: '08' oa_version: Published Version page: '89' publication_identifier: isbn: - 978-3-99078-034-3 issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 title: Individual and social immunity against viral infections in ants type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '14323' abstract: - lang: eng text: Morphogens are signaling molecules that are known for their prominent role in pattern formation within developing tissues. In addition to patterning, morphogens also control tissue growth. However, the underlying mechanisms are poorly understood. We studied the role of morphogens in regulating tissue growth in the developing vertebrate neural tube. In this system, opposing morphogen gradients of Shh and BMP establish the dorsoventral pattern of neural progenitor domains. Perturbations in these morphogen pathways result in alterations in tissue growth and cell cycle progression, however, it has been unclear what cellular process is affected. To address this, we analysed the rates of cell proliferation and cell death in mouse mutants in which signaling is perturbed, as well as in chick neural plate explants exposed to defined concentrations of signaling activators or inhibitors. Our results indicated that the rate of cell proliferation was not altered in these assays. By contrast, both the Shh and BMP signaling pathways had profound effects on neural progenitor survival. Our results indicate that these pathways synergise to promote cell survival within neural progenitors. Consistent with this, we found that progenitors within the intermediate region of the neural tube, where the combined levels of Shh and BMP are the lowest, are most prone to cell death when signaling activity is inhibited. In addition, we found that downregulation of Shh results in increased apoptosis within the roof plate, which is the dorsal source of BMP ligand production. This revealed a cross-interaction between the Shh and BMP morphogen signaling pathways that may be relevant for understanding how gradients scale in neural tubes with different overall sizes. We further studied the mechanism acting downstream of Shh in cell survival regulation using genetic and genomic approaches. We propose that Shh transcriptionally regulates a non-canonical apoptotic pathway. Altogether, our study points to a novel role of opposing morphogen gradients in tissue size regulation and provides new insights into complex interactions between Shh and BMP signaling gradients in the neural tube. acknowledged_ssus: - _id: Bio - _id: PreCl alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Katarzyna full_name: Kuzmicz-Kowalska, Katarzyna id: 4CED352A-F248-11E8-B48F-1D18A9856A87 last_name: Kuzmicz-Kowalska citation: ama: Kuzmicz-Kowalska K. Regulation of neural progenitor survival by Shh and BMP in the developing spinal cord. 2023. doi:10.15479/at:ista:14323 apa: Kuzmicz-Kowalska, K. (2023). Regulation of neural progenitor survival by Shh and BMP in the developing spinal cord. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:14323 chicago: Kuzmicz-Kowalska, Katarzyna. “Regulation of Neural Progenitor Survival by Shh and BMP in the Developing Spinal Cord.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:14323. ieee: K. Kuzmicz-Kowalska, “Regulation of neural progenitor survival by Shh and BMP in the developing spinal cord,” Institute of Science and Technology Austria, 2023. ista: Kuzmicz-Kowalska K. 2023. Regulation of neural progenitor survival by Shh and BMP in the developing spinal cord. Institute of Science and Technology Austria. mla: Kuzmicz-Kowalska, Katarzyna. Regulation of Neural Progenitor Survival by Shh and BMP in the Developing Spinal Cord. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:14323. short: K. Kuzmicz-Kowalska, Regulation of Neural Progenitor Survival by Shh and BMP in the Developing Spinal Cord, Institute of Science and Technology Austria, 2023. date_created: 2023-09-13T10:07:18Z date_published: 2023-09-13T00:00:00Z date_updated: 2024-03-07T15:02:59Z day: '13' ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: AnKi doi: 10.15479/at:ista:14323 file: - access_level: closed checksum: bd83596869c814b24aeff7077d031c0e content_type: application/pdf creator: kkuzmicz date_created: 2023-09-13T09:52:52Z date_updated: 2023-09-13T10:08:25Z embargo: 2025-03-13 embargo_to: open_access file_id: '14324' file_name: PhDThesis_KK_final_pdfA.pdf file_size: 10147911 relation: main_file - access_level: closed checksum: aa2757ae4c3478041fd7e62c587d3e4d content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: kkuzmicz date_created: 2023-09-13T09:53:29Z date_updated: 2023-09-13T09:53:29Z file_id: '14325' file_name: