--- _id: '197' abstract: - lang: eng text: Modern computer vision systems heavily rely on statistical machine learning models, which typically require large amounts of labeled data to be learned reliably. Moreover, very recently computer vision research widely adopted techniques for representation learning, which further increase the demand for labeled data. However, for many important practical problems there is relatively small amount of labeled data available, so it is problematic to leverage full potential of the representation learning methods. One way to overcome this obstacle is to invest substantial resources into producing large labelled datasets. Unfortunately, this can be prohibitively expensive in practice. In this thesis we focus on the alternative way of tackling the aforementioned issue. We concentrate on methods, which make use of weakly-labeled or even unlabeled data. Specifically, the first half of the thesis is dedicated to the semantic image segmentation task. We develop a technique, which achieves competitive segmentation performance and only requires annotations in a form of global image-level labels instead of dense segmentation masks. Subsequently, we present a new methodology, which further improves segmentation performance by leveraging tiny additional feedback from a human annotator. By using our methods practitioners can greatly reduce the amount of data annotation effort, which is required to learn modern image segmentation models. In the second half of the thesis we focus on methods for learning from unlabeled visual data. We study a family of autoregressive models for modeling structure of natural images and discuss potential applications of these models. Moreover, we conduct in-depth study of one of these applications, where we develop the state-of-the-art model for the probabilistic image colorization task. acknowledgement: I also gratefully acknowledge the support of NVIDIA Corporation with the donation of the GPUs used for this research. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Alexander full_name: Kolesnikov, Alexander id: 2D157DB6-F248-11E8-B48F-1D18A9856A87 last_name: Kolesnikov citation: ama: Kolesnikov A. Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images. 2018. doi:10.15479/AT:ISTA:th_1021 apa: Kolesnikov, A. (2018). Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_1021 chicago: Kolesnikov, Alexander. “Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_1021. ieee: A. Kolesnikov, “Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images,” Institute of Science and Technology Austria, 2018. ista: Kolesnikov A. 2018. Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images. Institute of Science and Technology Austria. mla: Kolesnikov, Alexander. Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_1021. short: A. Kolesnikov, Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:45:09Z date_published: 2018-05-25T00:00:00Z date_updated: 2023-09-07T12:51:46Z day: '25' ddc: - '004' degree_awarded: PhD department: - _id: ChLa doi: 10.15479/AT:ISTA:th_1021 ec_funded: 1 file: - access_level: open_access checksum: bc678e02468d8ebc39dc7267dfb0a1c4 content_type: application/pdf creator: system date_created: 2018-12-12T10:14:57Z date_updated: 2020-07-14T12:45:22Z file_id: '5113' file_name: IST-2018-1021-v1+1_thesis-unsigned-pdfa.pdf file_size: 12918758 relation: main_file - access_level: closed checksum: bc66973b086da5a043f1162dcfb1fde4 content_type: application/zip creator: dernst date_created: 2019-04-05T09:34:49Z date_updated: 2020-07-14T12:45:22Z file_id: '6225' file_name: 2018_Thesis_Kolesnikov_source.zip file_size: 55973760 relation: source_file file_date_updated: 2020-07-14T12:45:22Z has_accepted_license: '1' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: '113' project: - _id: 2532554C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '308036' name: Lifelong Learning of Visual Scene Understanding publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7718' pubrep_id: '1021' status: public supervisor: - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 title: Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '200' abstract: - lang: eng text: This thesis is concerned with the inference of current population structure based on geo-referenced genetic data. The underlying idea is that population structure affects its spatial genetic structure. Therefore, genotype information can be utilized to estimate important demographic parameters such as migration rates. These indirect estimates of population structure have become very attractive, as genotype data is now widely available. However, there also has been much concern about these approaches. Importantly, genetic structure can be influenced by many complex patterns, which often cannot be disentangled. Moreover, many methods merely fit heuristic patterns of genetic structure, and do not build upon population genetics theory. Here, I describe two novel inference methods that address these shortcomings. In Chapter 2, I introduce an inference scheme based on a new type of signal, identity by descent (IBD) blocks. Recently, it has become feasible to detect such long blocks of genome shared between pairs of samples. These blocks are direct traces of recent coalescence events. As such, they contain ample signal for inferring recent demography. I examine sharing of IBD blocks in two-dimensional populations with local migration. Using a diffusion approximation, I derive formulas for an isolation by distance pattern of long IBD blocks and show that sharing of long IBD blocks approaches rapid exponential decay for growing sample distance. I describe an inference scheme based on these results. It can robustly estimate the dispersal rate and population density, which is demonstrated on simulated data. I also show an application to estimate mean migration and the rate of recent population growth within Eastern Europe. Chapter 3 is about a novel method to estimate barriers to gene flow in a two dimensional population. This inference scheme utilizes geographically localized allele frequency fluctuations - a classical isolation by distance signal. The strength of these local fluctuations increases on average next to a barrier, and there is less correlation across it. I again use a framework of diffusion of ancestral lineages to model this effect, and provide an efficient numerical implementation to fit the results to geo-referenced biallelic SNP data. This inference scheme is able to robustly estimate strong barriers to gene flow, as tests on simulated data confirm. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Harald full_name: Ringbauer, Harald id: 417FCFF4-F248-11E8-B48F-1D18A9856A87 last_name: Ringbauer orcid: 0000-0002-4884-9682 citation: ama: Ringbauer H. Inferring recent demography from spatial genetic structure. 2018. doi:10.15479/AT:ISTA:th_963 apa: Ringbauer, H. (2018). Inferring recent demography from spatial genetic structure. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_963 chicago: Ringbauer, Harald. “Inferring Recent Demography from Spatial Genetic Structure.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_963. ieee: H. Ringbauer, “Inferring recent demography from spatial genetic structure,” Institute of Science and Technology Austria, 2018. ista: Ringbauer H. 2018. Inferring recent demography from spatial genetic structure. Institute of Science and Technology Austria. mla: Ringbauer, Harald. Inferring Recent Demography from Spatial Genetic Structure. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_963. short: H. Ringbauer, Inferring Recent Demography from Spatial Genetic Structure, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:45:10Z date_published: 2018-02-21T00:00:00Z date_updated: 2023-09-20T12:00:56Z day: '21' ddc: - '576' degree_awarded: PhD department: - _id: NiBa doi: 10.15479/AT:ISTA:th_963 file: - access_level: open_access checksum: 8cc534d2b528ae017acf80874cce48c9 content_type: application/pdf creator: system date_created: 2018-12-12T10:14:55Z date_updated: 2020-07-14T12:45:23Z file_id: '5111' file_name: IST-2018-963-v1+1_thesis.pdf file_size: 5792935 relation: main_file - access_level: closed checksum: 6af18d7e5a7e2728ceda2f41ee24f628 content_type: application/zip creator: dernst date_created: 2019-04-05T09:30:12Z date_updated: 2020-07-14T12:45:23Z file_id: '6224' file_name: 2018_thesis_ringbauer_source.zip file_size: 113365 relation: source_file file_date_updated: 2020-07-14T12:45:23Z has_accepted_license: '1' language: - iso: eng license: https://creativecommons.org/licenses/by-nc/4.0/ month: '02' oa: 1 oa_version: Published Version page: '146' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7713' pubrep_id: '963' related_material: record: - id: '563' relation: part_of_dissertation status: public - id: '1074' relation: part_of_dissertation status: public status: public supervisor: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 title: Inferring recent demography from spatial genetic structure tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '418' abstract: - lang: eng text: "The aim of this thesis was the development of new strategies for optical and optogenetic control of proliferative and pro-survival signaling, and characterizing them from the molecular mechanism up to cellular effects. These new light-based methods have unique features, such as red light as an activator, or the avoidance of gene delivery, which enable to overcome current limitations, such as light delivery to target tissues and feasibility as therapeutic approach. A special focus was placed on implementing these new light-based approaches in pancreatic β-cells, as β-cells are the key players in diabetes and especially their loss in number negatively affects disease progression. Currently no treatment options are available to compensate the lack of functional β-cells in diabetic patients.\r\nIn a first approach, red-light-activated growth factor receptors, in particular receptor tyrosine kinases were engineered and characterized. Receptor activation with light allows spatio-temporal control compared to ligand-based activation, and especially red light exhibits deeper tissue penetration than other wavelengths of the visible spectrum. Red-light-activated receptor tyrosine kinases robustly activated major growth factor related signaling pathways with a high temporal resolution. Moreover, the remote activation of the proliferative MAPK/Erk pathway by red-light-activated receptor tyrosine kinases in a pancreatic β-cell line was also achieved, through one centimeter thick mouse tissue. Although red-light-activated receptor tyrosine kinases are particularly attractive for applications in animal models due to the deep tissue penetration of red light, a drawback, especially with regard to translation into humans, is the requirement of gene therapy.\r\nIn a second approach an endogenous light-sensitive mechanism was identified and its potential to promote proliferative and pro-survival signals was explored, towards light-based tissue regeneration without the need for gene transfer. Blue-green light illumination was found to be sufficient for the activation of proliferation and survival promoting signaling pathways in primary pancreatic murine and human islets. Blue-green light also led to an increase in proliferation of primary islet cells, an effect which was shown to be mostly β-cell specific in human islets. Moreover, it was demonstrated that this approach of pancreatic β-cell expansion did not have any negative effect on the β-cell function, in particular on their insulin secretion capacity. In contrast, a trend for enhanced insulin secretion under high glucose conditions after illumination was detected. In order to unravel the detailed characteristics of this endogenous light-sensitive mechanism, the precise light requirements were determined. In addition, the expression of light sensing proteins, OPN3 and rhodopsin, was detected. The observed effects were found to be independent of handling effects such as temperature differences and cytochrome c oxidase dependent ATP increase, but they were found to be enhanced through the knockout of OPN3. The exact mechanism of how islets cells sense light and the identity of the photoreceptor remains unknown.