thesis_KK_final_corrections_092023.docx file_size: 103980668 relation: source_file file_date_updated: 2023-09-13T10:08:25Z has_accepted_license: '1' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '09' oa_version: Published Version page: '151' project: - _id: 267AF0E4-B435-11E9-9278-68D0E5697425 name: The role of morphogens in the regulation of neural tube growth publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7883' relation: part_of_dissertation status: public status: public supervisor: - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 title: Regulation of neural progenitor survival by Shh and BMP in the developing spinal cord tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '14641' acknowledged_ssus: - _id: LifeSc - _id: Bio - _id: CampIT alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Mike full_name: Hennessey-Wesen, Mike id: 3F338C72-F248-11E8-B48F-1D18A9856A87 last_name: Hennessey-Wesen citation: ama: Hennessey-Wesen M. Adaptive mutation in E. coli modulated by luxS. 2023. doi:10.15479/at:ista:14641 apa: Hennessey-Wesen, M. (2023). Adaptive mutation in E. coli modulated by luxS. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:14641 chicago: Hennessey-Wesen, Mike. “Adaptive Mutation in E. Coli Modulated by LuxS.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:14641. ieee: M. Hennessey-Wesen, “Adaptive mutation in E. coli modulated by luxS,” Institute of Science and Technology Austria, 2023. ista: Hennessey-Wesen M. 2023. Adaptive mutation in E. coli modulated by luxS. Institute of Science and Technology Austria. mla: Hennessey-Wesen, Mike. Adaptive Mutation in E. Coli Modulated by LuxS. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:14641. short: M. Hennessey-Wesen, Adaptive Mutation in E. Coli Modulated by LuxS, Institute of Science and Technology Austria, 2023. date_created: 2023-12-04T13:17:37Z date_published: 2023-11-30T00:00:00Z date_updated: 2024-03-22T13:21:17Z day: '30' ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: BjHo doi: 10.15479/at:ista:14641 ec_funded: 1 file: - access_level: closed checksum: 4127c285b34f4bf7fb31ef24f9d14c25 content_type: application/vnd.oasis.opendocument.text creator: mhenness date_created: 2023-12-06T13:13:26Z date_updated: 2023-12-06T13:13:26Z file_id: '14648' file_name: mike_thesis_v06-12-2023.odt file_size: 46405919 relation: source_file - access_level: closed checksum: f5203a61eddaf35235bbc51904d73982 content_type: application/pdf creator: mhenness date_created: 2023-12-06T13:14:15Z date_updated: 2023-12-06T13:14:15Z embargo: 2024-11-30 embargo_to: open_access file_id: '14649' file_name: mike_thesis_v06-12-2023.pdf file_size: 21282155 relation: main_file - access_level: closed checksum: 9f7b4d646f1cfb57e3b9106a8a9cdd9d content_type: application/pdf creator: cchlebak date_created: 2024-03-20T13:19:36Z date_updated: 2024-03-20T13:19:36Z file_id: '15145' file_name: 2023_Hennessey_Michael_Thesis_from_source.pdf file_size: 2930287 relation: other file_date_updated: 2024-03-20T13:19:36Z has_accepted_license: '1' keyword: - microfluidics - miceobiology - mutations - quorum sensing language: - iso: eng month: '11' oa_version: Published Version page: '104' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 title: Adaptive mutation in E. coli modulated by luxS type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '14587' abstract: - lang: eng text: "This thesis concerns the application of variational methods to the study of evolution problems arising in fluid mechanics and in material sciences. The main focus is on weak-strong stability properties of some curvature driven interface evolution problems, such as the two-phase Navier–Stokes flow with surface tension and multiphase mean curvature flow, and on the phase-field approximation of the latter. Furthermore, we discuss a variational approach to the study of a class of doubly nonlinear wave equations.\r\nFirst, we consider the two-phase Navier–Stokes flow with surface tension within a bounded domain. The two fluids are immiscible and separated by a sharp interface, which intersects the boundary of the domain at a constant contact angle of ninety degree. We devise a suitable concept of varifolds solutions for the associated interface evolution problem and we establish a weak-strong uniqueness principle in case of a two dimensional ambient space. In order to focus on the boundary effects and on the singular geometry of the evolving domains, we work for simplicity in the regime of same viscosities for the two fluids.\r\nThe core of the thesis consists in the rigorous proof of the convergence of the vectorial Allen-Cahn equation towards multiphase mean curvature flow for a suitable class of multi- well potentials and for well-prepared initial data. We even establish a rate of convergence. Our relative energy approach relies on the concept of gradient-flow calibration for branching singularities in multiphase mean curvature flow and thus enables us to overcome the limitations of other approaches. To the best of the author’s knowledge, our result is the first quantitative and unconditional one available in the literature for the vectorial/multiphase setting.\r\nThis thesis also contains a first study of weak-strong stability for planar multiphase mean curvature flow beyond the singularity resulting from a topology change. Previous weak-strong results are indeed limited to time horizons before the first topology change of the strong solution. We consider circular topology changes and we prove weak-strong stability for BV solutions to planar multiphase mean curvature flow beyond the associated singular times by dynamically adapting the strong solutions to the weak one by means of a space-time shift.\r\nIn the context of interface evolution problems, our proofs for the main results of this thesis are based on the relative energy technique, relying on novel suitable notions of relative energy functionals, which in particular measure the interface error. Our statements follow from the resulting stability estimates for the relative energy associated to the problem.\r\nAt last, we introduce a variational approach to the study of nonlinear evolution problems. This approach hinges on the minimization of a parameter dependent family of convex functionals over entire trajectories, known as Weighted Inertia-Dissipation-Energy (WIDE) functionals. We consider a class of doubly nonlinear wave equations and establish the convergence, up to subsequences, of the associated WIDE minimizers to a solution of the target problem as the parameter goes to zero." acknowledgement: The research projects contained in this thesis have received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 948819). alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Alice full_name: Marveggio, Alice id: 25647992-AA84-11E9-9D75-8427E6697425 last_name: Marveggio citation: ama: Marveggio A. Weak-strong stability and phase-field approximation of interface evolution problems in fluid mechanics and in material sciences. 2023. doi:10.15479/at:ista:14587 apa: Marveggio, A. (2023). Weak-strong stability and phase-field approximation of interface evolution problems in fluid mechanics and in material sciences. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:14587 chicago: Marveggio, Alice. “Weak-Strong Stability and Phase-Field Approximation of Interface Evolution Problems in Fluid Mechanics and in Material Sciences.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:14587. ieee: A. Marveggio, “Weak-strong stability and phase-field approximation of interface evolution problems in fluid mechanics and in material sciences,” Institute of Science and Technology Austria, 2023. ista: Marveggio A. 2023. Weak-strong stability and phase-field approximation of interface evolution problems in fluid mechanics and in material sciences. Institute of Science and Technology Austria. mla: Marveggio, Alice. Weak-Strong Stability and Phase-Field Approximation of Interface Evolution Problems in Fluid Mechanics and in Material Sciences. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:14587. short: A. Marveggio, Weak-Strong Stability and Phase-Field Approximation of Interface Evolution Problems in Fluid Mechanics and in Material Sciences, Institute of Science and Technology Austria, 2023. date_created: 2023-11-21T11:41:05Z date_published: 2023-11-21T00:00:00Z date_updated: 2024-03-22T13:21:28Z day: '21' ddc: - '515' degree_awarded: PhD department: - _id: GradSch - _id: JuFi doi: 10.15479/at:ista:14587 ec_funded: 1 file: - access_level: open_access checksum: 6c7db4cc86da6cdc79f7f358dc7755d4 content_type: application/pdf creator: amarvegg date_created: 2023-11-29T09:09:31Z date_updated: 2023-11-29T09:09:31Z file_id: '14626' file_name: thesis_Marveggio.pdf file_size: 2881100 relation: main_file success: 1 - access_level: closed checksum: 52f28bdf95ec82cff39f3685f9c48e7d content_type: application/zip creator: amarvegg date_created: 2023-11-29T09:10:19Z date_updated: 2024-03-20T12:28:32Z file_id: '14627' file_name: Thesis_Marveggio.zip file_size: 10189696 relation: source_file file_date_updated: 2024-03-20T12:28:32Z has_accepted_license: '1' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: '228' project: - _id: 0aa76401-070f-11eb-9043-b5bb049fa26d call_identifier: H2020 grant_number: '948819' name: Bridging Scales in Random Materials publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '11842' relation: part_of_dissertation status: public - id: '14597' relation: part_of_dissertation status: public status: public supervisor: - first_name: Julian L full_name: Fischer, Julian L id: 2C12A0B0-F248-11E8-B48F-1D18A9856A87 last_name: Fischer orcid: 0000-0002-0479-558X title: Weak-strong stability and phase-field approximation of interface evolution problems in fluid mechanics and in material sciences tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '12491' abstract: - lang: eng text: "The extracellular matrix (ECM) is a hydrated and complex three-dimensional network consisting of proteins, polysaccharides, and water. It provides structural scaffolding for the cells embedded within it and is essential in regulating numerous physiological processes, including cell migration and proliferation, wound healing, and stem cell fate. \r\nDespite extensive study, detailed structural knowledge of ECM components in physiologically relevant conditions is still rudimentary. This is due to methodological limitations in specimen preparation protocols which are incompatible with keeping large samples, such as the ECM, in their native state for subsequent imaging. Conventional electron microscopy (EM) techniques rely on fixation, dehydration, contrasting, and sectioning. This results in the alteration of a highly hydrated environment and the potential introduction of artifacts. Other structural biology techniques, such as nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography, allow high-resolution analysis of protein structures but only work on homogenous and purified samples, hence lacking contextual information. Currently, no approach exists for the ultrastructural and structural study of extracellular components under native conditions in a physiological, 3D environment. \r\nIn this thesis, I have developed a workflow that allows for the ultrastructural analysis of the ECM in near-native conditions at molecular resolution. The developments I introduced include implementing a novel specimen preparation workflow for cell-derived matrices (CDMs) to render them compatible with ion-beam milling and subsequent high-resolution cryo-electron tomography (ET). \r\nTo this end, I have established protocols to generate CDMs grown over several weeks on EM grids that are compatible with downstream cryo-EM sample preparation and imaging techniques. Characterization of these ECMs confirmed that they contain essential ECM components such as collagen I, collagen VI, and fibronectin I in high abundance and hence represent a bona fide biologically-relevant sample. I successfully optimized vitrification of these specimens by testing various vitrification techniques and cryoprotectants. \r\nIn order to obtain high-resolution molecular insights into the ultrastructure and organization of CDMs, I established cryo-focused ion beam scanning electron microscopy (FIBSEM) on these challenging and complex specimens. I explored different approaches for the creation of thin cryo-lamellae by FIB milling and succeeded in optimizing the cryo-lift-out technique, resulting in high-quality lamellae of approximately 200 nm thickness. \r\nHigh-resolution Cryo-ET of these lamellae revealed for the first time the architecture of native CDM in the context of matrix-secreting cells. This allowed for the in situ visualization of fibrillar matrix proteins such as collagen, laying the foundation for future structural and ultrastructural characterization of these proteins in their near-native environment. \r\nIn summary, in this thesis, I present a novel workflow that combines state-of-the-art cryo-EM specimen preparation and imaging technologies to permit characterization of the ECM, an important tissue component in higher organisms. This innovative and highly versatile workflow will enable addressing far-reaching questions on ECM architecture, composition, and reciprocal ECM-cell interactions." acknowledged_ssus: - _id: EM-Fac - _id: LifeSc - _id: Bio alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Bettina full_name: Zens, Bettina id: 45FD126C-F248-11E8-B48F-1D18A9856A87 last_name: Zens orcid: 0000-0002-9561-1239 citation: ama: Zens B. Ultrastructural characterization of natively preserved extracellular matrix by cryo-electron tomography. 2023. doi:10.15479/at:ista:12491 apa: Zens, B. (2023). Ultrastructural characterization of natively preserved extracellular matrix by cryo-electron tomography. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12491 chicago: Zens, Bettina. “Ultrastructural Characterization of Natively Preserved Extracellular Matrix by Cryo-Electron Tomography.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:12491. ieee: B. Zens, “Ultrastructural characterization of natively preserved extracellular matrix by cryo-electron tomography,” Institute of Science and Technology Austria, 2023. ista: Zens B. 2023. Ultrastructural characterization of natively preserved extracellular matrix by cryo-electron tomography. Institute of Science and Technology Austria. mla: Zens, Bettina. Ultrastructural Characterization of Natively Preserved Extracellular Matrix by Cryo-Electron Tomography. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:12491. short: B. Zens, Ultrastructural Characterization of Natively Preserved Extracellular Matrix by Cryo-Electron Tomography, Institute of Science and Technology Austria, 2023. date_created: 2023-02-02T14:50:20Z date_published: 2023-02-02T00:00:00Z date_updated: 2024-03-25T23:30:05Z day: '02' ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: FlSc doi: 10.15479/at:ista:12491 file: - access_level: open_access checksum: 069d87f025e0799bf9e3c375664264f2 content_type: application/pdf creator: bzens date_created: 2023-02-07T13:07:38Z date_updated: 2024-02-08T23:30:04Z embargo: 2024-02-07 file_id: '12527' file_name: PhDThesis_BettinaZens_2023_final.pdf file_size: 23082464 relation: main_file - access_level: closed checksum: 8c66ed203495d6e078ed1002a866520c content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: bzens date_created: 2023-02-07T13:09:05Z date_updated: 2024-02-08T23:30:04Z embargo_to: open_access file_id: '12528' file_name: PhDThesis_BettinaZens_2023_final.docx file_size: 106169509 relation: source_file file_date_updated: 2024-02-08T23:30:04Z has_accepted_license: '1' keyword: - cryo-EM - cryo-ET - FIB milling - method development - FIBSEM - extracellular matrix - ECM - cell-derived matrices - CDMs - cell culture - high pressure freezing - HPF - structural biology - tomography - collagen language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: '187' project: - _id: eba3b5f6-77a9-11ec-83b8-cf0905748aa3 name: Integrated visual proteomics of reciprocal cell-extracellular matrix interactions - _id: 059B463C-7A3F-11EA-A408-12923DDC885E name: NÖ-Fonds Preis für die Jungforscherin des Jahres am IST Austria publication_identifier: isbn: - 978-3-99078-027-5 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '8586' relation: part_of_dissertation status: public status: public supervisor: - first_name: Florian KM full_name: Schur, Florian KM id: 48AD8942-F248-11E8-B48F-1D18A9856A87 last_name: Schur orcid: 0000-0003-4790-8078 title: Ultrastructural characterization of natively preserved extracellular matrix by cryo-electron tomography type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '14226' abstract: - lang: eng text: "We introduce the notion of a Faustian interchange in a 1-parameter family of smooth\r\nfunctions to generalize the medial axis to critical points of index larger than 0.\r\nWe construct and implement a general purpose algorithm for approximating such\r\ngeneralized medial axes." alternative_title: - ISTA Master's Thesis article_processing_charge: No author: - first_name: Elizabeth R full_name: Stephenson, Elizabeth R id: 2D04F932-F248-11E8-B48F-1D18A9856A87 last_name: Stephenson orcid: 0000-0002-6862-208X citation: ama: Stephenson ER. Generalizing medial axes with homology switches. 2023. doi:10.15479/at:ista:14226 apa: Stephenson, E. R. (2023). Generalizing medial axes with homology switches. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:14226 chicago: Stephenson, Elizabeth R. “Generalizing Medial Axes with Homology Switches.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:14226. ieee: E. R. Stephenson, “Generalizing medial axes with homology switches,” Institute of Science and Technology Austria, 2023. ista: Stephenson ER. 2023. Generalizing medial axes with homology switches. Institute of Science and Technology Austria. mla: Stephenson, Elizabeth R. Generalizing Medial Axes with Homology Switches. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:14226. short: E.R. Stephenson, Generalizing Medial Axes with Homology Switches, Institute of Science and Technology Austria, 2023. date_created: 2023-08-24T13:01:18Z date_published: 2023-08-24T00:00:00Z date_updated: 2024-02-26T23:30:04Z day: '24' ddc: - '500' degree_awarded: MS department: - _id: GradSch - _id: HeEd doi: 10.15479/at:ista:14226 file: - access_level: closed checksum: 453caf851d75c3478c10ed09bd242a91 content_type: application/x-zip-compressed creator: cchlebak date_created: 2023-08-24T13:02:49Z date_updated: 2024-02-26T23:30:03Z embargo_to: open_access file_id: '14227' file_name: documents-export-2023-08-24.zip file_size: 15501411 relation: source_file - access_level: open_access checksum: 7349d29963d6695e555e171748648d9a content_type: application/pdf creator: cchlebak date_created: 2023-08-24T13:03:42Z date_updated: 2024-02-26T23:30:03Z embargo: 2024-02-25 file_id: '14228' file_name: thesis_pdf_a.pdf file_size: 6854783 relation: main_file file_date_updated: 2024-02-26T23:30:03Z has_accepted_license: '1' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: '43' publication_identifier: issn: - 2791-4585 publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 title: Generalizing medial axes with homology switches type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '12470' abstract: - lang: eng text: "The brain is an exceptionally sophisticated organ consisting of billions of cells and trillions of \r\nconnections that orchestrate our cognition and behavior. To decode its complex connectivity, it is \r\npivotal to disentangle its intricate architecture spanning from cm-sized circuits down to tens of \r\nnm-small synapses.\r\nTo achieve this goal, I developed CATS – Comprehensive Analysis of nervous Tissue across \r\nScales, a versatile toolbox for obtaining a holistic view of nervous tissue context with (super\x02resolution) fluorescence microscopy. CATS combines comprehensive labeling of the extracellular\r\nspace, that is compatible with chemical fixation, with information on molecular markers, super\x02resolved data acquisition and machine-learning based data analysis for segmentation and synapse \r\nidentification.\r\nI used CATS to analyze key features of nervous tissue connectivity, ranging from whole tissue \r\narchitecture, neuronal in- and output-fields, down to synapse morphology.\r\nFocusing on the hippocampal circuitry, I quantified synaptic transmission properties of mossy \r\nfiber boutons and analyzed the connectivity pattern of dentate gyrus granule cells with CA3 \r\npyramidal neurons. This shows that CATS is a viable tool to study hallmarks of neuronal \r\nconnectivity with light microscopy." acknowledged_ssus: - _id: Bio - _id: LifeSc - _id: PreCl - _id: EM-Fac - _id: M-Shop - _id: ScienComp alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Julia M full_name: Michalska, Julia M id: 443DB6DE-F248-11E8-B48F-1D18A9856A87 last_name: Michalska orcid: 0000-0003-3862-1235 citation: ama: Michalska JM. A versatile toolbox for the comprehensive analysis of nervous tissue organization with light microscopy. 2023. doi:10.15479/at:ista:12470 apa: Michalska, J. M. (2023). A versatile toolbox for the comprehensive analysis of nervous tissue organization with light microscopy. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12470 chicago: Michalska, Julia M. “A Versatile Toolbox for the Comprehensive Analysis of Nervous Tissue Organization with Light Microscopy.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:12470. ieee: J. M. Michalska, “A versatile toolbox for the comprehensive analysis of nervous tissue organization with light microscopy,” Institute of Science and Technology Austria, 2023. ista: Michalska JM. 2023. A versatile toolbox for the comprehensive analysis of nervous tissue organization with light microscopy. Institute of Science and Technology Austria. mla: Michalska, Julia M. A Versatile Toolbox for the Comprehensive Analysis of Nervous Tissue Organization with Light Microscopy. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:12470. short: J.M. Michalska, A Versatile Toolbox for the Comprehensive Analysis of Nervous Tissue Organization with Light Microscopy, Institute of Science and Technology Austria, 2023. date_created: 2023-01-31T15:10:53Z date_published: 2023-01-09T00:00:00Z date_updated: 2023-08-31T12:26:58Z day: '09' ddc: - '610' degree_awarded: PhD department: - _id: GradSch - _id: JoDa doi: 10.15479/at:ista:12470 ec_funded: 1 file: - access_level: open_access checksum: 1a2306e5f59f52df598e7ecfadf921ac content_type: application/pdf creator: cchlebak date_created: 2023-01-31T15:11:42Z date_updated: 2023-07-27T22:30:54Z embargo: 2023-07-09 file_id: '12471' file_name: 20230109_PhD_thesis_JM_final.pdf file_size: 41771714 relation: main_file - access_level: closed checksum: 0bebbdee0773443959e1f6ab8caf281f content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: cchlebak date_created: 2023-01-31T15:11:51Z date_updated: 2023-07-10T22:30:04Z embargo_to: open_access file_id: '12472' file_name: 20230109_PhD_thesis_JM_final.docx file_size: 66983464 relation: source_file file_date_updated: 2023-07-27T22:30:54Z has_accepted_license: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: '201' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 26AA4EF2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: W1232-B24 name: Molecular Drug Targets publication_identifier: isbn: - ' 978-3-99078-026-8' issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '11943' relation: part_of_dissertation status: public - id: '11950' relation: part_of_dissertation status: public status: public supervisor: - first_name: Johann G full_name: Danzl, Johann G id: 42EFD3B6-F248-11E8-B48F-1D18A9856A87 last_name: Danzl orcid: 0000-0001-8559-3973 title: A versatile toolbox for the comprehensive analysis of nervous tissue organization with light microscopy tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '12531' abstract: - lang: eng text: "All visual experiences of the vertebrates begin with light being converted into electrical signals\r\nby the eye retina. Retinal ganglion cells (RGCs) are the neurons of the innermost layer of the\r\nmammal retina, and they transmit visual information to the rest of the brain.\r\nIt has been shown that RGCs vary in their morphology and genetic profiles, moreover they can\r\nbe unambiguously grouped into subtypes that share the same morphological and/or molecular\r\nproperties. However, in terms of RGCs function, it remains unclear how many distinct types\r\nthere are and what response properties their typology relies on. Even given the recent studies\r\nthat successfully classified RGCs in a patch of the retina [1] and in scotopic conditions [2], the\r\nquestion remains whether the found subtypes persist across the entire retina.\r\nIn this work, using a novel imaging method, we show that, when sampled from a large portion\r\nof the retina, RGCs can not be clearly divided into functional subtypes. We found that in\r\nphotopic conditions, which implies more prominent natural scene statistic differences across\r\nthe visual field, response properties can be exhibited by cells differently depending on their\r\nlocation in the retina, which leads to formation of a gradient of features rather than distinct\r\nclasses.\r\nThis finding suggests that RGCs follow a global organization across the visual field of the\r\nanimal, adapting each RGC subtype to the requirements imposed by the natural scene statistics." alternative_title: - ISTA Master's Thesis article_processing_charge: No author: - first_name: Kseniia full_name: Kirillova, Kseniia id: 8e3f931e-dc85-11ea-9058-e7b957bf23f0 last_name: Kirillova citation: ama: Kirillova K. Panoramic functional gradients across the mouse retina. 2023. doi:10.15479/at:ista:12531 apa: Kirillova, K. (2023). Panoramic functional gradients across the mouse retina. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12531 chicago: Kirillova, Kseniia. “Panoramic Functional Gradients across the Mouse Retina.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:12531. ieee: K. Kirillova, “Panoramic functional gradients across the mouse retina,” Institute of Science and Technology Austria, 2023. ista: Kirillova K. 2023. Panoramic functional gradients across the mouse retina. Institute of Science and Technology Austria. mla: Kirillova, Kseniia. Panoramic Functional Gradients across the Mouse Retina. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:12531. short: K. Kirillova, Panoramic Functional Gradients across the Mouse Retina, Institute of Science and Technology Austria, 2023. date_created: 2023-02-09T07:45:05Z date_published: 2023-02-08T00:00:00Z date_updated: 2024-02-09T23:30:04Z day: '08' ddc: - '570' degree_awarded: MS department: - _id: GradSch - _id: MaJö doi: 10.15479/at:ista:12531 file: - access_level: open_access checksum: 57d8da3a6c749eb1556b7435fe266a5f content_type: application/pdf creator: cchlebak date_created: 2023-02-09T08:03:32Z date_updated: 2024-02-09T23:30:03Z embargo: 2024-02-08 file_id: '12532' file_name: Thesis_Kseniia___ISTA__istaustriathesis_PDF-A.pdf file_size: 8369317 relation: main_file - access_level: closed checksum: 87fb44318e4f9eb9da2ad9ad6ca8e76f content_type: application/x-zip-compressed creator: cchlebak date_created: 2023-02-10T09:32:06Z date_updated: 2024-02-09T23:30:03Z embargo_to: open_access file_id: '12535' file_name: Thesis Kseniia - ISTA [istaustriathesis]-FINAL.zip file_size: 11204408 relation: source_file file_date_updated: 2024-02-09T23:30:03Z has_accepted_license: '1' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: '46' publication_identifier: issn: - 2791-4585 publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Maximilian A full_name: Jösch, Maximilian A id: 2BD278E6-F248-11E8-B48F-1D18A9856A87 last_name: Jösch orcid: 0000-0002-3937-1330 title: Panoramic functional gradients across the mouse retina tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2023' ...