\r\nSummarized two new light-based systems with unique features were established that enable the activation of proliferative and pro-survival signaling pathways. While red-light-activated receptor tyrosine kinases open a new avenue for optogenetics research, by allowing non-invasive control of signaling in vivo, the identified endogenous light-sensitive mechanism has the potential to be the basis of a gene therapy-free therapeutical approach for light-based β-cell expansion." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Eva full_name: Gschaider-Reichhart, Eva id: 3FEE232A-F248-11E8-B48F-1D18A9856A87 last_name: Gschaider-Reichhart orcid: 0000-0002-7218-7738 citation: ama: Gschaider-Reichhart E. Optical and optogenetic control of proliferation and survival . 2018. doi:10.15479/AT:ISTA:th_913 apa: Gschaider-Reichhart, E. (2018). Optical and optogenetic control of proliferation and survival . Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_913 chicago: Gschaider-Reichhart, Eva. “Optical and Optogenetic Control of Proliferation and Survival .” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_913. ieee: E. Gschaider-Reichhart, “Optical and optogenetic control of proliferation and survival ,” Institute of Science and Technology Austria, 2018. ista: Gschaider-Reichhart E. 2018. Optical and optogenetic control of proliferation and survival . Institute of Science and Technology Austria. mla: Gschaider-Reichhart, Eva. Optical and Optogenetic Control of Proliferation and Survival . Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_913. short: E. Gschaider-Reichhart, Optical and Optogenetic Control of Proliferation and Survival , Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:46:22Z date_published: 2018-01-08T00:00:00Z date_updated: 2023-09-22T09:20:10Z day: '08' ddc: - '571' - '570' degree_awarded: PhD department: - _id: HaJa doi: 10.15479/AT:ISTA:th_913 file: - access_level: closed checksum: 697fa72ca36fb1b8ceabc133d58a73e5 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-05T09:28:03Z date_updated: 2020-07-14T12:46:24Z file_id: '6222' file_name: 2018_THESIS_Gschaider-Reichhart_source.docx file_size: 7012495 relation: source_file - access_level: open_access checksum: 58d7d1e9e58aeb7f061ab686b1d8a48c content_type: application/pdf creator: dernst date_created: 2019-04-05T09:28:03Z date_updated: 2020-07-14T12:46:24Z file_id: '6223' file_name: 2018_THESIS_Gschaider-Reichhart.pdf file_size: 6355280 relation: main_file file_date_updated: 2020-07-14T12:46:24Z has_accepted_license: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: '107' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7405' pubrep_id: '913' related_material: record: - id: '1441' relation: part_of_dissertation status: public - id: '1678' relation: part_of_dissertation status: public - id: '2084' relation: part_of_dissertation status: public - id: '1028' relation: part_of_dissertation status: public status: public supervisor: - first_name: Harald L full_name: Janovjak, Harald L id: 33BA6C30-F248-11E8-B48F-1D18A9856A87 last_name: Janovjak orcid: 0000-0002-8023-9315 title: 'Optical and optogenetic control of proliferation and survival ' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '52' abstract: - lang: eng text: In this thesis we will discuss systems of point interacting fermions, their stability and other spectral properties. Whereas for bosons a point interacting system is always unstable this ques- tion is more subtle for a gas of two species of fermions. In particular the answer depends on the mass ratio between these two species. Most of this work will be focused on the N + M model which consists of two species of fermions with N, M particles respectively which interact via point interactions. We will introduce this model using a formal limit and discuss the N + 1 system in more detail. In particular, we will show that for mass ratios above a critical one, which does not depend on the particle number, the N + 1 system is stable. In the context of this model we will prove rigorous versions of Tan relations which relate various quantities of the point-interacting model. By restricting the N + 1 system to a box we define a finite density model with point in- teractions. In the context of this system we will discuss the energy change when introducing a point-interacting impurity into a system of non-interacting fermions. We will see that this change in energy is bounded independently of the particle number and in particular the bound only depends on the density and the scattering length. As another special case of the N + M model we will show stability of the 2 + 2 model for mass ratios in an interval around one. Further we will investigate a different model of point interactions which was discussed before in the literature and which is, contrary to the N + M model, not given by a limiting procedure but is based on a Dirichlet form. We will show that this system behaves trivially in the thermodynamic limit, i.e. the free energy per particle is the same as the one of the non-interacting system. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Thomas full_name: Moser, Thomas id: 2B5FC9A4-F248-11E8-B48F-1D18A9856A87 last_name: Moser citation: ama: Moser T. Point interactions in systems of fermions. 2018. doi:10.15479/AT:ISTA:th_1043 apa: Moser, T. (2018). Point interactions in systems of fermions. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_1043 chicago: Moser, Thomas. “Point Interactions in Systems of Fermions.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_1043. ieee: T. Moser, “Point interactions in systems of fermions,” Institute of Science and Technology Austria, 2018. ista: Moser T. 2018. Point interactions in systems of fermions. Institute of Science and Technology Austria. mla: Moser, Thomas. Point Interactions in Systems of Fermions. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_1043. short: T. Moser, Point Interactions in Systems of Fermions, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:22Z date_published: 2018-09-04T00:00:00Z date_updated: 2023-09-27T12:34:14Z day: '04' ddc: - '515' - '530' - '519' degree_awarded: PhD department: - _id: RoSe doi: 10.15479/AT:ISTA:th_1043 file: - access_level: open_access checksum: fbd8c747d148b468a21213b7cf175225 content_type: application/pdf creator: dernst date_created: 2019-04-09T07:45:38Z date_updated: 2020-07-14T12:46:37Z file_id: '6256' file_name: 2018_Thesis_Moser.pdf file_size: 851164 relation: main_file - access_level: closed checksum: c28e16ecfc1126d3ce324ec96493c01e content_type: application/zip creator: dernst date_created: 2019-04-09T07:45:38Z date_updated: 2020-07-14T12:46:37Z file_id: '6257' file_name: 2018_Thesis_Moser_Source.zip file_size: 1531516 relation: source_file file_date_updated: 2020-07-14T12:46:37Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '115' project: - _id: 25C878CE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P27533_N27 name: Structure of the Excitation Spectrum for Many-Body Quantum Systems publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '8002' pubrep_id: '1043' related_material: record: - id: '5856' relation: part_of_dissertation status: public - id: '154' relation: part_of_dissertation status: public - id: '1198' relation: part_of_dissertation status: public - id: '741' relation: part_of_dissertation status: public status: public supervisor: - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 title: Point interactions in systems of fermions type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '69' abstract: - lang: eng text: 'A qubit, a unit of quantum information, is essentially any quantum mechanical two-level system which can be coherently controlled. Still, to be used for computation, it has to fulfill criteria. Qubits, regardless of the system in which they are realized, suffer from decoherence. This leads to loss of the information stored in the qubit. The upper bound of the time scale on which decoherence happens is set by the spin relaxation time. In this thesis I studied a two-level system consisting of a Zeeman-split hole spin confined in a quantum dot formed in a Ge hut wire. Such Ge hut wires have emerged as a promising material system for the realization of spin qubits, due to the combination of two significant properties: long spin coherence time as expected for group IV semiconductors due to the low hyperfine interaction and a strong valence band spin-orbit coupling. Here, I present how to fabricate quantum dot devices suitable for electrical transport measurements. Coupled quantum dot devices allowed the realization of a charge sensor, which is electrostatically and tunnel coupled to a quantum dot. By integrating the charge sensor into a radio-frequency reflectometry setup, I performed for the first time single-shot readout measurements of hole spins and extracted the hole spin relaxation times in Ge hut wires.' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Lada full_name: Vukušić, Lada id: 31E9F056-F248-11E8-B48F-1D18A9856A87 last_name: Vukušić orcid: 0000-0003-2424-8636 citation: ama: Vukušić L. Charge sensing and spin relaxation times of holes in Ge hut wires. 2018. doi:10.15479/AT:ISTA:TH_1047 apa: Vukušić, L. (2018). Charge sensing and spin relaxation times of holes in Ge hut wires. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:TH_1047 chicago: Vukušić, Lada. “Charge Sensing and Spin Relaxation Times of Holes in Ge Hut Wires.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:TH_1047. ieee: L. Vukušić, “Charge sensing and spin relaxation times of holes in Ge hut wires,” Institute of Science and Technology Austria, 2018. ista: Vukušić L. 2018. Charge sensing and spin relaxation times of holes in Ge hut wires. Institute of Science and Technology Austria. mla: Vukušić, Lada. Charge Sensing and Spin Relaxation Times of Holes in Ge Hut Wires. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:TH_1047. short: L. Vukušić, Charge Sensing and Spin Relaxation Times of Holes in Ge Hut Wires, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:28Z date_published: 2018-09-01T00:00:00Z date_updated: 2023-09-26T15:50:22Z day: '01' ddc: - '530' - '600' degree_awarded: PhD department: - _id: GeKa - _id: GradSch doi: 10.15479/AT:ISTA:TH_1047 file: - access_level: open_access checksum: c570b656e30749cd65b1c7e13a9ce0a8 content_type: application/pdf creator: dernst date_created: 2019-04-09T07:00:40Z date_updated: 2020-07-14T12:47:44Z file_id: '6247' file_name: 2018_Thesis_Vukusic.pdf file_size: 28452385 relation: main_file - access_level: closed checksum: 7856771d9cd401fe0b311191076db6e1 content_type: application/zip creator: dernst date_created: 2019-04-09T07:00:40Z date_updated: 2020-07-14T12:47:44Z file_id: '6248' file_name: 2018_Thesis_Vukusic_source.zip file_size: 53058704 relation: source_file file_date_updated: 2020-07-14T12:47:44Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '103' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7985' pubrep_id: '1047' related_material: record: - id: '23' relation: part_of_dissertation status: public - id: '840' relation: part_of_dissertation status: public status: public supervisor: - first_name: Georgios full_name: Katsaros, Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros orcid: 0000-0001-8342-202X title: Charge sensing and spin relaxation times of holes in Ge hut wires tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '324' abstract: - lang: eng text: Neuronal networks in the brain consist of two main types of neuron, glutamatergic principal neurons and GABAergic interneurons. Although these interneurons only represent 10–20% of the whole population, they mediate feedback and feedforward inhibition and are involved in the generation of high-frequency network oscillations. A hallmark functional property of GABAergic interneurons, especially of the parvalbumin‑expressing (PV+) subtypes, is the speed of signaling at their output synapse across species and brain regions. Several molecular and subcellular factors may underlie the submillisecond signaling at GABAergic synapses. Such as the selective use of P/Q type Ca2+ channels and the tight coupling between Ca2+ channels and Ca2+ sensors of exocytosis. However, whether the molecular identity of the release sensor contributes to these signaling properties remains unclear. Besides, these interneurons are mainly show depression in response to train of stimuli. How could they keep sufficient release to control the activity of postsynaptic principal neurons during high network activity, is largely elusive. For my Ph.D. work, we firstly examined the Ca2+ sensor of exocytosis at the GABAergic basket cell (BC) to Purkinje cell (PC) synapse in the cerebellum. Immunolabeling suggested that BC terminals selectively expressed synaptotagmin 2 (Syt2), whereas synaptotagmin 1 (Syt1) was enriched in excitatory terminals. Genetic elimination of Syt2 reduced action potential-evoked release to ~10% compared to the wild-type control, identifying Syt2 as the major Ca2+ sensor at BC‑PC synapses. Differential adenovirus-mediated rescue revealed Syt2 triggered release with shorter latency and higher temporal precision, and mediated faster vesicle pool replenishment than Syt1. Furthermore, deletion of Syt2 severely reduced and delayed disynaptic inhibition following parallel fiber stimulation. Thus, the selective use of Syt2 as the release sensor at BC–PC synapse ensures fast feedforward inhibition in cerebellar microcircuits. Additionally, we tested the function of another synaptotagmin member, Syt7, for inhibitory synaptic transmission at the BC–PC synapse. Syt7 is thought to be a Ca2+ sensor that mediates asynchronous transmitter release and facilitation at synapses. However, it is strongly expressed in fast-spiking, PV+ GABAergic interneurons and the output synapses of these neurons produce only minimal asynchronous release and show depression rather than facilitation. How could Syt7, a facilitation sensor, contribute to the depressed inhibitory synaptic transmission needs to be further investigated and understood. Our results indicated that at the BC–PC synapse, Syt7 contributes to asynchronous release, pool replenishment and facilitation. In combination, these three effects ensure efficient transmitter release during high‑frequency activity and guarantee frequency independence of inhibition. Taken together, our results confirmed that Syt2, which has the fastest kinetic properties among all synaptotagmin members, is mainly used by the inhibitory BC‑PC synapse for synaptic transmission, contributing to the speed and temporal precision of transmitter release. Furthermore, we showed that Syt7, another highly expressed synaptotagmin member in the output synapses of cerebellar BCs, is used for ensuring efficient inhibitor synaptic transmission during high activity. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Chong full_name: Chen, Chong id: 3DFD581A-F248-11E8-B48F-1D18A9856A87 last_name: Chen citation: ama: Chen C. Synaptotagmins ensure speed and efficiency of inhibitory neurotransmitter release. 2018. doi:10.15479/AT:ISTA:th_997 apa: Chen, C. (2018). Synaptotagmins ensure speed and efficiency of inhibitory neurotransmitter release. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_997 chicago: Chen, Chong. “Synaptotagmins Ensure Speed and Efficiency of Inhibitory Neurotransmitter Release.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_997. ieee: C. Chen, “Synaptotagmins ensure speed and efficiency of inhibitory neurotransmitter release,” Institute of Science and Technology Austria, 2018. ista: Chen C. 2018. Synaptotagmins ensure speed and efficiency of inhibitory neurotransmitter release. Institute of Science and Technology Austria. mla: Chen, Chong. Synaptotagmins Ensure Speed and Efficiency of Inhibitory Neurotransmitter Release. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_997. short: C. Chen, Synaptotagmins Ensure Speed and Efficiency of Inhibitory Neurotransmitter Release, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:45:49Z date_published: 2018-03-01T00:00:00Z date_updated: 2023-09-27T12:26:03Z day: '01' ddc: - '571' degree_awarded: PhD department: - _id: PeJo doi: 10.15479/AT:ISTA:th_997 file: - access_level: open_access checksum: 8e163ae9e927401b9fa7c1b3e6a3631a content_type: application/pdf creator: system date_created: 2018-12-12T10:13:58Z date_updated: 2020-07-14T12:46:04Z file_id: '5046' file_name: IST-2018-997-v1+1_Thesis_chong_a.pdf file_size: 8719458 relation: main_file - access_level: closed checksum: f7d7260029a5fbb5c982db61328ade52 content_type: application/octet-stream creator: dernst date_created: 2019-04-05T09:25:26Z date_updated: 2020-07-14T12:46:04Z file_id: '6221' file_name: 2018_Thesis_chong_source.pages file_size: 47841940 relation: source_file file_date_updated: 2020-07-14T12:46:04Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: '110' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7541' pubrep_id: '997' related_material: record: - id: '1117' relation: part_of_dissertation status: public - id: '749' relation: part_of_dissertation status: public status: public supervisor: - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 title: Synaptotagmins ensure speed and efficiency of inhibitory neurotransmitter release tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '14306' abstract: - lang: eng text: 'Function and activity of biomolecules often depend on their spatial arrangement. The method introduced here allows genetically encoding the spatial arrangement of proteins and DNA. The approach relies on staple proteins that fold double-stranded DNA into user-defined shapes. This thesis describes the development of staple proteins based on the DNA recognition of TAL effectors and presents experimentally derived rules for designing a variety of self-assembling nanoscale shapes featuring structural motifs such as curvature, vertices, corners, and multilayer helix packing. ' article_processing_charge: No author: - first_name: Florian M full_name: Praetorius, Florian M id: dfec9381-4341-11ee-8fd8-faa02bba7d62 last_name: Praetorius citation: ama: Praetorius FM. Genetically encoding the spatial arrangement of DNA and proteins in self-assembling nanostructures. 2018. apa: Praetorius, F. M. (2018). Genetically encoding the spatial arrangement of DNA and proteins in self-assembling nanostructures. Technische Universität München. chicago: Praetorius, Florian M. “Genetically Encoding the Spatial Arrangement of DNA and Proteins in Self-Assembling Nanostructures.” Technische Universität München, 2018. ieee: F. M. Praetorius, “Genetically encoding the spatial arrangement of DNA and proteins in self-assembling nanostructures,” Technische Universität München, 2018. ista: Praetorius FM. 2018. Genetically encoding the spatial arrangement of DNA and proteins in self-assembling nanostructures. Technische Universität München. mla: Praetorius, Florian M. Genetically Encoding the Spatial Arrangement of DNA and Proteins in Self-Assembling Nanostructures. Technische Universität München, 2018. short: F.M. Praetorius, Genetically Encoding the Spatial Arrangement of DNA and Proteins in Self-Assembling Nanostructures, Technische Universität München, 2018. date_created: 2023-09-06T13:11:22Z date_published: 2018-01-16T00:00:00Z date_updated: 2023-11-07T11:43:38Z day: '16' degree_awarded: PhD extern: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://mediatum.ub.tum.de/1398662 month: '01' oa: 1 oa_version: Published Version publication_status: published publisher: Technische Universität München status: public supervisor: - first_name: Hendrik full_name: Dietz, Hendrik last_name: Dietz title: Genetically encoding the spatial arrangement of DNA and proteins in self-assembling nanostructures type: dissertation user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2018' ... --- _id: '278' abstract: - lang: eng text: 'Consortial subscription contracts regulate the digital access to publications between publishers and scientific libraries. However, since a couple of years the tendency towards a freely accessible publishing (Open Access) intensifies. As a consequence of this trend the contractual relationship between licensor and licensee is gradually changing as well: More and more contracts exercise influence on open access publishing. The present study attempts to compare Austrian examples of consortial licence contracts, which include components of open access. It describes the difference between pure subscription contracts and differing innovative deals including open access components. Thereby it becomes obvious that for the evaluation of this licence contracts new methods are needed. An essential new element of such analyses is the evaluation of the open access publication numbers. So this study tries to carry out such publication analyses for Austrian open access deals focusing on quantitative questions: How does the number of publications evolve? How does the open access share change? Publications reports of the publishers and database queries from Scopus form the data basis. The analysis of the data points out that differing approaches of contracts result in highly divergent results: Particular deals can prioritize a saving in costs or else the increase of the open access rate. It is to be assumed that within the following years further numerous open access deals will be negotiated. The finding of this study shall provide guidance.' author: - first_name: Márton full_name: Villányi, Márton id: 3FFCCD3A-F248-11E8-B48F-1D18A9856A87 last_name: Villányi orcid: 0000-0001-8126-0426 citation: ama: Villányi M. Lizenzverträge mit Open-Access-Komponenten an österreichischen Bibliotheken. 2018. apa: Villányi, M. (2018). Lizenzverträge mit Open-Access-Komponenten an österreichischen Bibliotheken. Universität Wien. chicago: Villányi, Márton. “Lizenzverträge mit Open-Access-Komponenten an österreichischen Bibliotheken.” Universität Wien, 2018. ieee: M. Villányi, “Lizenzverträge mit Open-Access-Komponenten an österreichischen Bibliotheken,” Universität Wien, 2018. ista: Villányi M. 2018. Lizenzverträge mit Open-Access-Komponenten an österreichischen Bibliotheken. Universität Wien. mla: Villányi, Márton. Lizenzverträge mit Open-Access-Komponenten an österreichischen Bibliotheken. Universität Wien, 2018. short: M. Villányi, Lizenzverträge mit Open-Access-Komponenten an österreichischen Bibliotheken, Universität Wien, 2018. date_created: 2018-12-11T11:45:34Z date_published: 2018-04-06T00:00:00Z date_updated: 2024-02-21T13:44:07Z day: '06' department: - _id: E-Lib language: - iso: ger main_file_link: - open_access: '1' url: http://othes.univie.ac.at/51113/ month: '04' oa: 1 oa_version: Published Version page: '94' publication_status: published publisher: Universität Wien publist_id: '7624' related_material: record: - id: '5577' relation: dissertation_contains status: public - id: '5574' relation: dissertation_contains status: public - id: '5578' relation: dissertation_contains status: public - id: '5579' relation: dissertation_contains status: public - id: '5576' relation: dissertation_contains status: public - id: '5575' relation: dissertation_contains status: public - id: '5582' relation: dissertation_contains status: public - id: '5581' relation: dissertation_contains status: public - id: '5580' relation: dissertation_contains status: public status: public supervisor: - first_name: Brigitte full_name: Kromp, Brigitte last_name: Kromp title: Lizenzverträge mit Open-Access-Komponenten an österreichischen Bibliotheken type: dissertation user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2018' ... --- _id: '149' abstract: - lang: eng text: The eigenvalue density of many large random matrices is well approximated by a deterministic measure, the self-consistent density of states. In the present work, we show this behaviour for several classes of random matrices. In fact, we establish that, in each of these classes, the self-consistent density of states approximates the eigenvalue density of the random matrix on all scales slightly above the typical eigenvalue spacing. For large classes of random matrices, the self-consistent density of states exhibits several universal features. We prove that, under suitable assumptions, random Gram matrices and Hermitian random matrices with decaying correlations have a 1/3-Hölder continuous self-consistent density of states ρ on R, which is analytic, where it is positive, and has either a square root edge or a cubic root cusp, where it vanishes. We, thus, extend the validity of the corresponding result for Wigner-type matrices from [4, 5, 7]. We show that ρ is determined as the inverse Stieltjes transform of the normalized trace of the unique solution m(z) to the Dyson equation −m(z) −1 = z − a + S[m(z)] on C N×N with the constraint Im m(z) ≥ 0. Here, z lies in the complex upper half-plane, a is a self-adjoint element of C N×N and S is a positivity-preserving operator on C N×N encoding the first two moments of the random matrix. In order to analyze a possible limit of ρ for N → ∞ and address some applications in free probability theory, we also consider the Dyson equation on infinite dimensional von Neumann algebras. We present two applications to random matrices. We first establish that, under certain assumptions, large random matrices with independent entries have a rotationally symmetric self-consistent density of states which is supported on a centered disk in C. Moreover, it is infinitely often differentiable apart from a jump on the boundary of this disk. Second, we show edge universality at all regular (not necessarily extreme) spectral edges for Hermitian random matrices with decaying correlations. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Johannes full_name: Alt, Johannes id: 36D3D8B6-F248-11E8-B48F-1D18A9856A87 last_name: Alt citation: ama: Alt J. Dyson equation and eigenvalue statistics of random matrices. 2018. doi:10.15479/AT:ISTA:TH_1040 apa: Alt, J. (2018). Dyson equation and eigenvalue statistics of random matrices. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:TH_1040 chicago: Alt, Johannes. “Dyson Equation and Eigenvalue Statistics of Random Matrices.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:TH_1040. ieee: J. Alt, “Dyson equation and eigenvalue statistics of random matrices,” Institute of Science and Technology Austria, 2018. ista: Alt J. 2018. Dyson equation and eigenvalue statistics of random matrices. Institute of Science and Technology Austria. mla: Alt, Johannes. Dyson Equation and Eigenvalue Statistics of Random Matrices. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:TH_1040. short: J. Alt, Dyson Equation and Eigenvalue Statistics of Random Matrices, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:53Z date_published: 2018-07-12T00:00:00Z date_updated: 2024-02-22T14:34:33Z day: '12' ddc: - '515' - '519' degree_awarded: PhD department: - _id: LaEr doi: 10.15479/AT:ISTA:TH_1040 ec_funded: 1 file: - access_level: open_access checksum: d4dad55a7513f345706aaaba90cb1bb8 content_type: application/pdf creator: dernst date_created: 2019-04-08T13:55:20Z date_updated: 2020-07-14T12:44:57Z file_id: '6241' file_name: 2018_thesis_Alt.pdf file_size: 5801709 relation: main_file - access_level: closed checksum: d73fcf46300dce74c403f2b491148ab4 content_type: application/zip creator: dernst date_created: 2019-04-08T13:55:20Z date_updated: 2020-07-14T12:44:57Z file_id: '6242' file_name: 2018_thesis_Alt_source.zip file_size: 3802059 relation: source_file file_date_updated: 2020-07-14T12:44:57Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '456' project: - _id: 258DCDE6-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '338804' name: Random matrices, universality and disordered quantum systems publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7772' pubrep_id: '1040' related_material: record: - id: '1677' relation: part_of_dissertation status: public - id: '550' relation: part_of_dissertation status: public - id: '6183' relation: part_of_dissertation status: public - id: '566' relation: part_of_dissertation status: public - id: '1010' relation: part_of_dissertation status: public - id: '6240' relation: part_of_dissertation status: public - id: '6184' relation: part_of_dissertation status: public status: public supervisor: - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 title: Dyson equation and eigenvalue statistics of random matrices tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '395' abstract: - lang: eng text: 'Autism spectrum disorders (ASD) are a group of genetic disorders often overlapping with other neurological conditions. Despite the remarkable number of scientific breakthroughs of the last 100 years, the treatment of neurodevelopmental disorders (e.g. autism spectrum disorder, intellectual disability, epilepsy) remains a great challenge. Recent advancements in geno mics, like whole-exome or whole-genome sequencing, have enabled scientists to identify numerous mutations underlying neurodevelopmental disorders. Given the few hundred risk genes that were discovered, the etiological variability and the heterogeneous phenotypic outcomes, the need for genotype -along with phenotype- based diagnosis of individual patients becomes a requisite. Driven by this rationale, in a previous study our group described mutations, identified via whole - exome sequencing, in the gene BCKDK – encoding for a key regulator of branched chain amin o acid (BCAA) catabolism - as a cause of ASD. Following up on the role of BCAAs, in the study described here we show that the solute carrier transporter 7a5 (SLC7A5), a large neutral amino acid transporter localized mainly at the blood brain barrier (BBB), has an essential role in maintaining normal levels of brain BCAAs. In mice, deletion of Slc7a5 from the endothelial cells of the BBB leads to atypical brain amino acid profile, abnormal mRNA translation and severe neurolo gical abnormalities. Additionally, deletion of Slc7a5 from the neural progenitor cell population leads to microcephaly. Interestingly, we demonstrate that BCAA intracerebroventricular administration ameliorates abnormal behaviors in adult mutant mice. Furthermore, whole - exome sequencing of patients diagnosed with neurological dis o r ders helped us identify several patients with autistic traits, microcephaly and motor delay carrying deleterious homozygous mutations in the SLC7A5 gene. In conclusion, our data elucidate a neurological syndrome defined by SLC7A5 mutations and support an essential role for t he BCAA s in human bra in function. Together with r ecent studies (described in chapter two) that have successfully made the transition into clinical practice, our findings on the role of B CAAs might have a crucial impact on the development of novel individualized therapeutic strategies for ASD. ' acknowledged_ssus: - _id: PreCl - _id: EM-Fac - _id: Bio alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Dora-Clara full_name: Tarlungeanu, Dora-Clara id: 2ABCE612-F248-11E8-B48F-1D18A9856A87 last_name: Tarlungeanu citation: ama: Tarlungeanu D-C. The branched chain amino acids in autism spectrum disorders . 2018. doi:10.15479/AT:ISTA:th_992 apa: Tarlungeanu, D.-C. (2018). The branched chain amino acids in autism spectrum disorders . Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_992 chicago: Tarlungeanu, Dora-Clara. “The Branched Chain Amino Acids in Autism Spectrum Disorders .” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_992. ieee: D.-C. Tarlungeanu, “The branched chain amino acids in autism spectrum disorders ,” Institute of Science and Technology Austria, 2018. ista: Tarlungeanu D-C. 2018. The branched chain amino acids in autism spectrum disorders . Institute of Science and Technology Austria. mla: Tarlungeanu, Dora-Clara. The Branched Chain Amino Acids in Autism Spectrum Disorders . Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_992. short: D.-C. Tarlungeanu, The Branched Chain Amino Acids in Autism Spectrum Disorders , Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:46:14Z date_published: 2018-03-01T00:00:00Z date_updated: 2023-09-07T12:38:59Z day: '01' ddc: - '570' - '616' degree_awarded: PhD department: - _id: GaNo doi: 10.15479/AT:ISTA:th_992 file: - access_level: closed checksum: 9f5231c96e0ad945040841a8630232da content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-05T09:19:17Z date_updated: 2021-02-11T23:30:15Z embargo_to: open_access file_id: '6217' file_name: 2018_Thesis_Tarlungeanu_source.docx file_size: 43684035 relation: source_file - access_level: open_access checksum: 0c33c370aa2010df5c552db57a6d01e9 content_type: application/pdf creator: dernst date_created: 2019-04-05T09:19:17Z date_updated: 2021-02-11T11:17:16Z embargo: 2018-03-15 file_id: '6218' file_name: 2018_Thesis_Tarlungeanu.pdf file_size: 30511532 relation: main_file file_date_updated: 2021-02-11T23:30:15Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: '88' project: - _id: 25473368-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F03523 name: Transmembrane Transporters in Health and Disease publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7434' pubrep_id: '992' related_material: record: - id: '1183' relation: part_of_dissertation status: public status: public supervisor: - first_name: Gaia full_name: Novarino, Gaia id: 3E57A680-F248-11E8-B48F-1D18A9856A87 last_name: Novarino orcid: 0000-0002-7673-7178 title: 'The branched chain amino acids in autism spectrum disorders ' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '51' abstract: - lang: eng text: Asymmetries have long been known about in the central nervous system. From gross anatomical differences, such as the presence of the parapineal organ in only one hemisphere of the developing zebrafish, to more subtle differences in activity between both hemispheres, as seen in freely roaming animals or human participants under PET and fMRI imaging analysis. The presence of asymmetries has been demonstrated to have huge behavioural implications, with their disruption often leading to the generation of neurological disorders, memory problems, changes in personality, and in an organism's health and well-being. For my Ph.D. work I aimed to tackle two important avenues of research. The first being the process of input-side dependency in the hippocampus, with the goal of finding a key gene responsible for its development (Gene X). The second project was to do with experience-induced laterality formation in the hippocampus. Specifically, how laterality in the synapse density of the CA1 stratum radiatum (s.r.) could be induced purely through environmental enrichment. Through unilateral tracer injections into the CA3, I was able to selectively measure the properties of synapses within the CA1 and investigate how they differed based upon which hemisphere the presynaptic neurone originated. Having found the existence of a previously unreported reversed (left-isomerism) i.v. mutant, through morpholocal examination of labelled terminals in the CA1 s.r., I aimed to elucidate a key gene responsible for the process of left or right determination of inputs to the CA1 s.r.. This work relates to the previous finding of input-side dependent asymmetry in the wild-type rodent, where the origin of the projecting neurone to the CA1 will determine the morphology of a synapse, to a greater degree than the hemisphere in which the projection terminates. Using left- and right-isomerism i.v. mice, in combination with whole genome sequence analysis, I highlight Ena/VASP-like (Evl) as a potential target for Gene X. In relation to this topic, I also highlight my work in the recently published paper of how knockout of PirB can lead to a lack of input-side dependency in the murine hippocampus. For the second question, I show that the environmental enrichment paradigm will lead to an asymmetry in the synapse densities in the hippocampus of mice. I also highlight that the nature of the enrichment is of less consequence than the process of enrichment itself. I demonstrate that the CA3 region will dramatically alter its projection targets, in relation to environmental stimulation, with the asymmetry in synaptic density, caused by enrichment, relying heavily on commissural fibres. I also highlight the vital importance of input-side dependent asymmetry, as a necessary component of experience-dependent laterality formation in the CA1 s.r.. However, my results suggest that it isn't the only cause, as there appears to be a CA1 dependent mechanism also at play. Upon further investigation, I highlight the significant, and highly important, finding that the changes seen in the CA1 s.r. were predominantly caused through projections from the left-CA3, with the right-CA3 having less involvement in this mechanism. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Matthew J full_name: Case, Matthew J id: 44B7CA5A-F248-11E8-B48F-1D18A9856A87 last_name: Case citation: ama: 'Case MJ. From the left to the right: A tale of asymmetries, environments, and hippocampal development. 2018. doi:10.15479/AT:ISTA:th_1032' apa: 'Case, M. J. (2018). From the left to the right: A tale of asymmetries, environments, and hippocampal development. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_1032' chicago: 'Case, Matthew J. “From the Left to the Right: A Tale of Asymmetries, Environments, and Hippocampal Development.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_1032.' ieee: 'M. J. Case, “From the left to the right: A tale of asymmetries, environments, and hippocampal development,” Institute of Science and Technology Austria, 2018.' ista: 'Case MJ. 2018. From the left to the right: A tale of asymmetries, environments, and hippocampal development. Institute of Science and Technology Austria.' mla: 'Case, Matthew J. From the Left to the Right: A Tale of Asymmetries, Environments, and Hippocampal Development. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_1032.' short: 'M.J. Case, From the Left to the Right: A Tale of Asymmetries, Environments, and Hippocampal Development, Institute of Science and Technology Austria, 2018.' date_created: 2018-12-11T11:44:22Z date_published: 2018-06-27T00:00:00Z date_updated: 2023-09-07T12:39:22Z day: '27' ddc: - '571' - '576' degree_awarded: PhD department: - _id: RySh doi: 10.15479/AT:ISTA:th_1032 file: - access_level: closed checksum: dcc7b55619d8509dd62b8e99d6cdee44 content_type: application/msword creator: dernst date_created: 2019-04-09T07:16:26Z date_updated: 2021-02-11T23:30:13Z embargo_to: open_access file_id: '6251' file_name: 2018_Thesis_Case_Source.doc file_size: 141270528 relation: source_file - access_level: open_access checksum: f69fdd5c8709c4e618aa8c1a1221153d content_type: application/pdf creator: dernst date_created: 2019-04-09T07:16:23Z date_updated: 2021-02-11T11:17:14Z embargo: 2019-07-05 file_id: '6252' file_name: 2018_Thesis_Case.pdf file_size: 15193621 relation: main_file file_date_updated: 2021-02-11T23:30:13Z has_accepted_license: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: '186' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '8003' pubrep_id: '1032' related_material: record: - id: '682' relation: part_of_dissertation status: public status: public supervisor: - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 title: 'From the left to the right: A tale of asymmetries, environments, and hippocampal development' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '10' abstract: - lang: eng text: Genomic imprinting is an epigenetic process that leads to parent of origin-specific gene expression in a subset of genes. Imprinted genes are essential for brain development, and deregulation of imprinting is associated with neurodevelopmental diseases and the pathogenesis of psychiatric disorders. However, the cell-type specificity of imprinting at single cell resolution, and how imprinting and thus gene dosage regulates neuronal circuit assembly is still largely unknown. Here, MADM (Mosaic Analysis with Double Markers) technology was employed to assess genomic imprinting at single cell level. By visualizing MADM-induced uniparental disomies (UPDs) in distinct colors at single cell level in genetic mosaic animals, this experimental paradigm provides a unique quantitative platform to systematically assay the UPD-mediated imbalances in imprinted gene expression at unprecedented resolution. An experimental pipeline based on FACS, RNA-seq and bioinformatics analysis was established and applied to systematically map cell-type-specific ‘imprintomes’ in the mouse brain. The results revealed that parental-specific expression of imprinted genes per se is rarely cell-type-specific even at the individual cell level. Conversely, when we extended the comparison to downstream responses resulting from imbalanced imprinted gene expression, we discovered an unexpectedly high degree of cell-type specificity. Furthermore, we determined a novel function of genomic imprinting in cortical astrocyte production and in olfactory bulb (OB) granule cell generation. These results suggest important functional implication of genomic imprinting for generating cell-type diversity in the brain. In addition, MADM provides a powerful tool to study candidate genes by concomitant genetic manipulation and fluorescent labelling of single cells. MADM-based candidate gene approach was utilized to identify potential imprinted genes involved in the generation of cortical astrocytes and OB granule cells. We investigated p57Kip2, a maternally expressed gene and known cell cycle regulator. Although we found that p57Kip2 does not play a role in these processes, we detected an unexpected function of the paternal allele previously thought to be silent. Finally, we took advantage of a key property of MADM which is to allow unambiguous investigation of environmental impact on single cells. The experimental pipeline based on FACS and RNA-seq analysis of MADM-labeled cells was established to probe the functional differences of single cell loss of gene function compared to global loss of function on a transcriptional level. With this method, both common and distinct responses were isolated due to cell-autonomous and non-autonomous effects acting on genotypically identical cells. As a result, transcriptional changes were identified which result solely from the surrounding environment. Using the MADM technology to study genomic imprinting at single cell resolution, we have identified cell-type-specific gene expression, novel gene function and the impact of environment on single cell transcriptomes. Together, these provide important insights to the understanding of mechanisms regulating cell-type specificity and thus diversity in the brain. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Susanne full_name: Laukoter, Susanne id: 2D6B7A9A-F248-11E8-B48F-1D18A9856A87 last_name: Laukoter orcid: 0000-0002-7903-3010 citation: ama: Laukoter S. Role of genomic imprinting in cerebral cortex development. 2018:1-139. doi:10.15479/AT:ISTA:th1057 apa: Laukoter, S. (2018). Role of genomic imprinting in cerebral cortex development. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th1057 chicago: Laukoter, Susanne. “Role of Genomic Imprinting in Cerebral Cortex Development.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th1057. ieee: S. Laukoter, “Role of genomic imprinting in cerebral cortex development,” Institute of Science and Technology Austria, 2018. ista: Laukoter S. 2018. Role of genomic imprinting in cerebral cortex development. Institute of Science and Technology Austria. mla: Laukoter, Susanne. Role of Genomic Imprinting in Cerebral Cortex Development. Institute of Science and Technology Austria, 2018, pp. 1–139, doi:10.15479/AT:ISTA:th1057. short: S. Laukoter, Role of Genomic Imprinting in Cerebral Cortex Development, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:08Z date_published: 2018-11-21T00:00:00Z date_updated: 2023-09-07T12:40:44Z day: '21' ddc: - '570' degree_awarded: PhD department: - _id: SiHi doi: 10.15479/AT:ISTA:th1057 file: - access_level: closed checksum: 41fdbf5fdce312802935d88a8ad9932c content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-05-10T07:47:04Z date_updated: 2019-11-23T23:30:03Z embargo_to: open_access file_id: '6396' file_name: Thesis_LaukoterSusanne_FINAL.docx file_size: 17949175 relation: source_file - access_level: open_access checksum: 53001a9a0c9e570e598d861bb0af28aa content_type: application/pdf creator: dernst date_created: 2019-05-10T07:47:04Z date_updated: 2021-02-11T11:17:16Z embargo: 2019-11-21 file_id: '6397' file_name: Thesis_LaukoterSusanne_FINAL.pdf file_size: 21187245 relation: main_file file_date_updated: 2021-02-11T11:17:16Z has_accepted_license: '1' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 1 - 139 publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '8046' pubrep_id: '1057' status: public supervisor: - first_name: Beatriz full_name: Vicoso, Beatriz id: 49E1C5C6-F248-11E8-B48F-1D18A9856A87 last_name: Vicoso orcid: 0000-0002-4579-8306 title: Role of genomic imprinting in cerebral cortex development type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '323' abstract: - lang: eng text: 'In the here presented thesis, we explore the role of branched actin networks in cell migration and antigen presentation, the two most relevant processes in dendritic cell biology. Branched actin networks construct lamellipodial protrusions at the leading edge of migrating cells. These are typically seen as adhesive structures, which mediate force transduction to the extracellular matrix that leads to forward locomotion. We ablated Arp2/3 nucleation promoting factor WAVE in DCs and found that the resulting cells lack lamellipodial protrusions. Instead, depending on the maturation state, one or multiple filopodia were formed. By challenging these cells in a variety of migration assays we found that lamellipodial protrusions are dispensable for the locomotion of leukocytes and actually dampen the speed of migration. However, lamellipodia are critically required to negotiate complex environments that DCs experience while they travel to the next draining lymph node. Taken together our results suggest that leukocyte lamellipodia have rather a sensory- than a force transducing function. Furthermore, we show for the first time structure and dynamics of dendritic cell F-actin at the immunological synapse with naïve T cells. Dendritic cell F-actin appears as dynamic foci that are nucleated by the Arp2/3 complex. WAVE ablated dendritic cells show increased membrane tension, leading to an altered ultrastructure of the immunological synapse and severe T cell priming defects. These results point towards a previously unappreciated role of the cellular mechanics of dendritic cells in T cell activation. Additionally, we present a novel cell culture based system for the differentiation of dendritic cells from conditionally immortalized hematopoietic precursors. These precursor cells are genetically tractable via the CRISPR/Cas9 system while they retain their ability to differentiate into highly migratory dendritic cells and other immune cells. This will foster the study of all aspects of dendritic cell biology and beyond. ' acknowledged_ssus: - _id: NanoFab - _id: Bio - _id: PreCl - _id: EM-Fac acknowledgement: "First of all I would like to thank Michael Sixt for giving me the opportunity to work in \r\nhis group and for his support throughout the years. He is a truly inspiring person and \r\nthe best boss one can imagine. I would \ also like to thank all current and past \r\nmembers of the Sixt group for their help and the great working atmosphere in the lab. \r\nIt is a true privilege to work with such a bright, funny and friendly group of people and \r\nI’m proud \ that I could be part of it. Furthermore, I would like to say ‘thank \ you’ to Daria Siekhaus for all the meetings and discussion we had throughout the years \r\nand to Federica Benvenuti for being part of my committee. \ I am also grateful to Jack \r\nMerrin in the nanofabrication facility \ and all the people working in the bioimaging-\r\n, the electron microscopy- and the preclinical facilities." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Alexander F full_name: Leithner, Alexander F id: 3B1B77E4-F248-11E8-B48F-1D18A9856A87 last_name: Leithner orcid: 0000-0002-1073-744X citation: ama: Leithner AF. Branched actin networks in dendritic cell biology. 2018. doi:10.15479/AT:ISTA:th_998 apa: Leithner, A. F. (2018). Branched actin networks in dendritic cell biology. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_998 chicago: Leithner, Alexander F. “Branched Actin Networks in Dendritic Cell Biology.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_998. ieee: A. F. Leithner, “Branched actin networks in dendritic cell biology,” Institute of Science and Technology Austria, 2018. ista: Leithner AF. 2018. Branched actin networks in dendritic cell biology. Institute of Science and Technology Austria. mla: Leithner, Alexander F. Branched Actin Networks in Dendritic Cell Biology. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_998. short: A.F. Leithner, Branched Actin Networks in Dendritic Cell Biology, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:45:49Z date_published: 2018-04-12T00:00:00Z date_updated: 2023-09-07T12:39:44Z day: '12' ddc: - '571' - '599' - '610' degree_awarded: PhD department: - _id: MiSi doi: 10.15479/AT:ISTA:th_998 file: - access_level: closed checksum: d5e3edbac548c26c1fa43a4b37a54a4c content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-05T09:23:11Z date_updated: 2021-02-11T23:30:17Z embargo_to: open_access file_id: '6219' file_name: PhD_thesis_AlexLeithner_final_version.docx file_size: 29027671 relation: source_file - access_level: open_access checksum: 071f7476db29e41146824ebd0697cb10 content_type: application/pdf creator: dernst date_created: 2019-04-05T09:23:11Z date_updated: 2021-02-11T11:17:16Z embargo: 2019-04-15 file_id: '6220' file_name: PhD_thesis_AlexLeithner.pdf file_size: 66045341 relation: main_file file_date_updated: 2021-02-11T23:30:17Z has_accepted_license: '1' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: '99' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7542' pubrep_id: '998' related_material: record: - id: '1321' relation: part_of_dissertation status: public status: public supervisor: - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 title: Branched actin networks in dendritic cell biology tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '539' abstract: - lang: eng text: The whole life cycle of plants as well as their responses to environmental stimuli is governed by a complex network of hormonal regulations. A number of studies have demonstrated an essential role of both auxin and cytokinin in the regulation of many aspects of plant growth and development including embryogenesis, postembryonic organogenic processes such as root, and shoot branching, root and shoot apical meristem activity and phyllotaxis. Over the last decades essential knowledge on the key molecular factors and pathways that spatio-temporally define auxin and cytokinin activities in the plant body has accumulated. However, how both hormonal pathways are interconnected by a complex network of interactions and feedback circuits that determines the final outcome of the individual hormone actions is still largely unknown. Root system architecture establishment and in particular formation of lateral organs is prime example of developmental process at whose regulation both auxin and cytokinin pathways converge. To dissect convergence points and pathways that tightly balance auxin - cytokinin antagonistic activities that determine the root branching pattern transcriptome profiling was applied. Genome wide expression analyses of the xylem pole pericycle, a tissue giving rise to lateral roots, led to identification of genes that are highly responsive to combinatorial auxin and cytokinin treatments and play an essential function in the auxin-cytokinin regulated root branching. SYNERGISTIC AUXIN CYTOKININ 1 (SYAC1) gene, which encodes for a protein of unknown function, was detected among the top candidate genes of which expression was synergistically up-regulated by simultaneous hormonal treatment. Plants with modulated SYAC1 activity exhibit severe defects in the root system establishment and attenuate developmental responses to both auxin and cytokinin. To explore the biological function of the SYAC1, we employed different strategies including expression pattern analysis, subcellular localization and phenotypic analyses of the syac1 loss-of-function and gain-of-function transgenic lines along with the identification of the SYAC1 interaction partners. Detailed functional characterization revealed that SYAC1 acts as a developmentally specific regulator of the secretory pathway to control deposition of cell wall components and thereby rapidly fine tune elongation growth. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Andrej full_name: Hurny, Andrej id: 4DC4AF46-F248-11E8-B48F-1D18A9856A87 last_name: Hurny orcid: 0000-0003-3638-1426 citation: ama: Hurny A. Identification and characterization of novel auxin-cytokinin cross-talk components. 2018. doi:10.15479/AT:ISTA:th_930 apa: Hurny, A. (2018). Identification and characterization of novel auxin-cytokinin cross-talk components. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_930 chicago: Hurny, Andrej. “Identification and Characterization of Novel Auxin-Cytokinin Cross-Talk Components.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_930. ieee: A. Hurny, “Identification and characterization of novel auxin-cytokinin cross-talk components,” Institute of Science and Technology Austria, 2018. ista: Hurny A. 2018. Identification and characterization of novel auxin-cytokinin cross-talk components. Institute of Science and Technology Austria. mla: Hurny, Andrej. Identification and Characterization of Novel Auxin-Cytokinin Cross-Talk Components. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_930. short: A. Hurny, Identification and Characterization of Novel Auxin-Cytokinin Cross-Talk Components, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:47:03Z date_published: 2018-01-01T00:00:00Z date_updated: 2023-09-07T12:41:06Z day: '01' ddc: - '570' degree_awarded: PhD department: - _id: EvBe doi: 10.15479/AT:ISTA:th_930 file: - access_level: closed checksum: 0c9d6d1c80d9857e6e545213467bbcb2 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-05T09:37:56Z date_updated: 2020-12-02T23:30:08Z embargo_to: open_access file_id: '6226' file_name: 2018_Hurny_thesis_source.docx file_size: 28112114 relation: source_file - access_level: open_access checksum: ecbe481a1413d270bd501b872c7ed54f content_type: application/pdf creator: dernst date_created: 2019-04-05T09:37:55Z date_updated: 2020-12-02T09:52:16Z embargo: 2019-07-10 file_id: '6227' file_name: 2018_Hurny_thesis.pdf file_size: 12524427 relation: main_file file_date_updated: 2020-12-02T23:30:08Z has_accepted_license: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: '147' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7277' pubrep_id: '930' related_material: record: - id: '1024' relation: part_of_dissertation status: public status: public supervisor: - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 title: Identification and characterization of novel auxin-cytokinin cross-talk components tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '48' abstract: - lang: eng text: 'The hippocampus is a key brain region for spatial memory and navigation and is needed at all stages of memory, including encoding, consolidation, and recall. Hippocampal place cells selectively discharge at specific locations of the environment to form a cognitive map of the space. During the rest period and sleep following spatial navigation and/or learning, the waking activity of the place cells is reactivated within high synchrony events. This reactivation is thought to be important for memory consolidation and stabilization of the spatial representations. The aim of my thesis was to directly test whether the reactivation content encoded in firing patterns of place cells is important for consolidation of spatial memories. In particular, I aimed to test whether, in cases when multiple spatial memory traces are acquired during learning, the specific disruption of the reactivation of a subset of these memories leads to the selective disruption of the corresponding memory traces or through memory interference the other learned memories are disrupted as well. In this thesis, using a modified cheeseboard paradigm and a closed-loop recording setup with feedback optogenetic stimulation, I examined how the disruption of the reactivation of specific spiking patterns affects consolidation of the corresponding memory traces. To obtain multiple distinctive memories, animals had to perform a spatial task in two distinct cheeseboard environments and the reactivation of spiking patterns associated with one of the environments (target) was disrupted after learning during four hours rest period using a real-time decoding method. This real-time decoding method was capable of selectively affecting the firing rates and cofiring correlations of the target environment-encoding cells. The selective disruption led to behavioural impairment in the memory tests after the rest periods in the target environment but not in the other undisrupted control environment. In addition, the map of the target environment was less stable in the impaired memory tests compared to the learning session before than the map of the control environment. However, when the animal relearned the task, the same map recurred in the target environment that was present during learning before the disruption. Altogether my work demonstrated that the reactivation content is important: assembly-related disruption of reactivation can lead to a selective memory impairment and deficiency in map stability. These findings indeed suggest that reactivated assembly patterns reflect processes associated with the consolidation of memory traces. ' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Igor full_name: Gridchyn, Igor id: 4B60654C-F248-11E8-B48F-1D18A9856A87 last_name: Gridchyn orcid: 0000-0002-1807-1929 citation: ama: Gridchyn I. Reactivation content is important for consolidation of spatial memory. 2018. doi:10.15479/AT:ISTA:th_1042 apa: Gridchyn, I. (2018). Reactivation content is important for consolidation of spatial memory. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_1042 chicago: Gridchyn, Igor. “Reactivation Content Is Important for Consolidation of Spatial Memory.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_1042. ieee: I. Gridchyn, “Reactivation content is important for consolidation of spatial memory,” Institute of Science and Technology Austria, 2018. ista: Gridchyn I. 2018. Reactivation content is important for consolidation of spatial memory. Institute of Science and Technology Austria. mla: Gridchyn, Igor. Reactivation Content Is Important for Consolidation of Spatial Memory. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_1042. short: I. Gridchyn, Reactivation Content Is Important for Consolidation of Spatial Memory, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:21Z date_published: 2018-08-27T00:00:00Z date_updated: 2023-09-07T12:42:44Z day: '27' ddc: - '573' degree_awarded: PhD department: - _id: JoCs doi: 10.15479/AT:ISTA:th_1042 file: - access_level: closed checksum: 7db4415e435590fa33542c7b0a0321d7 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-08T13:36:01Z date_updated: 2021-02-11T23:30:22Z embargo_to: open_access file_id: '6236' file_name: 2018_Thesis_Gridchyn_source.docx file_size: 7666687 relation: source_file - access_level: open_access checksum: f96f3fe8979f7b1e6db6acaca962b10c content_type: application/pdf creator: dernst date_created: 2019-04-08T13:36:01Z date_updated: 2021-02-11T11:17:18Z embargo: 2019-08-29 file_id: '6237' file_name: 2018_Thesis_Gridchyn.pdf file_size: 6034153 relation: main_file file_date_updated: 2021-02-11T23:30:22Z has_accepted_license: '1' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: '104' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '8006' pubrep_id: '1042' status: public supervisor: - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 title: Reactivation content is important for consolidation of spatial memory tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '9' abstract: - lang: eng text: 'Immune cells migrating to the sites of infection navigate through diverse tissue architectures and switch their migratory mechanisms upon demand. However, little is known about systemic regulators that could allow the acquisition of these mechanisms. We performed a genetic screen in Drosophila melanogaster to identify regulators of germband invasion by embryonic macrophages into the confined space between the ectoderm and mesoderm. We have found that bZIP circadian transcription factors (TFs) Kayak (dFos) and Vrille (dNFIL3) have opposite effects on macrophage germband infiltration: Kayak facilitated and Vrille inhibited it. These TFs are enriched in the macrophages during migration and genetically interact to control it. Kayak sets a less coordinated mode of migration of the macrophage group and increases the probability and length of Levy walks. Intriguingly, the motility of kayak mutant macrophages was also strongly affected during initial germband invasion but not along another less confined route. Inhibiting Rho1 signaling within the tail ectoderm partially rescued the Kayak mutant phenotype, strongly suggesting that migrating macrophages have to overcome a barrier imposed by the stiffness of the ectoderm. Also, Kayak appeared to be important for the maintenance of the round cell shape and the rear edge translocation of the macrophages invading the germband. Complementary to this, the cortical actin cytoskeleton of Kayak- deficient macrophages was strongly affected. RNA sequencing revealed the filamin Cheerio and tetraspanin TM4SF to be downstream of Kayak. Chromatin immunoprecipitation and immunostaining revealed that the formin Diaphanous is another downstream target of Kayak. Immunostaining revealed that the formin Diaphanous is another downstream target of Kayak. Indeed, Cheerio, TM4SF and Diaphanous are required within macrophages for germband invasion, and expression of constitutively active Diaphanous in macrophages was able to rescue the kayak mutant phenotype. Moreover, Cher and Diaphanous are also reduced in the macrophages overexpressing Vrille. We hypothesize that Kayak, through its targets, increases actin polymerization and cortical tension in macrophages and thus allows extra force generation necessary for macrophage dissemination and migration through confined stiff tissues, while Vrille counterbalances it.' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Vera full_name: Belyaeva, Vera id: 47F080FE-F248-11E8-B48F-1D18A9856A87 last_name: Belyaeva citation: ama: Belyaeva V. Transcriptional regulation of macrophage migration in the Drosophila melanogaster embryo . 2018. doi:10.15479/AT:ISTA:th1064 apa: Belyaeva, V. (2018). Transcriptional regulation of macrophage migration in the Drosophila melanogaster embryo . Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th1064 chicago: Belyaeva, Vera. “Transcriptional Regulation of Macrophage Migration in the Drosophila Melanogaster Embryo .” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th1064. ieee: V. Belyaeva, “Transcriptional regulation of macrophage migration in the Drosophila melanogaster embryo ,” Institute of Science and Technology Austria, 2018. ista: Belyaeva V. 2018. Transcriptional regulation of macrophage migration in the Drosophila melanogaster embryo . Institute of Science and Technology Austria. mla: Belyaeva, Vera. Transcriptional Regulation of Macrophage Migration in the Drosophila Melanogaster Embryo . Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th1064. short: V. Belyaeva, Transcriptional Regulation of Macrophage Migration in the Drosophila Melanogaster Embryo , Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:08Z date_published: 2018-07-01T00:00:00Z date_updated: 2023-09-07T12:43:10Z day: '01' ddc: - '570' degree_awarded: PhD department: - _id: DaSi doi: 10.15479/AT:ISTA:th1064 file: - access_level: closed checksum: d27b2465cb70d0c9678a0381b9b6ced1 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-08T14:13:12Z date_updated: 2020-07-14T12:48:14Z embargo_to: open_access file_id: '6243' file_name: 2018_Thesis_Belyaeva_source.docx file_size: 102737483 relation: source_file - access_level: open_access checksum: a2939b61bde2de7b8ced77bbae0eaaed content_type: application/pdf creator: dernst date_created: 2019-04-08T14:14:08Z date_updated: 2021-02-11T11:17:16Z embargo: 2019-11-19 file_id: '6244' file_name: 2018_Thesis_Belyaeva.pdf file_size: 88077843 relation: main_file file_date_updated: 2021-02-11T11:17:16Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '96' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '8047' pubrep_id: '1064' status: public supervisor: - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 title: 'Transcriptional regulation of macrophage migration in the Drosophila melanogaster embryo ' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '6266' abstract: - lang: eng text: 'A major challenge in neuroscience research is to dissect the circuits that orchestrate behavior in health and disease. Proteins from a wide range of non-mammalian species, such as microbial opsins, have been successfully transplanted to specific neuronal targets to override their natural communication patterns. The goal of our work is to manipulate synaptic communication in a manner that closely incorporates the functional intricacies of synapses by preserving temporal encoding (i.e. the firing pattern of the presynaptic neuron) and connectivity (i.e. target specific synapses rather than specific neurons). Our strategy to achieve this goal builds on the use of non-mammalian transplants to create a synthetic synapse. The mode of modulation comes from pre-synaptic uptake of a synthetic neurotransmitter (SN) into synaptic vesicles by means of a genetically targeted transporter selective for the SN. Upon natural vesicular release, exposure of the SN to the synaptic cleft will modify the post-synaptic potential through an orthogonal ligand gated ion channel. To achieve this goal we have functionally characterized a mixed cationic methionine-gated ion channel from Arabidopsis thaliana, designed a method to functionally characterize a synthetic transporter in isolated synaptic vesicles without the need for transgenic animals, identified and extracted multiple prokaryotic uptake systems that are substrate specific for methionine (Met), and established a primary/cell line co-culture system that would allow future combinatorial testing of this orthogonal transmitter-transporter-channel trifecta. Synthetic synapses will provide a unique opportunity to manipulate synaptic communication while maintaining the electrophysiological integrity of the pre-synaptic cell. In this way, information may be preserved that was generated in upstream circuits and that could be essential for concerted function and information processing. ' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Catherine full_name: Mckenzie, Catherine id: 3EEDE19A-F248-11E8-B48F-1D18A9856A87 last_name: Mckenzie citation: ama: Mckenzie C. Design and characterization of methods and biological components to realize synthetic neurotransmission . 2018. doi:10.15479/at:ista:th_1055 apa: Mckenzie, C. (2018). Design and characterization of methods and biological components to realize synthetic neurotransmission . Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:th_1055 chicago: Mckenzie, Catherine. “Design and Characterization of Methods and Biological Components to Realize Synthetic Neurotransmission .” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/at:ista:th_1055. ieee: C. Mckenzie, “Design and characterization of methods and biological components to realize synthetic neurotransmission ,” Institute of Science and Technology Austria, 2018. ista: Mckenzie C. 2018. Design and characterization of methods and biological components to realize synthetic neurotransmission . Institute of Science and Technology Austria. mla: Mckenzie, Catherine. Design and Characterization of Methods and Biological Components to Realize Synthetic Neurotransmission . Institute of Science and Technology Austria, 2018, doi:10.15479/at:ista:th_1055. short: C. Mckenzie, Design and Characterization of Methods and Biological Components to Realize Synthetic Neurotransmission , Institute of Science and Technology Austria, 2018. date_created: 2019-04-09T14:13:39Z date_published: 2018-10-31T00:00:00Z date_updated: 2023-09-07T13:02:37Z day: '31' ddc: - '571' - '573' degree_awarded: PhD department: - _id: HaJa doi: 10.15479/at:ista:th_1055 file: - access_level: open_access checksum: 9d2c2dca04b00e485470c28b262af59a content_type: application/pdf creator: dernst date_created: 2019-04-09T14:12:40Z date_updated: 2021-02-11T11:17:16Z embargo: 2019-11-24 file_id: '6267' file_name: 2018_Thesis_McKenzie.pdf file_size: 4906420 relation: main_file - access_level: closed checksum: 50b58c272899601bc6fd9642c4dc97f1 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-09T14:12:40Z date_updated: 2020-07-14T12:47:25Z embargo_to: open_access file_id: '6268' file_name: 2018_Thesis_McKenzie_source.docx file_size: 5053545 relation: source_file file_date_updated: 2021-02-11T11:17:16Z has_accepted_license: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: '95' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria pubrep_id: '1055' related_material: record: - id: '7132' relation: new_edition status: public status: public supervisor: - first_name: Harald L full_name: Janovjak, Harald L id: 33BA6C30-F248-11E8-B48F-1D18A9856A87 last_name: Janovjak orcid: 0000-0002-8023-9315 title: 'Design and characterization of methods and biological components to realize synthetic neurotransmission ' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '50' abstract: - lang: eng text: The Wnt/planar cell polarity (Wnt/PCP) pathway determines planar polarity of epithelial cells in both vertebrates and invertebrates. The role that Wnt/PCP signaling plays in mesenchymal contexts, however, is only poorly understood. While previous studies have demonstrated the capacity of Wnt/PCP signaling to polarize and guide directed migration of mesenchymal cells, it remains unclear whether endogenous Wnt/PCP signaling performs these functions instructively, as it does in epithelial cells. Here we developed a light-switchable version of the Wnt/PCP receptor Frizzled 7 (Fz7) to unambiguously distinguish between an instructive and a permissive role of Wnt/PCP signaling for the directional collective migration of mesendoderm progenitor cells during zebrafish gastrulation. We show that prechordal plate (ppl) cell migration is defective in maternal-zygotic fz7a and fz7b (MZ fz7a,b) double mutant embryos, and that Fz7 functions cell-autonomously in this process by promoting ppl cell protrusion formation and directed migration. We further show that local activation of Fz7 can direct ppl cell migration both in vitro and in vivo. Surprisingly, however, uniform Fz7 activation is sufficient to fully rescue the ppl cell migration defect in MZ fz7a,b mutant embryos, indicating that Wnt/PCP signaling functions permissively rather than instructively in directed mesendoderm cell migration during zebrafish gastrulation. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Daniel full_name: Capek, Daniel id: 31C42484-F248-11E8-B48F-1D18A9856A87 last_name: Capek orcid: 0000-0001-5199-9940 citation: ama: Capek D. Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration. 2018. doi:10.15479/AT:ISTA:TH_1031 apa: Capek, D. (2018). Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:TH_1031 chicago: Capek, Daniel. “Optogenetic Frizzled 7 Reveals a Permissive Function of Wnt/PCP Signaling in Directed Mesenchymal Cell Migration.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:TH_1031. ieee: D. Capek, “Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration,” Institute of Science and Technology Austria, 2018. ista: Capek D. 2018. Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration. Institute of Science and Technology Austria. mla: Capek, Daniel. Optogenetic Frizzled 7 Reveals a Permissive Function of Wnt/PCP Signaling in Directed Mesenchymal Cell Migration. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:TH_1031. short: D. Capek, Optogenetic Frizzled 7 Reveals a Permissive Function of Wnt/PCP Signaling in Directed Mesenchymal Cell Migration, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:21Z date_published: 2018-06-22T00:00:00Z date_updated: 2023-09-07T12:48:16Z day: '22' ddc: - '570' - '591' - '596' degree_awarded: PhD department: - _id: CaHe doi: 10.15479/AT:ISTA:TH_1031 file: - access_level: open_access checksum: d3eca3dcacb67bffdde6e6609c31cdd0 content_type: application/pdf creator: dernst date_created: 2019-04-08T13:42:26Z date_updated: 2021-02-11T11:17:17Z embargo: 2019-06-25 file_id: '6238' file_name: 2018_Thesis_Capek.pdf file_size: 31576521 relation: main_file - access_level: closed checksum: 876deb14067e638aba65d209668bd821 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-08T13:42:27Z date_updated: 2021-02-11T23:30:21Z embargo_to: open_access file_id: '6239' file_name: 2018_Thesis_Capek_source.docx file_size: 38992956 relation: source_file file_date_updated: 2021-02-11T23:30:21Z has_accepted_license: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: '95' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '8004' pubrep_id: '1031' related_material: record: - id: '1100' relation: part_of_dissertation status: public - id: '661' relation: part_of_dissertation status: public - id: '676' relation: part_of_dissertation status: public status: public supervisor: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 title: Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '26' abstract: - lang: eng text: Expression of genes is a fundamental molecular phenotype that is subject to evolution by different types of mutations. Both the rate and the effect of mutations may depend on the DNA sequence context of a particular gene or a particular promoter sequence. In this thesis I investigate the nature of this dependence using simple genetic systems in Escherichia coli. With these systems I explore the evolution of constitutive gene expression from random starting sequences at different loci on the chromosome and at different locations in sequence space. First, I dissect chromosomal neighborhood effects that underlie locus-dependent differences in the potential of a gene under selection to become more highly expressed. Next, I find that the effects of point mutations in promoter sequences are dependent on sequence context, and that an existing energy matrix model performs poorly in predicting relative expression of unrelated sequences. Finally, I show that a substantial fraction of random sequences contain functional promoters and I present an extended thermodynamic model that predicts promoter strength in full sequence space. Taken together, these results provide new insights and guides on how to integrate information on sequence context to improve our qualitative and quantitative understanding of bacterial gene expression, with implications for rapid evolution of drug resistance, de novo evolution of genes, and horizontal gene transfer. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Magdalena full_name: Steinrück, Magdalena id: 2C023F40-F248-11E8-B48F-1D18A9856A87 last_name: Steinrück orcid: 0000-0003-1229-9719 citation: ama: Steinrück M. The influence of sequence context on the evolution of bacterial gene expression. 2018. doi:10.15479/AT:ISTA:th1059 apa: Steinrück, M. (2018). The influence of sequence context on the evolution of bacterial gene expression. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th1059 chicago: Steinrück, Magdalena. “The Influence of Sequence Context on the Evolution of Bacterial Gene Expression.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th1059. ieee: M. Steinrück, “The influence of sequence context on the evolution of bacterial gene expression,” Institute of Science and Technology Austria, 2018. ista: Steinrück M. 2018. The influence of sequence context on the evolution of bacterial gene expression. Institute of Science and Technology Austria. mla: Steinrück, Magdalena. The Influence of Sequence Context on the Evolution of Bacterial Gene Expression. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th1059. short: M. Steinrück, The Influence of Sequence Context on the Evolution of Bacterial Gene Expression, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:14Z date_published: 2018-10-30T00:00:00Z date_updated: 2023-09-07T12:48:43Z day: '30' ddc: - '576' - '579' degree_awarded: PhD department: - _id: CaGu doi: 10.15479/AT:ISTA:th1059 file: - access_level: closed checksum: 413cbce1cd1debeae3abe2a25dbc70d1 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-02-08T10:51:22Z date_updated: 2020-07-14T12:45:43Z embargo_to: open_access file_id: '5941' file_name: Thesis_Steinrueck_final.docx file_size: 9190845 relation: source_file - access_level: open_access checksum: 3def8b7854c8b42d643597ce0215efac content_type: application/pdf creator: dernst date_created: 2019-02-08T10:51:22Z date_updated: 2021-02-11T11:17:14Z embargo: 2019-11-02 file_id: '5942' file_name: Thesis_Steinrueck_final.pdf file_size: 7521973 relation: main_file file_date_updated: 2021-02-11T11:17:14Z has_accepted_license: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: '109' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '8029' pubrep_id: '1059' related_material: record: - id: '704' relation: part_of_dissertation status: public status: public supervisor: - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 title: The influence of sequence context on the evolution of bacterial gene expression type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '6263' abstract: - lang: eng text: 'Antibiotic resistance can emerge spontaneously through genomic mutation and render treatment ineffective. To counteract this process, in addition to the discovery and description of resistance mechanisms,a deeper understanding of resistanceevolvabilityand its determinantsis needed. To address this challenge, this thesisuncoversnew genetic determinants of resistance evolvability using a customized robotic setup, exploressystematic ways in which resistance evolution is perturbed due to dose-responsecharacteristics of drugs and mutation rate differences,and mathematically investigates the evolutionary fate of one specific type of evolvability modifier -a stress-induced mutagenesis allele.We find severalgenes which strongly inhibit or potentiate resistance evolution. In order to identify them, we first developedan automated high-throughput feedback-controlled protocol whichkeeps the population size and selection pressure approximately constant for hundreds of cultures by dynamically re-diluting the cultures and adjusting the antibiotic concentration. We implementedthis protocol on a customized liquid handling robot and propagated 100 different gene deletion strains of Escherichia coliin triplicate for over 100 generations in tetracycline and in chloramphenicol, and comparedtheir adaptation rates.We find a diminishing returns pattern, where initially sensitive strains adapted more compared to less sensitive ones. Our data uncover that deletions of certain genes which do not affect mutation rate,including efflux pump components, a chaperone and severalstructural and regulatory genes can strongly and reproducibly alterresistance evolution. Sequencing analysis of evolved populations indicates that epistasis with resistance mutations is the most likelyexplanation. This work could inspire treatment strategies in which targeted inhibitors of evolvability mechanisms will be given alongside antibiotics to slow down resistance evolution and extend theefficacy of antibiotics.We implemented astochasticpopulation genetics model, toverifyways in which general properties, namely, dose-response characteristics of drugs and mutation rates, influence evolutionary dynamics. In particular, under the exposure to antibiotics with shallow dose-response curves,bacteria have narrower distributions of fitness effects of new mutations. We show that in silicothis also leads to slower resistance evolution. We see and confirm with experiments that increased mutation rates, apart from speeding up evolution, also leadto high reproducibility of phenotypic adaptation in a context of continually strong selection pressure.Knowledge of these patterns can aid in predicting the dynamics of antibiotic resistance evolutionand adapting treatment schemes accordingly.Focusing on a previously described type of evolvability modifier –a stress-induced mutagenesis allele –we find conditions under which it can persist in a population under periodic selectionakin to clinical treatment. We set up a deterministic infinite populationcontinuous time model tracking the frequencies of a mutator and resistance allele and evaluate various treatment schemes in how well they maintain a stress-induced mutator allele. In particular,a high diversity of stresses is crucial for the persistence of the mutator allele. This leads to a general trade-off where exactly those diversifying treatment schemes which are likely to decrease levels of resistance could lead to stronger selection of highly evolvable genotypes.In the long run, this work will lead to a deeper understanding of the genetic and cellular mechanisms involved in antibiotic resistance evolution and could inspire new strategies for slowing down its rate. ' acknowledged_ssus: - _id: M-Shop - _id: LifeSc alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Marta full_name: Lukacisinova, Marta id: 4342E402-F248-11E8-B48F-1D18A9856A87 last_name: Lukacisinova orcid: 0000-0002-2519-8004 citation: ama: Lukacisinova M. Genetic determinants of antibiotic resistance evolution. 2018. doi:10.15479/AT:ISTA:th1072 apa: Lukacisinova, M. (2018). Genetic determinants of antibiotic resistance evolution. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th1072 chicago: Lukacisinova, Marta. “Genetic Determinants of Antibiotic Resistance Evolution.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th1072. ieee: M. Lukacisinova, “Genetic determinants of antibiotic resistance evolution,” Institute of Science and Technology Austria, 2018. ista: Lukacisinova M. 2018. Genetic determinants of antibiotic resistance evolution. Institute of Science and Technology Austria. mla: Lukacisinova, Marta. Genetic Determinants of Antibiotic Resistance Evolution. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th1072. short: M. Lukacisinova, Genetic Determinants of Antibiotic Resistance Evolution, Institute of Science and Technology Austria, 2018. date_created: 2019-04-09T13:57:15Z date_published: 2018-12-28T00:00:00Z date_updated: 2023-09-22T09:20:37Z day: '28' ddc: - '570' - '576' - '579' degree_awarded: PhD department: - _id: ToBo doi: 10.15479/AT:ISTA:th1072 file: - access_level: open_access checksum: fc60585c9eaad868ac007004ef130908 content_type: application/pdf creator: dernst date_created: 2019-04-09T13:49:24Z date_updated: 2021-02-11T11:17:17Z embargo: 2020-01-25 file_id: '6264' file_name: 2018_Thesis_Lukacisinova.pdf file_size: 5656866 relation: main_file - access_level: closed checksum: 264057ec0a92ab348cc83b41f021ba92 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-09T13:49:23Z date_updated: 2020-07-14T12:47:25Z embargo_to: open_access file_id: '6265' file_name: 2018_Thesis_Lukacisinova_source.docx file_size: 5168054 relation: source_file file_date_updated: 2021-02-11T11:17:17Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: '91' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '1619' relation: part_of_dissertation status: public - id: '696' relation: part_of_dissertation status: public - id: '1027' relation: part_of_dissertation status: public status: public supervisor: - first_name: Tobias full_name: Bollenbach, Tobias id: 3E6DB97A-F248-11E8-B48F-1D18A9856A87 last_name: Bollenbach orcid: 0000-0003-4398-476X title: Genetic determinants of antibiotic resistance evolution type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ...