--- _id: '7629' abstract: - lang: eng text: "This thesis is based on three main topics: In the first part, we study convergence of discrete gradient flow structures associated with regular finite-volume discretisations of Fokker-Planck equations. We show evolutionary I convergence of the discrete gradient flows to the L2-Wasserstein gradient flow corresponding to the solution of a Fokker-Planck\r\nequation in arbitrary dimension d >= 1. Along the argument, we prove Mosco- and I-convergence results for discrete energy functionals, which are of independent interest for convergence of equivalent gradient flow structures in Hilbert spaces.\r\nThe second part investigates L2-Wasserstein flows on metric graph. The starting point is a Benamou-Brenier formula for the L2-Wasserstein distance, which is proved via a regularisation scheme for solutions of the continuity equation, adapted to the peculiar geometric structure of metric graphs. Based on those results, we show that the L2-Wasserstein space over a metric graph admits a gradient flow which may be identified as a solution of a Fokker-Planck equation.\r\nIn the third part, we focus again on the discrete gradient flows, already encountered in the first part. We propose a variational structure which extends the gradient flow structure to Markov chains violating the detailed-balance conditions. Using this structure, we characterise contraction estimates for the discrete heat flow in terms of convexity of\r\ncorresponding path-dependent energy functionals. In addition, we use this approach to derive several functional inequalities for said functionals." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Dominik L full_name: Forkert, Dominik L id: 35C79D68-F248-11E8-B48F-1D18A9856A87 last_name: Forkert citation: ama: Forkert DL. Gradient flows in spaces of probability measures for finite-volume schemes, metric graphs and non-reversible Markov chains. 2020. doi:10.15479/AT:ISTA:7629 apa: Forkert, D. L. (2020). Gradient flows in spaces of probability measures for finite-volume schemes, metric graphs and non-reversible Markov chains. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7629 chicago: Forkert, Dominik L. “Gradient Flows in Spaces of Probability Measures for Finite-Volume Schemes, Metric Graphs and Non-Reversible Markov Chains.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7629. ieee: D. L. Forkert, “Gradient flows in spaces of probability measures for finite-volume schemes, metric graphs and non-reversible Markov chains,” Institute of Science and Technology Austria, 2020. ista: Forkert DL. 2020. Gradient flows in spaces of probability measures for finite-volume schemes, metric graphs and non-reversible Markov chains. Institute of Science and Technology Austria. mla: Forkert, Dominik L. Gradient Flows in Spaces of Probability Measures for Finite-Volume Schemes, Metric Graphs and Non-Reversible Markov Chains. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7629. short: D.L. Forkert, Gradient Flows in Spaces of Probability Measures for Finite-Volume Schemes, Metric Graphs and Non-Reversible Markov Chains, Institute of Science and Technology Austria, 2020. date_created: 2020-04-02T06:40:23Z date_published: 2020-03-31T00:00:00Z date_updated: 2023-09-07T13:03:12Z day: '31' ddc: - '510' degree_awarded: PhD department: - _id: JaMa doi: 10.15479/AT:ISTA:7629 ec_funded: 1 file: - access_level: open_access checksum: c814a1a6195269ca6fe48b0dca45ae8a content_type: application/pdf creator: dernst date_created: 2020-04-14T10:47:59Z date_updated: 2020-07-14T12:48:01Z file_id: '7657' file_name: Thesis_Forkert_PDFA.pdf file_size: 3297129 relation: main_file - access_level: closed checksum: ceafb53f923d1b5bdf14b2b0f22e4a81 content_type: application/x-zip-compressed creator: dernst date_created: 2020-04-14T10:47:59Z date_updated: 2020-07-14T12:48:01Z file_id: '7658' file_name: Thesis_Forkert_source.zip file_size: 1063908 relation: source_file file_date_updated: 2020-07-14T12:48:01Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: '154' project: - _id: 256E75B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '716117' name: Optimal Transport and Stochastic Dynamics publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Jan full_name: Maas, Jan id: 4C5696CE-F248-11E8-B48F-1D18A9856A87 last_name: Maas orcid: 0000-0002-0845-1338 title: Gradient flows in spaces of probability measures for finite-volume schemes, metric graphs and non-reversible Markov chains type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8574' abstract: - lang: eng text: "This thesis concerns itself with the interactions of evolutionary and ecological forces and the consequences on genetic diversity and the ultimate survival of populations. It is important to understand what signals processes \r\nleave on the genome and what we can infer from such data, which is usually abundant but noisy. Furthermore, understanding how and when populations adapt or go extinct is important for practical purposes, such as the genetic management of populations, as well as for theoretical questions, since local adaptation can be the first step toward speciation. \r\nIn Chapter 2, we introduce the method of maximum entropy to approximate the demographic changes of a population in a simple setting, namely the logistic growth model with immigration. We show that this method is not only a powerful \r\ntool in physics but can be gainfully applied in an ecological framework. We investigate how well it approximates the real \r\nbehavior of the system, and find that is does so, even in unexpected situations. Finally, we illustrate how it can model changing environments.\r\nIn Chapter 3, we analyze the co-evolution of allele frequencies and population sizes in an infinite island model.\r\nWe give conditions under which polygenic adaptation to a rare habitat is possible. The model we use is based on the diffusion approximation, considers eco-evolutionary feedback mechanisms (hard selection), and treats both \r\ndrift and environmental fluctuations explicitly. We also look at limiting scenarios, for which we derive analytical expressions. \r\nIn Chapter 4, we present a coalescent based simulation tool to obtain patterns of diversity in a spatially explicit subdivided population, in which the demographic history of each subpopulation can be specified. We compare \r\nthe results to existing predictions, and explore the relative importance of time and space under a variety of spatial arrangements and demographic histories, such as expansion and extinction. \r\nIn the last chapter, we give a brief outlook to further research. " alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Eniko full_name: Szep, Eniko id: 485BB5A4-F248-11E8-B48F-1D18A9856A87 last_name: Szep citation: ama: Szep E. Local adaptation in metapopulations. 2020. doi:10.15479/AT:ISTA:8574 apa: Szep, E. (2020). Local adaptation in metapopulations. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8574 chicago: Szep, Eniko. “Local Adaptation in Metapopulations.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8574. ieee: E. Szep, “Local adaptation in metapopulations,” Institute of Science and Technology Austria, 2020. ista: Szep E. 2020. Local adaptation in metapopulations. Institute of Science and Technology Austria. mla: Szep, Eniko. Local Adaptation in Metapopulations. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8574. short: E. Szep, Local Adaptation in Metapopulations, Institute of Science and Technology Austria, 2020. date_created: 2020-09-28T07:33:38Z date_published: 2020-09-20T00:00:00Z date_updated: 2023-09-07T13:11:39Z day: '20' ddc: - '570' degree_awarded: PhD department: - _id: NiBa doi: 10.15479/AT:ISTA:8574 file: - access_level: open_access checksum: 20e71f015fbbd78fea708893ad634ed0 content_type: application/pdf creator: dernst date_created: 2020-09-28T07:25:35Z date_updated: 2020-09-28T07:25:35Z file_id: '8575' file_name: thesis_EnikoSzep_final.pdf file_size: 6354833 relation: main_file success: 1 - access_level: closed checksum: a8de2c14a1bb4e53c857787efbb289e1 content_type: application/x-zip-compressed creator: dernst date_created: 2020-09-28T07:25:37Z date_updated: 2020-09-28T07:25:37Z file_id: '8576' file_name: thesisFiles_EnikoSzep.zip file_size: 23020401 relation: source_file file_date_updated: 2020-09-28T07:25:37Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '158' publication_identifier: eissn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 title: Local adaptation in metapopulations type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7514' abstract: - lang: eng text: "We study the interacting homogeneous Bose gas in two spatial dimensions in the thermodynamic limit at fixed density. We shall be concerned with some mathematical aspects of this complicated problem in many-body quantum mechanics. More specifically, we consider the dilute limit where the scattering length of the interaction potential, which is a measure for the effective range of the potential, is small compared to the average distance between the particles. We are interested in a setting with positive (i.e., non-zero) temperature. After giving a survey of the relevant literature in the field, we provide some facts and examples to set expectations for the two-dimensional system. The crucial difference to the three-dimensional system is that there is no Bose–Einstein condensate at positive temperature due to the Hohenberg–Mermin–Wagner theorem. However, it turns out that an asymptotic formula for the free energy holds similarly to the three-dimensional case.\r\nWe motivate this formula by considering a toy model with δ interaction potential. By restricting this model Hamiltonian to certain trial states with a quasi-condensate we obtain an upper bound for the free energy that still has the quasi-condensate fraction as a free parameter. When minimizing over the quasi-condensate fraction, we obtain the Berezinskii–Kosterlitz–Thouless critical temperature for superfluidity, which plays an important role in our rigorous contribution. The mathematically rigorous result that we prove concerns the specific free energy in the dilute limit. We give upper and lower bounds on the free energy in terms of the free energy of the non-interacting system and a correction term coming from the interaction. Both bounds match and thus we obtain the leading term of an asymptotic approximation in the dilute limit, provided the thermal wavelength of the particles is of the same order (or larger) than the average distance between the particles. The remarkable feature of this result is its generality: the correction term depends on the interaction potential only through its scattering length and it holds for all nonnegative interaction potentials with finite scattering length that are measurable. In particular, this allows to model an interaction of hard disks." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Simon full_name: Mayer, Simon id: 30C4630A-F248-11E8-B48F-1D18A9856A87 last_name: Mayer citation: ama: Mayer S. The free energy of a dilute two-dimensional Bose gas. 2020. doi:10.15479/AT:ISTA:7514 apa: Mayer, S. (2020). The free energy of a dilute two-dimensional Bose gas. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7514 chicago: Mayer, Simon. “The Free Energy of a Dilute Two-Dimensional Bose Gas.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7514. ieee: S. Mayer, “The free energy of a dilute two-dimensional Bose gas,” Institute of Science and Technology Austria, 2020. ista: Mayer S. 2020. The free energy of a dilute two-dimensional Bose gas. Institute of Science and Technology Austria. mla: Mayer, Simon. The Free Energy of a Dilute Two-Dimensional Bose Gas. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7514. short: S. Mayer, The Free Energy of a Dilute Two-Dimensional Bose Gas, Institute of Science and Technology Austria, 2020. date_created: 2020-02-24T09:17:27Z date_published: 2020-02-24T00:00:00Z date_updated: 2023-09-07T13:12:42Z day: '24' ddc: - '510' degree_awarded: PhD department: - _id: RoSe - _id: GradSch doi: 10.15479/AT:ISTA:7514 ec_funded: 1 file: - access_level: open_access checksum: b4de7579ddc1dbdd44ff3f17c48395f6 content_type: application/pdf creator: dernst date_created: 2020-02-24T09:15:06Z date_updated: 2020-07-14T12:47:59Z file_id: '7515' file_name: thesis.pdf file_size: 1563429 relation: main_file - access_level: closed checksum: ad7425867b52d7d9e72296e87bc9cb67 content_type: application/x-zip-compressed creator: dernst date_created: 2020-02-24T09:15:16Z date_updated: 2020-07-14T12:47:59Z file_id: '7516' file_name: thesis_source.zip file_size: 2028038 relation: source_file file_date_updated: 2020-07-14T12:47:59Z has_accepted_license: '1' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: '148' project: - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7524' relation: part_of_dissertation status: public status: public supervisor: - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 title: The free energy of a dilute two-dimensional Bose gas tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8353' abstract: - lang: eng text: "Mrp (Multi resistance and pH adaptation) are broadly distributed secondary active antiporters that catalyze the transport of monovalent ions such as sodium and potassium outside of the cell coupled to the inward translocation of protons. Mrp antiporters are unique in a way that they are composed of seven subunits (MrpABCDEFG) encoded in a single operon, whereas other antiporters catalyzing the same reaction are mostly encoded by a single gene. Mrp exchangers are crucial for intracellular pH homeostasis and Na+ efflux, essential mechanisms for H+ uptake under alkaline environments and for reduction of the intracellular concentration of toxic cations. Mrp displays no homology to any other monovalent Na+(K+)/H+ antiporters but Mrp subunits have primary sequence similarity to essential redox-driven proton pumps, such as respiratory complex I and membrane-bound hydrogenases. This similarity reinforces the hypothesis that these present day redox-driven proton pumps are descended from the Mrp antiporter. The Mrp structure serves as a model to understand the yet obscure coupling mechanism between ion or electron transfer and proton translocation in this large group of proteins. In the thesis, I am presenting the purification, biochemical analysis, cryo-EM analysis and molecular structure of the Mrp complex from Anoxybacillus flavithermus solved by cryo-EM at 3.0 Å resolution. Numerous conditions were screened to purify Mrp to high homogeneity and to obtain an appropriate distribution of single particles on cryo-EM grids covered with a continuous layer of ultrathin carbon. A preferred particle orientation problem was solved by performing a tilted data collection. The activity assays showed the specific pH-dependent\r\nprofile of secondary active antiporters. The molecular structure shows that Mrp is a dimer of seven-subunit protomers with 50 trans-membrane helices each. The dimer interface is built by many short and tilted transmembrane helices, probably causing a thinning of the bacterial membrane. The surface charge distribution shows an extraordinary asymmetry within each monomer, revealing presumable proton and sodium translocation pathways. The two largest\r\nand homologous Mrp subunits MrpA and MrpD probably translocate one proton each into the cell. The sodium ion is likely being translocated in the opposite direction within the small subunits along a ladder of charged and conserved residues. Based on the structure, we propose a mechanism were the antiport activity is accomplished via electrostatic interactions between the charged cations and key charged residues. The flexible key TM helices coordinate these\r\nelectrostatic interactions, while the membrane thinning between the monomers enables the translocation of sodium across the charged membrane. The entire family of redox-driven proton pumps is likely to perform their mechanism in a likewise manner." acknowledged_ssus: - _id: LifeSc - _id: EM-Fac - _id: ScienComp acknowledgement: "I acknowledge the scientific service units of the IST Austria for providing resources by the Life Science Facility, the Electron Microscopy Facility and the high-performance computer cluster. Special thanks to the cryo-EM specialists Valentin Hodirnau and Daniel Johann Gütl for spending many hours with me in front of the microscope and for supporting me to collect the data presented here. I also want to thank Professor Masahiro Ito for providing plasmid DNA\r\nencoding Mrp from Anoxybacillus flavithermus WK1. I am a recipient of a DOC Fellowship of the Austrian Academy of Sciences." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Julia full_name: Steiner, Julia id: 3BB67EB0-F248-11E8-B48F-1D18A9856A87 last_name: Steiner orcid: 0000-0003-0493-3775 citation: ama: Steiner J. Biochemical and structural investigation of the Mrp antiporter, an ancestor of complex I. 2020. doi:10.15479/AT:ISTA:8353 apa: Steiner, J. (2020). Biochemical and structural investigation of the Mrp antiporter, an ancestor of complex I. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8353 chicago: Steiner, Julia. “Biochemical and Structural Investigation of the Mrp Antiporter, an Ancestor of Complex I.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8353. ieee: J. Steiner, “Biochemical and structural investigation of the Mrp antiporter, an ancestor of complex I,” Institute of Science and Technology Austria, 2020. ista: Steiner J. 2020. Biochemical and structural investigation of the Mrp antiporter, an ancestor of complex I. Institute of Science and Technology Austria. mla: Steiner, Julia. Biochemical and Structural Investigation of the Mrp Antiporter, an Ancestor of Complex I. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8353. short: J. Steiner, Biochemical and Structural Investigation of the Mrp Antiporter, an Ancestor of Complex I, Institute of Science and Technology Austria, 2020. date_created: 2020-09-09T14:27:01Z date_published: 2020-09-09T00:00:00Z date_updated: 2023-09-07T13:14:09Z day: '09' ddc: - '572' degree_awarded: PhD department: - _id: LeSa doi: 10.15479/AT:ISTA:8353 file: - access_level: open_access checksum: 2388d7e6e7a4d364c096fa89f305c3de content_type: application/pdf creator: jsteiner date_created: 2020-09-09T14:22:35Z date_updated: 2021-09-16T12:40:56Z file_id: '8354' file_name: Thesis_Julia_Steiner_pdfA.pdf file_size: 117547589 relation: main_file - access_level: closed checksum: ba112f957b7145462d0ab79044873ee9 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: jsteiner date_created: 2020-09-09T14:23:25Z date_updated: 2020-09-15T08:48:37Z file_id: '8355' file_name: Thesis_Julia_Steiner.docx file_size: 223328668 relation: source_file file_date_updated: 2021-09-16T12:40:56Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: None page: '191' project: - _id: 26169496-B435-11E9-9278-68D0E5697425 grant_number: '24741' name: Revealing the functional mechanism of Mrp antiporter, an ancestor of complex I publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '8284' relation: part_of_dissertation status: public status: public supervisor: - first_name: Leonid A full_name: Sazanov, Leonid A id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 title: Biochemical and structural investigation of the Mrp antiporter, an ancestor of complex I type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8589' abstract: - lang: eng text: The plant hormone auxin plays indispensable roles in plant growth and development. An essential level of regulation in auxin action is the directional auxin transport within cells. The establishment of auxin gradient in plant tissue has been attributed to local auxin biosynthesis and directional intercellular auxin transport, which both are controlled by various environmental and developmental signals. It is well established that asymmetric auxin distribution in cells is achieved by polarly localized PIN-FORMED (PIN) auxin efflux transporters. Despite the initial insights into cellular mechanisms of PIN polarization obtained from the last decades, the molecular mechanism and specific regulators mediating PIN polarization remains elusive. In this thesis, we aim to find novel players in PIN subcellular polarity regulation during Arabidopsis development. We first characterize the physiological effect of piperonylic acid (PA) on Arabidopsis hypocotyl gravitropic bending and PIN polarization. Secondly, we reveal the importance of SCFTIR1/AFB auxin signaling pathway in shoot gravitropism bending termination. In addition, we also explore the role of myosin XI complex, and actin cytoskeleton in auxin feedback regulation on PIN polarity. In Chapter 1, we give an overview of the current knowledge about PIN-mediated auxin fluxes in various plant tropic responses. In Chapter 2, we study the physiological effect of PA on shoot gravitropic bending. Our results show that PA treatment inhibits auxin-mediated PIN3 repolarization by interfering with PINOID and PIN3 phosphorylation status, ultimately leading to hyperbending hypocotyls. In Chapter 3, we provide evidence to show that the SCFTIR1/AFB nuclear auxin signaling pathway is crucial and required for auxin-mediated PIN3 repolarization and shoot gravitropic bending termination. In Chapter 4, we perform a phosphoproteomics approach and identify the motor protein Myosin XI and its binding protein, the MadB2 family, as an essential regulator of PIN polarity for auxin-canalization related developmental processes. In Chapter 5, we demonstrate the vital role of actin cytoskeleton in auxin feedback on PIN polarity by regulating PIN subcellular trafficking. Overall, the data presented in this PhD thesis brings novel insights into the PIN polar localization regulation that resulted in the (re)establishment of the polar auxin flow and gradient in response to environmental stimuli during plant development. acknowledged_ssus: - _id: Bio - _id: LifeSc acknowledgement: I also want to thank the China Scholarship Council for supporting my study during the year from 2015 to 2019. I also want to thank IST facilities – the Bioimaging facility, the media kitchen, the plant facility and all of the campus services, for their support. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Huibin full_name: Han, Huibin id: 31435098-F248-11E8-B48F-1D18A9856A87 last_name: Han citation: ama: Han H. Novel insights into PIN polarity regulation during Arabidopsis development. 2020. doi:10.15479/AT:ISTA:8589 apa: Han, H. (2020). Novel insights into PIN polarity regulation during Arabidopsis development. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8589 chicago: Han, Huibin. “Novel Insights into PIN Polarity Regulation during Arabidopsis Development.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8589. ieee: H. Han, “Novel insights into PIN polarity regulation during Arabidopsis development,” Institute of Science and Technology Austria, 2020. ista: Han H. 2020. Novel insights into PIN polarity regulation during Arabidopsis development. Institute of Science and Technology Austria. mla: Han, Huibin. Novel Insights into PIN Polarity Regulation during Arabidopsis Development. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8589. short: H. Han, Novel Insights into PIN Polarity Regulation during Arabidopsis Development, Institute of Science and Technology Austria, 2020. date_created: 2020-09-30T14:50:51Z date_published: 2020-09-30T00:00:00Z date_updated: 2023-09-07T13:13:05Z day: '30' ddc: - '580' degree_awarded: PhD department: - _id: JiFr doi: 10.15479/AT:ISTA:8589 file: - access_level: closed checksum: c4bda1947d4c09c428ac9ce667b02327 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2020-09-30T14:50:20Z date_updated: 2020-09-30T14:50:20Z file_id: '8590' file_name: 2020_Han_Thesis.docx file_size: 49198118 relation: source_file - access_level: open_access checksum: 3f4f5d1718c2230adf30639ecaf8a00b content_type: application/pdf creator: dernst date_created: 2020-09-30T14:49:59Z date_updated: 2021-10-01T13:33:02Z file_id: '8591' file_name: 2020_Han_Thesis.pdf file_size: 15513963 relation: main_file file_date_updated: 2021-10-01T13:33:02Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '164' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7643' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 title: Novel insights into PIN polarity regulation during Arabidopsis development type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8155' abstract: - lang: eng text: "In the thesis we focus on the interplay of the biophysics and evolution of gene regulation. We start by addressing how the type of prokaryotic gene regulation – activation and repression – affects spurious binding to DNA, also known as\r\ntranscriptional crosstalk. We propose that regulatory interference caused by excess regulatory proteins in the dense cellular medium – global crosstalk – could be a factor in determining which type of gene regulatory network is evolutionarily preferred. Next,we use a normative approach in eukaryotic gene regulation to describe minimal\r\nnon-equilibrium enhancer models that optimize so-called regulatory phenotypes. We find a class of models that differ from standard thermodynamic equilibrium models by a single parameter that notably increases the regulatory performance. Next chapter addresses the question of genotype-phenotype-fitness maps of higher dimensional phenotypes. We show that our biophysically realistic approach allows us to understand how the mechanisms of promoter function constrain genotypephenotype maps, and how they affect the evolutionary trajectories of promoters.\r\nIn the last chapter we ask whether the intrinsic instability of gene duplication and amplification provides a generic alternative to canonical gene regulation. Using mathematical modeling, we show that amplifications can tune gene expression in many environments, including those where transcription factor-based schemes are\r\nhard to evolve or maintain. " acknowledgement: For the duration of his PhD, Rok was a recipient of a DOC fellowship of the Austrian Academy of Sciences. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Rok full_name: Grah, Rok id: 483E70DE-F248-11E8-B48F-1D18A9856A87 last_name: Grah orcid: 0000-0003-2539-3560 citation: ama: Grah R. Gene regulation across scales – how biophysical constraints shape evolution. 2020. doi:10.15479/AT:ISTA:8155 apa: Grah, R. (2020). Gene regulation across scales – how biophysical constraints shape evolution. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8155 chicago: Grah, Rok. “Gene Regulation across Scales – How Biophysical Constraints Shape Evolution.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8155. ieee: R. Grah, “Gene regulation across scales – how biophysical constraints shape evolution,” Institute of Science and Technology Austria, 2020. ista: Grah R. 2020. Gene regulation across scales – how biophysical constraints shape evolution. Institute of Science and Technology Austria. mla: Grah, Rok. Gene Regulation across Scales – How Biophysical Constraints Shape Evolution. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8155. short: R. Grah, Gene Regulation across Scales – How Biophysical Constraints Shape Evolution, Institute of Science and Technology Austria, 2020. date_created: 2020-07-23T09:51:28Z date_published: 2020-07-24T00:00:00Z date_updated: 2023-09-07T13:13:27Z day: '24' ddc: - '530' - '570' degree_awarded: PhD department: - _id: CaGu - _id: GaTk doi: 10.15479/AT:ISTA:8155 file: - access_level: open_access content_type: application/pdf creator: rgrah date_created: 2020-07-27T12:00:07Z date_updated: 2020-07-27T12:00:07Z file_id: '8176' file_name: Thesis_RokGrah_200727_convertedNew.pdf file_size: 16638998 relation: main_file success: 1 - access_level: closed content_type: application/zip creator: rgrah date_created: 2020-07-27T12:02:23Z date_updated: 2020-07-30T13:04:55Z file_id: '8177' file_name: Thesis_new.zip file_size: 347459978 relation: main_file file_date_updated: 2020-07-30T13:04:55Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '310' project: - _id: 267C84F4-B435-11E9-9278-68D0E5697425 name: Biophysically realistic genotype-phenotype maps for regulatory networks publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7675' relation: part_of_dissertation status: public - id: '7569' relation: part_of_dissertation status: public - id: '7652' relation: part_of_dissertation status: public status: public supervisor: - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 title: Gene regulation across scales – how biophysical constraints shape evolution type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7460' abstract: - lang: eng text: "Many methods for the reconstruction of shapes from sets of points produce ordered simplicial complexes, which are collections of vertices, edges, triangles, and their higher-dimensional analogues, called simplices, in which every simplex gets assigned a real value measuring its size. This thesis studies ordered simplicial complexes, with a focus on their topology, which reflects the connectedness of the represented shapes and the presence of holes. We are interested both in understanding better the structure of these complexes, as well as in developing algorithms for applications.\r\n\r\nFor the Delaunay triangulation, the most popular measure for a simplex is the radius of the smallest empty circumsphere. Based on it, we revisit Alpha and Wrap complexes and experimentally determine their probabilistic properties for random data. Also, we prove the existence of tri-partitions, propose algorithms to open and close holes, and extend the concepts from Euclidean to Bregman geometries." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Katharina full_name: Ölsböck, Katharina id: 4D4AA390-F248-11E8-B48F-1D18A9856A87 last_name: Ölsböck orcid: 0000-0002-4672-8297 citation: ama: Ölsböck K. The hole system of triangulated shapes. 2020. doi:10.15479/AT:ISTA:7460 apa: Ölsböck, K. (2020). The hole system of triangulated shapes. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7460 chicago: Ölsböck, Katharina. “The Hole System of Triangulated Shapes.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7460. ieee: K. Ölsböck, “The hole system of triangulated shapes,” Institute of Science and Technology Austria, 2020. ista: Ölsböck K. 2020. The hole system of triangulated shapes. Institute of Science and Technology Austria. mla: Ölsböck, Katharina. The Hole System of Triangulated Shapes. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7460. short: K. Ölsböck, The Hole System of Triangulated Shapes, Institute of Science and Technology Austria, 2020. date_created: 2020-02-06T14:56:53Z date_published: 2020-02-10T00:00:00Z date_updated: 2023-09-07T13:15:30Z day: '10' ddc: - '514' degree_awarded: PhD department: - _id: HeEd - _id: GradSch doi: 10.15479/AT:ISTA:7460 file: - access_level: open_access checksum: 1df9f8c530b443c0e63a3f2e4fde412e content_type: application/pdf creator: koelsboe date_created: 2020-02-06T14:43:54Z date_updated: 2020-07-14T12:47:58Z file_id: '7461' file_name: thesis_ist-final_noack.pdf file_size: 76195184 relation: main_file - access_level: closed checksum: 7a52383c812b0be64d3826546509e5a4 content_type: application/x-zip-compressed creator: koelsboe date_created: 2020-02-06T14:52:45Z date_updated: 2020-07-14T12:47:58Z description: latex source files, figures file_id: '7462' file_name: latex-files.zip file_size: 122103715 relation: source_file file_date_updated: 2020-07-14T12:47:58Z has_accepted_license: '1' keyword: - shape reconstruction - hole manipulation - ordered complexes - Alpha complex - Wrap complex - computational topology - Bregman geometry language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: '155' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '6608' relation: part_of_dissertation status: public status: public supervisor: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 title: The hole system of triangulated shapes tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7896' abstract: - lang: eng text: "A search problem lies in the complexity class FNP if a solution to the given instance of the problem can be verified efficiently. The complexity class TFNP consists of all search problems in FNP that are total in the sense that a solution is guaranteed to exist. TFNP contains a host of interesting problems from fields such as algorithmic game theory, computational topology, number theory and combinatorics. Since TFNP is a semantic class, it is unlikely to have a complete problem. Instead, one studies its syntactic subclasses which are defined based on the combinatorial principle used to argue totality. Of particular interest is the subclass PPAD, which contains important problems\r\nlike computing Nash equilibrium for bimatrix games and computational counterparts of several fixed-point theorems as complete. In the thesis, we undertake the study of averagecase hardness of TFNP, and in particular its subclass PPAD.\r\nAlmost nothing was known about average-case hardness of PPAD before a series of recent results showed how to achieve it using a cryptographic primitive called program obfuscation.\r\nHowever, it is currently not known how to construct program obfuscation from standard cryptographic assumptions. Therefore, it is desirable to relax the assumption under which average-case hardness of PPAD can be shown. In the thesis we take a step in this direction. First, we show that assuming the (average-case) hardness of a numbertheoretic\r\nproblem related to factoring of integers, which we call Iterated-Squaring, PPAD is hard-on-average in the random-oracle model. Then we strengthen this result to show that the average-case hardness of PPAD reduces to the (adaptive) soundness of the Fiat-Shamir Transform, a well-known technique used to compile a public-coin interactive protocol into a non-interactive one. As a corollary, we obtain average-case hardness for PPAD in the random-oracle model assuming the worst-case hardness of #SAT. Moreover, the above results can all be strengthened to obtain average-case hardness for the class CLS ⊆ PPAD.\r\nOur main technical contribution is constructing incrementally-verifiable procedures for computing Iterated-Squaring and #SAT. By incrementally-verifiable, we mean that every intermediate state of the computation includes a proof of its correctness, and the proof can be updated and verified in polynomial time. Previous constructions of such procedures relied on strong, non-standard assumptions. Instead, we introduce a technique called recursive proof-merging to obtain the same from weaker assumptions. " alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Chethan full_name: Kamath Hosdurg, Chethan id: 4BD3F30E-F248-11E8-B48F-1D18A9856A87 last_name: Kamath Hosdurg citation: ama: Kamath Hosdurg C. On the average-case hardness of total search problems. 2020. doi:10.15479/AT:ISTA:7896 apa: Kamath Hosdurg, C. (2020). On the average-case hardness of total search problems. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7896 chicago: Kamath Hosdurg, Chethan. “On the Average-Case Hardness of Total Search Problems.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7896. ieee: C. Kamath Hosdurg, “On the average-case hardness of total search problems,” Institute of Science and Technology Austria, 2020. ista: Kamath Hosdurg C. 2020. On the average-case hardness of total search problems. Institute of Science and Technology Austria. mla: Kamath Hosdurg, Chethan. On the Average-Case Hardness of Total Search Problems. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7896. short: C. Kamath Hosdurg, On the Average-Case Hardness of Total Search Problems, Institute of Science and Technology Austria, 2020. date_created: 2020-05-26T14:08:55Z date_published: 2020-05-25T00:00:00Z date_updated: 2023-09-07T13:15:55Z day: '25' ddc: - '000' degree_awarded: PhD department: - _id: KrPi doi: 10.15479/AT:ISTA:7896 ec_funded: 1 file: - access_level: open_access checksum: b39e2e1c376f5819b823fb7077491c64 content_type: application/pdf creator: dernst date_created: 2020-05-26T14:08:13Z date_updated: 2020-07-14T12:48:04Z file_id: '7897' file_name: 2020_Thesis_Kamath.pdf file_size: 1622742 relation: main_file - access_level: closed checksum: 8b26ba729c1a85ac6bea775f5d73cdc7 content_type: application/x-zip-compressed creator: dernst date_created: 2020-05-26T14:08:23Z date_updated: 2020-07-14T12:48:04Z file_id: '7898' file_name: Thesis_Kamath.zip file_size: 15301529 relation: source_file file_date_updated: 2020-07-14T12:48:04Z has_accepted_license: '1' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: '126' project: - _id: 258C570E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '259668' name: Provable Security for Physical Cryptography - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '6677' relation: part_of_dissertation status: public status: public supervisor: - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 title: On the average-case hardness of total search problems tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7944' abstract: - lang: eng text: "This thesis considers two examples of reconfiguration problems: flipping edges in edge-labelled triangulations of planar point sets and swapping labelled tokens placed on vertices of a graph. In both cases the studied structures – all the triangulations of a given point set or all token placements on a given graph – can be thought of as vertices of the so-called reconfiguration graph, in which two vertices are adjacent if the corresponding structures differ by a single elementary operation – by a flip of a diagonal in a triangulation or by a swap of tokens on adjacent vertices, respectively. We study the reconfiguration of one instance of a structure into another via (shortest) paths in the reconfiguration graph.\r\n\r\nFor triangulations of point sets in which each edge has a unique label and a flip transfers the label from the removed edge to the new edge, we prove a polynomial-time testable condition, called the Orbit Theorem, that characterizes when two triangulations of the same point set lie in the same connected component of the reconfiguration graph. The condition was first conjectured by Bose, Lubiw, Pathak and Verdonschot. We additionally provide a polynomial time algorithm that computes a reconfiguring flip sequence, if it exists. Our proof of the Orbit Theorem uses topological properties of a certain high-dimensional cell complex that has the usual reconfiguration graph as its 1-skeleton.\r\n\r\nIn the context of token swapping on a tree graph, we make partial progress on the problem of finding shortest reconfiguration sequences. We disprove the so-called Happy Leaf Conjecture and demonstrate the importance of swapping tokens that are already placed at the correct vertices. We also prove that a generalization of the problem to weighted coloured token swapping is NP-hard on trees but solvable in polynomial time on paths and stars." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Zuzana full_name: Masárová, Zuzana id: 45CFE238-F248-11E8-B48F-1D18A9856A87 last_name: Masárová orcid: 0000-0002-6660-1322 citation: ama: Masárová Z. Reconfiguration problems. 2020. doi:10.15479/AT:ISTA:7944 apa: Masárová, Z. (2020). Reconfiguration problems. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7944 chicago: Masárová, Zuzana. “Reconfiguration Problems.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7944. ieee: Z. Masárová, “Reconfiguration problems,” Institute of Science and Technology Austria, 2020. ista: Masárová Z. 2020. Reconfiguration problems. Institute of Science and Technology Austria. mla: Masárová, Zuzana. Reconfiguration Problems. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7944. short: Z. Masárová, Reconfiguration Problems, Institute of Science and Technology Austria, 2020. date_created: 2020-06-08T00:49:46Z date_published: 2020-06-09T00:00:00Z date_updated: 2023-09-07T13:17:37Z day: '09' ddc: - '516' - '514' degree_awarded: PhD department: - _id: HeEd - _id: UlWa doi: 10.15479/AT:ISTA:7944 file: - access_level: open_access checksum: df688bc5a82b50baee0b99d25fc7b7f0 content_type: application/pdf creator: zmasarov date_created: 2020-06-08T00:34:00Z date_updated: 2020-07-14T12:48:05Z file_id: '7945' file_name: THESIS_Zuzka_Masarova.pdf file_size: 13661779 relation: main_file - access_level: closed checksum: 45341a35b8f5529c74010b7af43ac188 content_type: application/zip creator: zmasarov date_created: 2020-06-08T00:35:30Z date_updated: 2020-07-14T12:48:05Z file_id: '7946' file_name: THESIS_Zuzka_Masarova_SOURCE_FILES.zip file_size: 32184006 relation: source_file file_date_updated: 2020-07-14T12:48:05Z has_accepted_license: '1' keyword: - reconfiguration - reconfiguration graph - triangulations - flip - constrained triangulations - shellability - piecewise-linear balls - token swapping - trees - coloured weighted token swapping language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: '160' publication_identifier: isbn: - 978-3-99078-005-3 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7950' relation: part_of_dissertation status: public - id: '5986' relation: part_of_dissertation status: public status: public supervisor: - first_name: Uli full_name: Wagner, Uli id: 36690CA2-F248-11E8-B48F-1D18A9856A87 last_name: Wagner orcid: 0000-0002-1494-0568 - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 title: Reconfiguration problems tmp: image: /images/cc_by_sa.png legal_code_url: https://creativecommons.org/licenses/by-sa/4.0/legalcode name: Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) short: CC BY-SA (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8341' abstract: - lang: eng text: "One of the most striking hallmarks of the eukaryotic cell is the presence of intracellular vesicles and organelles. Each of these membrane-enclosed compartments has a distinct composition of lipids and proteins, which is essential for accurate membrane traffic and homeostasis. Interestingly, their biochemical identities are achieved with the help\r\nof small GTPases of the Rab family, which cycle between GDP- and GTP-bound forms on the selected membrane surface. While this activity switch is well understood for an individual protein, how Rab GTPases collectively transition between states to generate decisive signal propagation in space and time is unclear. In my PhD thesis, I present\r\nin vitro reconstitution experiments with theoretical modeling to systematically study a minimal Rab5 activation network from bottom-up. We find that positive feedback based on known molecular interactions gives rise to bistable GTPase activity switching on system’s scale. Furthermore, we determine that collective transition near the critical\r\npoint is intrinsically stochastic and provide evidence that the inactive Rab5 abundance on the membrane can shape the network response. Finally, we demonstrate that collective switching can spread on the lipid bilayer as a traveling activation wave, representing a possible emergent activity pattern in endosomal maturation. Together, our\r\nfindings reveal new insights into the self-organization properties of signaling networks away from chemical equilibrium. Our work highlights the importance of systematic characterization of biochemical systems in well-defined physiological conditions. This way, we were able to answer long-standing open questions in the field and close the gap between regulatory processes on a molecular scale and emergent responses on system’s level." acknowledged_ssus: - _id: Bio - _id: LifeSc - _id: NanoFab acknowledgement: My thanks goes to the Loose lab members, BioImaging, Life Science and Nanofabrication Facilities and the wonderful international community at IST for sharing this experience with me. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Urban full_name: Bezeljak, Urban id: 2A58201A-F248-11E8-B48F-1D18A9856A87 last_name: Bezeljak orcid: 0000-0003-1365-5631 citation: ama: Bezeljak U. In vitro reconstitution of a Rab activation switch. 2020. doi:10.15479/AT:ISTA:8341 apa: Bezeljak, U. (2020). In vitro reconstitution of a Rab activation switch. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8341 chicago: Bezeljak, Urban. “In Vitro Reconstitution of a Rab Activation Switch.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8341. ieee: U. Bezeljak, “In vitro reconstitution of a Rab activation switch,” Institute of Science and Technology Austria, 2020. ista: Bezeljak U. 2020. In vitro reconstitution of a Rab activation switch. Institute of Science and Technology Austria. mla: Bezeljak, Urban. In Vitro Reconstitution of a Rab Activation Switch. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8341. short: U. Bezeljak, In Vitro Reconstitution of a Rab Activation Switch, Institute of Science and Technology Austria, 2020. date_created: 2020-09-08T08:53:53Z date_published: 2020-09-08T00:00:00Z date_updated: 2023-09-07T13:17:06Z day: '08' ddc: - '570' degree_awarded: PhD department: - _id: MaLo doi: 10.15479/AT:ISTA:8341 file: - access_level: closed checksum: 70871b335a595252a66c6bbf0824fb02 content_type: application/x-zip-compressed creator: dernst date_created: 2020-09-08T09:00:29Z date_updated: 2021-09-16T12:49:12Z file_id: '8342' file_name: 2020_Urban_Bezeljak_Thesis_TeX.zip file_size: 65246782 relation: source_file - access_level: open_access checksum: 59a62275088b00b7241e6ff4136434c7 content_type: application/pdf creator: dernst date_created: 2020-09-08T09:00:27Z date_updated: 2021-09-16T12:49:12Z file_id: '8343' file_name: 2020_Urban_Bezeljak_Thesis.pdf file_size: 31259058 relation: main_file file_date_updated: 2021-09-16T12:49:12Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '215' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7580' relation: part_of_dissertation status: public status: public supervisor: - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 title: In vitro reconstitution of a Rab activation switch tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8032' abstract: - lang: eng text: "Algorithms in computational 3-manifold topology typically take a triangulation as an input and return topological information about the underlying 3-manifold. However, extracting the desired information from a triangulation (e.g., evaluating an invariant) is often computationally very expensive. In recent years this complexity barrier has been successfully tackled in some cases by importing ideas from the theory of parameterized algorithms into the realm of 3-manifolds. Various computationally hard problems were shown to be efficiently solvable for input triangulations that are sufficiently “tree-like.”\r\nIn this thesis we focus on the key combinatorial parameter in the above context: we consider the treewidth of a compact, orientable 3-manifold, i.e., the smallest treewidth of the dual graph of any triangulation thereof. By building on the work of Scharlemann–Thompson and Scharlemann–Schultens–Saito on generalized Heegaard splittings, and on the work of Jaco–Rubinstein on layered triangulations, we establish quantitative relations between the treewidth and classical topological invariants of a 3-manifold. In particular, among other results, we show that the treewidth of a closed, orientable, irreducible, non-Haken 3-manifold is always within a constant factor of its Heegaard genus." acknowledged_ssus: - _id: E-Lib - _id: CampIT alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Kristóf full_name: Huszár, Kristóf id: 33C26278-F248-11E8-B48F-1D18A9856A87 last_name: Huszár orcid: 0000-0002-5445-5057 citation: ama: Huszár K. Combinatorial width parameters for 3-dimensional manifolds. 2020. doi:10.15479/AT:ISTA:8032 apa: Huszár, K. (2020). Combinatorial width parameters for 3-dimensional manifolds. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8032 chicago: Huszár, Kristóf. “Combinatorial Width Parameters for 3-Dimensional Manifolds.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8032. ieee: K. Huszár, “Combinatorial width parameters for 3-dimensional manifolds,” Institute of Science and Technology Austria, 2020. ista: Huszár K. 2020. Combinatorial width parameters for 3-dimensional manifolds. Institute of Science and Technology Austria. mla: Huszár, Kristóf. Combinatorial Width Parameters for 3-Dimensional Manifolds. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8032. short: K. Huszár, Combinatorial Width Parameters for 3-Dimensional Manifolds, Institute of Science and Technology Austria, 2020. date_created: 2020-06-26T10:00:36Z date_published: 2020-06-26T00:00:00Z date_updated: 2023-09-07T13:18:27Z day: '26' ddc: - '514' degree_awarded: PhD department: - _id: UlWa doi: 10.15479/AT:ISTA:8032 file: - access_level: open_access checksum: bd8be6e4f1addc863dfcc0fad29ee9c3 content_type: application/pdf creator: khuszar date_created: 2020-06-26T10:03:58Z date_updated: 2020-07-14T12:48:08Z file_id: '8034' file_name: Kristof_Huszar-Thesis.pdf file_size: 2637562 relation: main_file - access_level: closed checksum: d5f8456202b32f4a77552ef47a2837d1 content_type: application/x-zip-compressed creator: khuszar date_created: 2020-06-26T10:10:06Z date_updated: 2020-07-14T12:48:08Z file_id: '8035' file_name: Kristof_Huszar-Thesis-source.zip file_size: 7163491 relation: source_file file_date_updated: 2020-07-14T12:48:08Z has_accepted_license: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: xviii+120 publication_identifier: isbn: - 978-3-99078-006-0 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '6556' relation: dissertation_contains status: public - id: '7093' relation: dissertation_contains status: public status: public supervisor: - first_name: Uli full_name: Wagner, Uli id: 36690CA2-F248-11E8-B48F-1D18A9856A87 last_name: Wagner orcid: 0000-0002-1494-0568 - first_name: Jonathan full_name: Spreer, Jonathan last_name: Spreer title: Combinatorial width parameters for 3-dimensional manifolds tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8358' abstract: - lang: eng text: "During bacterial cell division, the tubulin-homolog FtsZ forms a ring-like structure at the center of the cell. This so-called Z-ring acts as a scaffold recruiting several division-related proteins to mid-cell and plays a key role in distributing proteins at the division site, a feature driven by the treadmilling motion of FtsZ filaments around the septum. What regulates the architecture, dynamics and stability of the Z-ring is still poorly understood, but FtsZ-associated proteins (Zaps) are known to play an important role. \r\nAdvances in fluorescence microscopy and in vitro reconstitution experiments have helped to shed light into some of the dynamic properties of these complex systems, but methods that allow to collect and analyze large quantitative data sets of the underlying polymer dynamics are still missing.\r\nHere, using an in vitro reconstitution approach, we studied how different Zaps affect FtsZ filament dynamics and organization into large-scale patterns, giving special emphasis to the role of the well-conserved protein ZapA. For this purpose, we use high-resolution fluorescence microscopy combined with novel image analysis workfows to study pattern organization and polymerization dynamics of active filaments. We quantified the influence of Zaps on FtsZ on three diferent spatial scales: the large-scale organization of the membrane-bound filament network, the underlying\r\npolymerization dynamics and the behavior of single molecules.\r\nWe found that ZapA cooperatively increases the spatial order of the filament network, binds only transiently to FtsZ filaments and has no effect on filament length and treadmilling velocity. Our data provides a model for how FtsZ-associated proteins can increase the precision and stability of the bacterial cell division machinery in a\r\nswitch-like manner, without compromising filament dynamics. Furthermore, we believe that our automated quantitative methods can be used to analyze a large variety of dynamic cytoskeletal systems, using standard time-lapse\r\nmovies of homogeneously labeled proteins obtained from experiments in vitro or even inside the living cell.\r\n" acknowledged_ssus: - _id: Bio acknowledgement: I should also express my gratitude to the bioimaging facility at IST Austria, for their assistance with the TIRF setup over the years, and especially to Christoph Sommer, who gave me a lot of input when I was starting to dive into programming. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Paulo R full_name: Dos Santos Caldas, Paulo R id: 38FCDB4C-F248-11E8-B48F-1D18A9856A87 last_name: Dos Santos Caldas orcid: 0000-0001-6730-4461 citation: ama: Dos Santos Caldas PR. Organization and dynamics of treadmilling filaments in cytoskeletal networks of FtsZ and its crosslinkers. 2020. doi:10.15479/AT:ISTA:8358 apa: Dos Santos Caldas, P. R. (2020). Organization and dynamics of treadmilling filaments in cytoskeletal networks of FtsZ and its crosslinkers. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8358 chicago: Dos Santos Caldas, Paulo R. “Organization and Dynamics of Treadmilling Filaments in Cytoskeletal Networks of FtsZ and Its Crosslinkers.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8358. ieee: P. R. Dos Santos Caldas, “Organization and dynamics of treadmilling filaments in cytoskeletal networks of FtsZ and its crosslinkers,” Institute of Science and Technology Austria, 2020. ista: Dos Santos Caldas PR. 2020. Organization and dynamics of treadmilling filaments in cytoskeletal networks of FtsZ and its crosslinkers. Institute of Science and Technology Austria. mla: Dos Santos Caldas, Paulo R. Organization and Dynamics of Treadmilling Filaments in Cytoskeletal Networks of FtsZ and Its Crosslinkers. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8358. short: P.R. Dos Santos Caldas, Organization and Dynamics of Treadmilling Filaments in Cytoskeletal Networks of FtsZ and Its Crosslinkers, Institute of Science and Technology Austria, 2020. date_created: 2020-09-10T09:26:49Z date_published: 2020-09-10T00:00:00Z date_updated: 2023-09-07T13:18:51Z day: '10' ddc: - '572' degree_awarded: PhD department: - _id: MaLo doi: 10.15479/AT:ISTA:8358 file: - access_level: open_access checksum: 882f93fe9c351962120e2669b84bf088 content_type: application/pdf creator: pcaldas date_created: 2020-09-10T12:11:29Z date_updated: 2020-09-10T12:11:29Z file_id: '8364' file_name: phd_thesis_pcaldas.pdf file_size: 141602462 relation: main_file success: 1 - access_level: closed checksum: 70cc9e399c4e41e6e6ac445ae55e8558 content_type: application/x-zip-compressed creator: pcaldas date_created: 2020-09-10T12:18:17Z date_updated: 2020-09-11T07:48:10Z file_id: '8365' file_name: phd_thesis_latex_pcaldas.zip file_size: 450437458 relation: source_file file_date_updated: 2020-09-11T07:48:10Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '135' publication_identifier: isbn: - 978-3-99078-009-1 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7572' relation: dissertation_contains status: public - id: '7197' relation: part_of_dissertation status: public status: public supervisor: - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 title: Organization and dynamics of treadmilling filaments in cytoskeletal networks of FtsZ and its crosslinkers tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8332' abstract: - lang: eng text: "Designing and verifying concurrent programs is a notoriously challenging, time consuming, and error prone task, even for experts. This is due to the sheer number of possible interleavings of a concurrent program, all of which have to be tracked and accounted for in a formal proof. Inventing an inductive invariant that captures all interleavings of a low-level implementation is theoretically possible, but practically intractable. We develop a refinement-based verification framework that provides mechanisms to simplify proof construction by decomposing the verification task into smaller subtasks.\r\n\r\nIn a first line of work, we present a foundation for refinement reasoning over structured concurrent programs. We introduce layered concurrent programs as a compact notation to represent multi-layer refinement proofs. A layered concurrent program specifies a sequence of connected concurrent programs, from most concrete to most abstract, such that common parts of different programs are written exactly once. Each program in this sequence is expressed as structured concurrent program, i.e., a program over (potentially recursive) procedures, imperative control flow, gated atomic actions, structured parallelism, and asynchronous concurrency. This is in contrast to existing refinement-based verifiers, which represent concurrent systems as flat transition relations. We present a powerful refinement proof rule that decomposes refinement checking over structured programs into modular verification conditions. Refinement checking is supported by a new form of modular, parameterized invariants, called yield invariants, and a linear permission system to enhance local reasoning.\r\n\r\nIn a second line of work, we present two new reduction-based program transformations that target asynchronous programs. These transformations reduce the number of interleavings that need to be considered, thus reducing the complexity of invariants. Synchronization simplifies the verification of asynchronous programs by introducing the fiction, for proof purposes, that asynchronous operations complete synchronously. Synchronization summarizes an asynchronous computation as immediate atomic effect. Inductive sequentialization establishes sequential reductions that captures every behavior of the original program up to reordering of coarse-grained commutative actions. A sequential reduction of a concurrent program is easy to reason about since it corresponds to a simple execution of the program in an idealized synchronous environment, where processes act in a fixed order and at the same speed.\r\n\r\nOur approach is implemented the CIVL verifier, which has been successfully used for the verification of several complex concurrent programs. In our methodology, the overall correctness of a program is established piecemeal by focusing on the invariant required for each refinement step separately. While the programmer does the creative work of specifying the chain of programs and the inductive invariant justifying each link in the chain, the tool automatically constructs the verification conditions underlying each refinement step." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Bernhard full_name: Kragl, Bernhard id: 320FC952-F248-11E8-B48F-1D18A9856A87 last_name: Kragl orcid: 0000-0001-7745-9117 citation: ama: 'Kragl B. Verifying concurrent programs: Refinement, synchronization, sequentialization. 2020. doi:10.15479/AT:ISTA:8332' apa: 'Kragl, B. (2020). Verifying concurrent programs: Refinement, synchronization, sequentialization. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8332' chicago: 'Kragl, Bernhard. “Verifying Concurrent Programs: Refinement, Synchronization, Sequentialization.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8332.' ieee: 'B. Kragl, “Verifying concurrent programs: Refinement, synchronization, sequentialization,” Institute of Science and Technology Austria, 2020.' ista: 'Kragl B. 2020. Verifying concurrent programs: Refinement, synchronization, sequentialization. Institute of Science and Technology Austria.' mla: 'Kragl, Bernhard. Verifying Concurrent Programs: Refinement, Synchronization, Sequentialization. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8332.' short: 'B. Kragl, Verifying Concurrent Programs: Refinement, Synchronization, Sequentialization, Institute of Science and Technology Austria, 2020.' date_created: 2020-09-04T12:24:12Z date_published: 2020-09-03T00:00:00Z date_updated: 2023-09-13T08:45:08Z day: '03' ddc: - '000' degree_awarded: PhD department: - _id: ToHe doi: 10.15479/AT:ISTA:8332 file: - access_level: open_access checksum: 26fe261550f691280bda4c454bf015c7 content_type: application/pdf creator: bkragl date_created: 2020-09-04T12:17:47Z date_updated: 2020-09-04T12:17:47Z file_id: '8333' file_name: kragl-thesis.pdf file_size: 1348815 relation: main_file - access_level: closed checksum: b9694ce092b7c55557122adba8337ebc content_type: application/zip creator: bkragl date_created: 2020-09-04T13:00:17Z date_updated: 2020-09-04T13:00:17Z file_id: '8335' file_name: kragl-thesis.zip file_size: 372312 relation: source_file file_date_updated: 2020-09-04T13:00:17Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '120' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '133' relation: part_of_dissertation status: public - id: '8012' relation: part_of_dissertation status: public - id: '8195' relation: part_of_dissertation status: public - id: '160' relation: part_of_dissertation status: public status: public supervisor: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 title: 'Verifying concurrent programs: Refinement, synchronization, sequentialization' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8958' abstract: - lang: eng text: "The oft-quoted dictum by Arthur Schawlow: ``A diatomic molecule has one atom too many'' has been disavowed. Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the rotation of coupled cold molecules in the presence of a many-body environment.\r\nIn this thesis, we introduce new variational approaches to quantum impurities and apply them to the Fröhlich polaron - a quasiparticle formed out of an electron (or other point-like impurity) in a polar medium, and to the angulon - a quasiparticle formed out of a rotating molecule in a bosonic bath.\r\nWith this theoretical toolbox, we reveal the self-localization transition for the angulon quasiparticle. We show that, unlike for polarons, self-localization of angulons occurs at finite impurity-bath coupling already at the mean-field level. The transition is accompanied by the spherical-symmetry breaking of the angulon ground state and a discontinuity in the first derivative of the ground-state energy. Moreover, the type of symmetry breaking is dictated by the symmetry of the microscopic impurity-bath interaction, which leads to a number of distinct self-localized states. \r\nFor the system containing multiple impurities, by analogy with the bipolaron, we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attractive interaction mediated by the excitations of the bath. We study this system from the strong-coupling regime to the weak molecule-bath interaction regime. We show that the molecules tend to have a strong alignment in the ground state, the biangulon shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules and the bath takes place. Finally, we introduce a diagonalization scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two molecules." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Xiang full_name: Li, Xiang id: 4B7E523C-F248-11E8-B48F-1D18A9856A87 last_name: Li citation: ama: Li X. Rotation of coupled cold molecules in the presence of a many-body environment. 2020. doi:10.15479/AT:ISTA:8958 apa: Li, X. (2020). Rotation of coupled cold molecules in the presence of a many-body environment. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8958 chicago: Li, Xiang. “Rotation of Coupled Cold Molecules in the Presence of a Many-Body Environment.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8958. ieee: X. Li, “Rotation of coupled cold molecules in the presence of a many-body environment,” Institute of Science and Technology Austria, 2020. ista: Li X. 2020. Rotation of coupled cold molecules in the presence of a many-body environment. Institute of Science and Technology Austria. mla: Li, Xiang. Rotation of Coupled Cold Molecules in the Presence of a Many-Body Environment. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8958. short: X. Li, Rotation of Coupled Cold Molecules in the Presence of a Many-Body Environment, Institute of Science and Technology Austria, 2020. date_created: 2020-12-21T09:44:30Z date_published: 2020-12-21T00:00:00Z date_updated: 2023-09-20T11:30:58Z day: '21' ddc: - '539' degree_awarded: PhD department: - _id: MiLe doi: 10.15479/AT:ISTA:8958 ec_funded: 1 file: - access_level: open_access checksum: 3994c54a1241451d561db1d4f43bad30 content_type: application/pdf creator: xli date_created: 2020-12-22T10:55:56Z date_updated: 2020-12-22T10:55:56Z file_id: '8967' file_name: THESIS_Xiang_Li.pdf file_size: 3622305 relation: main_file success: 1 - access_level: closed checksum: 0954ecfc5554c05615c14de803341f00 content_type: application/x-zip-compressed creator: xli date_created: 2020-12-22T10:56:03Z date_updated: 2020-12-30T07:18:03Z file_id: '8968' file_name: THESIS_Xiang_Li.zip file_size: 4018859 relation: source_file file_date_updated: 2020-12-30T07:18:03Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: '125' project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '5886' relation: part_of_dissertation status: public - id: '8587' relation: part_of_dissertation status: public - id: '1120' relation: part_of_dissertation status: public status: public supervisor: - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 title: Rotation of coupled cold molecules in the presence of a many-body environment type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8386' abstract: - lang: eng text: "Form versus function is a long-standing debate in various design-related fields, such as architecture as well as graphic and industrial design. A good design that balances form and function often requires considerable human effort and collaboration among experts from different professional fields. Computational design tools provide a new paradigm for designing functional objects. In computational design, form and function are represented as mathematical\r\nquantities, with the help of numerical and combinatorial algorithms, they can assist even novice users in designing versatile models that exhibit their desired functionality. This thesis presents three disparate research studies on the computational design of functional objects: The appearance of 3d print—we optimize the volumetric material distribution for faithfully replicating colored surface texture in 3d printing; the dynamic motion of mechanical structures—\r\nour design system helps the novice user to retarget various mechanical templates with different functionality to complex 3d shapes; and a more abstract functionality, multistability—our algorithm automatically generates models that exhibit multiple stable target poses. For each of these cases, our computational design tools not only ensure the functionality of the results but also permit the user aesthetic freedom over the form. Moreover, fabrication constraints\r\nwere taken into account, which allow for the immediate creation of physical realization via 3D printing or laser cutting." acknowledged_ssus: - _id: SSU acknowledgement: The research in this thesis has received funding from the European Union’s Horizon 2020 research and innovation programme, under the Marie Skłodowska-Curie grant agreement No 642841 (DISTRO) and the European Research Council grant agreement No 715767 (MATERIALIZABLE). All the research projects in this thesis were also supported by Scientific Service Units (SSUs) at IST Austria. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Ran full_name: Zhang, Ran id: 4DDBCEB0-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0002-3808-281X citation: ama: Zhang R. Structure-aware computational design and its application to 3D printable volume scattering, mechanism, and multistability. 2020. doi:10.15479/AT:ISTA:8386 apa: Zhang, R. (2020). Structure-aware computational design and its application to 3D printable volume scattering, mechanism, and multistability. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8386 chicago: Zhang, Ran. “Structure-Aware Computational Design and Its Application to 3D Printable Volume Scattering, Mechanism, and Multistability.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8386. ieee: R. Zhang, “Structure-aware computational design and its application to 3D printable volume scattering, mechanism, and multistability,” Institute of Science and Technology Austria, 2020. ista: Zhang R. 2020. Structure-aware computational design and its application to 3D printable volume scattering, mechanism, and multistability. Institute of Science and Technology Austria. mla: Zhang, Ran. Structure-Aware Computational Design and Its Application to 3D Printable Volume Scattering, Mechanism, and Multistability. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8386. short: R. Zhang, Structure-Aware Computational Design and Its Application to 3D Printable Volume Scattering, Mechanism, and Multistability, Institute of Science and Technology Austria, 2020. date_created: 2020-09-14T01:04:53Z date_published: 2020-09-14T00:00:00Z date_updated: 2023-09-22T09:49:31Z day: '14' ddc: - '003' degree_awarded: PhD department: - _id: BeBi doi: 10.15479/AT:ISTA:8386 ec_funded: 1 file: - access_level: closed checksum: edcf578b6e1c9b0dd81ff72d319b66ba content_type: application/x-zip-compressed creator: rzhang date_created: 2020-09-14T01:02:59Z date_updated: 2020-09-14T12:18:43Z file_id: '8388' file_name: Thesis_Ran.zip file_size: 1245800191 relation: source_file - access_level: open_access checksum: 817e20c33be9247f906925517c56a40d content_type: application/pdf creator: rzhang date_created: 2020-09-15T12:51:53Z date_updated: 2020-09-15T12:51:53Z file_id: '8396' file_name: PhD_thesis_Ran Zhang_20200915.pdf file_size: 161385316 relation: main_file success: 1 file_date_updated: 2020-09-15T12:51:53Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '148' project: - _id: 2508E324-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '642841' name: Distributed 3D Object Design - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '486' relation: part_of_dissertation status: public - id: '1002' relation: part_of_dissertation status: public status: public supervisor: - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 title: Structure-aware computational design and its application to 3D printable volume scattering, mechanism, and multistability type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7996' abstract: - lang: eng text: "Quantum computation enables the execution of algorithms that have exponential complexity. This might open the path towards the synthesis of new materials or medical drugs, optimization of transport or financial strategies etc., intractable on even the fastest classical computers. A quantum computer consists of interconnected two level quantum systems, called qubits, that satisfy DiVincezo’s criteria. Worldwide, there are ongoing efforts to find the qubit architecture which will unite quantum error correction compatible single and two qubit fidelities, long distance qubit to qubit coupling and \r\n calability. Superconducting qubits have gone the furthest in this race, demonstrating an algorithm running on 53 coupled qubits, but still the fidelities are not even close to those required for realizing a single logical qubit. emiconductor qubits offer extremely good characteristics, but they are currently investigated across different platforms. Uniting those good characteristics into a single platform might be a big step towards the quantum computer realization.\r\nHere we describe the implementation of a hole spin qubit hosted in a Ge hut wire double quantum dot. The high and tunable spin-orbit coupling together with a heavy hole state character is expected to allow fast spin manipulation and long coherence times. Furthermore large lever arms, for hut wire devices, should allow good coupling to superconducting resonators enabling efficient long distance spin to spin coupling and a sensitive gate reflectometry spin readout. The developed cryogenic setup (printed circuit board sample holders, filtering, high-frequency wiring) enabled us to perform low temperature spin dynamics experiments. Indeed, we measured the fastest single spin qubit Rabi frequencies reported so far, reaching 140 MHz, while the dephasing times of 130 ns oppose the long decoherence predictions. In order to further investigate this, a double quantum dot gate was connected directly to a lumped element\r\nresonator which enabled gate reflectometry readout. The vanishing inter-dot transition signal, for increasing external magnetic field, revealed the spin nature of the measured quantity." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Josip full_name: Kukucka, Josip id: 3F5D8856-F248-11E8-B48F-1D18A9856A87 last_name: Kukucka citation: ama: Kukucka J. Implementation of a hole spin qubit in Ge hut wires and dispersive spin sensing. 2020. doi:10.15479/AT:ISTA:7996 apa: Kukucka, J. (2020). Implementation of a hole spin qubit in Ge hut wires and dispersive spin sensing. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7996 chicago: Kukucka, Josip. “Implementation of a Hole Spin Qubit in Ge Hut Wires and Dispersive Spin Sensing.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7996. ieee: J. Kukucka, “Implementation of a hole spin qubit in Ge hut wires and dispersive spin sensing,” Institute of Science and Technology Austria, 2020. ista: Kukucka J. 2020. Implementation of a hole spin qubit in Ge hut wires and dispersive spin sensing. Institute of Science and Technology Austria. mla: Kukucka, Josip. Implementation of a Hole Spin Qubit in Ge Hut Wires and Dispersive Spin Sensing. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7996. short: J. Kukucka, Implementation of a Hole Spin Qubit in Ge Hut Wires and Dispersive Spin Sensing, Institute of Science and Technology Austria, 2020. date_created: 2020-06-22T09:22:23Z date_published: 2020-06-22T00:00:00Z date_updated: 2023-09-26T15:50:22Z day: '22' ddc: - '530' degree_awarded: PhD department: - _id: GeKa doi: 10.15479/AT:ISTA:7996 file: - access_level: closed checksum: 467e52feb3e361ce8cf5fe8d5c254ece content_type: application/x-zip-compressed creator: dernst date_created: 2020-06-22T09:22:04Z date_updated: 2020-07-14T12:48:07Z file_id: '7997' file_name: JK_thesis_latex_source_files.zip file_size: 392794743 relation: main_file - access_level: open_access checksum: 1de716bf110dbd77d383e479232bf496 content_type: application/pdf creator: dernst date_created: 2020-06-22T09:21:29Z date_updated: 2020-07-14T12:48:07Z file_id: '7998' file_name: PhD_thesis_JK_pdfa.pdf file_size: 28453247 relation: main_file file_date_updated: 2020-07-14T12:48:07Z has_accepted_license: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: '178' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '1328' relation: part_of_dissertation status: public - id: '7541' relation: part_of_dissertation status: public - id: '77' relation: part_of_dissertation status: public - id: '23' relation: part_of_dissertation status: public - id: '840' relation: part_of_dissertation status: public status: public supervisor: - first_name: Georgios full_name: Katsaros, Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros orcid: 0000-0001-8342-202X title: Implementation of a hole spin qubit in Ge hut wires and dispersive spin sensing type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8390' abstract: - lang: eng text: "Deep neural networks have established a new standard for data-dependent feature extraction pipelines in the Computer Vision literature. Despite their remarkable performance in the standard supervised learning scenario, i.e. when models are trained with labeled data and tested on samples that follow a similar distribution, neural networks have been shown to struggle with more advanced generalization abilities, such as transferring knowledge across visually different domains, or generalizing to new unseen combinations of known concepts. In this thesis we argue that, in contrast to the usual black-box behavior of neural networks, leveraging more structured internal representations is a promising direction\r\nfor tackling such problems. In particular, we focus on two forms of structure. First, we tackle modularity: We show that (i) compositional architectures are a natural tool for modeling reasoning tasks, in that they efficiently capture their combinatorial nature, which is key for generalizing beyond the compositions seen during training. We investigate how to to learn such models, both formally and experimentally, for the task of abstract visual reasoning. Then, we show that (ii) in some settings, modularity allows us to efficiently break down complex tasks into smaller, easier, modules, thereby improving computational efficiency; We study this behavior in the context of generative models for colorization, as well as for small objects detection. Secondly, we investigate the inherently layered structure of representations learned by neural networks, and analyze its role in the context of transfer learning and domain adaptation across visually\r\ndissimilar domains. " acknowledged_ssus: - _id: CampIT - _id: ScienComp acknowledgement: Last but not least, I would like to acknowledge the support of the IST IT and scientific computing team for helping provide a great work environment. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Amélie full_name: Royer, Amélie id: 3811D890-F248-11E8-B48F-1D18A9856A87 last_name: Royer orcid: 0000-0002-8407-0705 citation: ama: Royer A. Leveraging structure in Computer Vision tasks for flexible Deep Learning models. 2020. doi:10.15479/AT:ISTA:8390 apa: Royer, A. (2020). Leveraging structure in Computer Vision tasks for flexible Deep Learning models. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8390 chicago: Royer, Amélie. “Leveraging Structure in Computer Vision Tasks for Flexible Deep Learning Models.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8390. ieee: A. Royer, “Leveraging structure in Computer Vision tasks for flexible Deep Learning models,” Institute of Science and Technology Austria, 2020. ista: Royer A. 2020. Leveraging structure in Computer Vision tasks for flexible Deep Learning models. Institute of Science and Technology Austria. mla: Royer, Amélie. Leveraging Structure in Computer Vision Tasks for Flexible Deep Learning Models. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8390. short: A. Royer, Leveraging Structure in Computer Vision Tasks for Flexible Deep Learning Models, Institute of Science and Technology Austria, 2020. date_created: 2020-09-14T13:42:09Z date_published: 2020-09-14T00:00:00Z date_updated: 2023-10-16T10:04:02Z day: '14' ddc: - '000' degree_awarded: PhD department: - _id: ChLa doi: 10.15479/AT:ISTA:8390 file: - access_level: open_access checksum: c914d2f88846032f3d8507734861b6ee content_type: application/pdf creator: dernst date_created: 2020-09-14T13:39:14Z date_updated: 2020-09-14T13:39:14Z file_id: '8391' file_name: 2020_Thesis_Royer.pdf file_size: 30224591 relation: main_file success: 1 - access_level: closed checksum: ae98fb35d912cff84a89035ae5794d3c content_type: application/x-zip-compressed creator: dernst date_created: 2020-09-14T13:39:17Z date_updated: 2020-09-14T13:39:17Z file_id: '8392' file_name: thesis_sources.zip file_size: 74227627 relation: main_file file_date_updated: 2020-09-14T13:39:17Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '197' publication_identifier: isbn: - 978-3-99078-007-7 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7936' relation: part_of_dissertation status: public - id: '7937' relation: part_of_dissertation status: public - id: '8193' relation: part_of_dissertation status: public - id: '8092' relation: part_of_dissertation status: public - id: '911' relation: part_of_dissertation status: public status: public supervisor: - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 title: Leveraging structure in Computer Vision tasks for flexible Deep Learning models tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7196' abstract: - lang: eng text: 'In this thesis we study certain mathematical aspects of evolution. The two primary forces that drive an evolutionary process are mutation and selection. Mutation generates new variants in a population. Selection chooses among the variants depending on the reproductive rates of individuals. Evolutionary processes are intrinsically random – a new mutation that is initially present in the population at low frequency can go extinct, even if it confers a reproductive advantage. The overall rate of evolution is largely determined by two quantities: the probability that an invading advantageous mutation spreads through the population (called fixation probability) and the time until it does so (called fixation time). Both those quantities crucially depend not only on the strength of the invading mutation but also on the population structure. In this thesis, we aim to understand how the underlying population structure affects the overall rate of evolution. Specifically, we study population structures that increase the fixation probability of advantageous mutants (called amplifiers of selection). Broadly speaking, our results are of three different types: We present various strong amplifiers, we identify regimes under which only limited amplification is feasible, and we propose population structures that provide different tradeoffs between high fixation probability and short fixation time.' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Josef full_name: Tkadlec, Josef id: 3F24CCC8-F248-11E8-B48F-1D18A9856A87 last_name: Tkadlec orcid: 0000-0002-1097-9684 citation: ama: Tkadlec J. A role of graphs in evolutionary processes. 2020. doi:10.15479/AT:ISTA:7196 apa: Tkadlec, J. (2020). A role of graphs in evolutionary processes. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7196 chicago: Tkadlec, Josef. “A Role of Graphs in Evolutionary Processes.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7196. ieee: J. Tkadlec, “A role of graphs in evolutionary processes,” Institute of Science and Technology Austria, 2020. ista: Tkadlec J. 2020. A role of graphs in evolutionary processes. Institute of Science and Technology Austria. mla: Tkadlec, Josef. A Role of Graphs in Evolutionary Processes. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7196. short: J. Tkadlec, A Role of Graphs in Evolutionary Processes, Institute of Science and Technology Austria, 2020. date_created: 2019-12-20T12:26:36Z date_published: 2020-01-12T00:00:00Z date_updated: 2023-10-17T12:29:46Z day: '12' ddc: - '519' degree_awarded: PhD department: - _id: KrCh - _id: GradSch doi: 10.15479/AT:ISTA:7196 file: - access_level: closed checksum: 451f8e64b0eb26bf297644ac72bfcbe9 content_type: application/zip creator: jtkadlec date_created: 2020-01-12T11:49:49Z date_updated: 2020-07-14T12:47:52Z file_id: '7255' file_name: thesis.zip file_size: 21100497 relation: source_file - access_level: open_access checksum: d8c44cbc4f939c49a8efc9d4b8bb3985 content_type: application/pdf creator: dernst date_created: 2020-01-28T07:32:42Z date_updated: 2020-07-14T12:47:52Z file_id: '7367' file_name: 2020_Tkadlec_Thesis.pdf file_size: 11670983 relation: main_file file_date_updated: 2020-07-14T12:47:52Z has_accepted_license: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: '144' publication_identifier: eissn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7210' relation: dissertation_contains status: public - id: '5751' relation: dissertation_contains status: public - id: '7212' relation: dissertation_contains status: public status: public supervisor: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X title: A role of graphs in evolutionary processes type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8156' abstract: - lang: eng text: 'We present solutions to several problems originating from geometry and discrete mathematics: existence of equipartitions, maps without Tverberg multiple points, and inscribing quadrilaterals. Equivariant obstruction theory is the natural topological approach to these type of questions. However, for the specific problems we consider it had yielded only partial or no results. We get our results by complementing equivariant obstruction theory with other techniques from topology and geometry.' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Sergey full_name: Avvakumov, Sergey id: 3827DAC8-F248-11E8-B48F-1D18A9856A87 last_name: Avvakumov citation: ama: Avvakumov S. Topological methods in geometry and discrete mathematics. 2020. doi:10.15479/AT:ISTA:8156 apa: Avvakumov, S. (2020). Topological methods in geometry and discrete mathematics. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8156 chicago: Avvakumov, Sergey. “Topological Methods in Geometry and Discrete Mathematics.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8156. ieee: S. Avvakumov, “Topological methods in geometry and discrete mathematics,” Institute of Science and Technology Austria, 2020. ista: Avvakumov S. 2020. Topological methods in geometry and discrete mathematics. Institute of Science and Technology Austria. mla: Avvakumov, Sergey. Topological Methods in Geometry and Discrete Mathematics. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8156. short: S. Avvakumov, Topological Methods in Geometry and Discrete Mathematics, Institute of Science and Technology Austria, 2020. date_created: 2020-07-23T09:51:29Z date_published: 2020-07-24T00:00:00Z date_updated: 2023-12-18T10:51:01Z day: '24' ddc: - '514' degree_awarded: PhD department: - _id: UlWa doi: 10.15479/AT:ISTA:8156 file: - access_level: closed content_type: application/zip creator: savvakum date_created: 2020-07-27T12:44:51Z date_updated: 2020-07-27T12:44:51Z file_id: '8178' file_name: source.zip file_size: 1061740 relation: source_file - access_level: open_access content_type: application/pdf creator: savvakum date_created: 2020-07-27T12:46:53Z date_updated: 2020-07-27T12:46:53Z file_id: '8179' file_name: thesis_pdfa.pdf file_size: 1336501 relation: main_file success: 1 file_date_updated: 2020-07-27T12:46:53Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '119' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '8182' relation: part_of_dissertation status: public - id: '8183' relation: part_of_dissertation status: public - id: '8185' relation: part_of_dissertation status: public - id: '8184' relation: part_of_dissertation status: public - id: '6355' relation: part_of_dissertation status: public - id: '75' relation: part_of_dissertation status: public status: public supervisor: - first_name: Uli full_name: Wagner, Uli id: 36690CA2-F248-11E8-B48F-1D18A9856A87 last_name: Wagner orcid: 0000-0002-1494-0568 title: Topological methods in geometry and discrete mathematics type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8366' abstract: - lang: eng text: "Fabrication of curved shells plays an important role in modern design, industry, and science. Among their remarkable properties are, for example, aesthetics of organic shapes, ability to evenly distribute loads, or efficient flow separation. They find applications across vast length scales ranging from sky-scraper architecture to microscopic devices. But, at\r\nthe same time, the design of curved shells and their manufacturing process pose a variety of challenges. In this thesis, they are addressed from several perspectives. In particular, this thesis presents approaches based on the transformation of initially flat sheets into the target curved surfaces. This involves problems of interactive design of shells with nontrivial mechanical constraints, inverse design of complex structural materials, and data-driven modeling of delicate and time-dependent physical properties. At the same time, two newly-developed self-morphing mechanisms targeting flat-to-curved transformation are presented.\r\nIn architecture, doubly curved surfaces can be realized as cold bent glass panelizations. Originally flat glass panels are bent into frames and remain stressed. This is a cost-efficient fabrication approach compared to hot bending, when glass panels are shaped plastically. However such constructions are prone to breaking during bending, and it is highly\r\nnontrivial to navigate the design space, keeping the panels fabricable and aesthetically pleasing at the same time. We introduce an interactive design system for cold bent glass façades, while previously even offline optimization for such scenarios has not been sufficiently developed. Our method is based on a deep learning approach providing quick\r\nand high precision estimation of glass panel shape and stress while handling the shape\r\nmultimodality.\r\nFabrication of smaller objects of scales below 1 m, can also greatly benefit from shaping originally flat sheets. In this respect, we designed new self-morphing shell mechanisms transforming from an initial flat state to a doubly curved state with high precision and detail. Our so-called CurveUps demonstrate the encodement of the geometric information\r\ninto the shell. Furthermore, we explored the frontiers of programmable materials and showed how temporal information can additionally be encoded into a flat shell. This allows prescribing deformation sequences for doubly curved surfaces and, thus, facilitates self-collision avoidance enabling complex shapes and functionalities otherwise impossible.\r\nBoth of these methods include inverse design tools keeping the user in the design loop." acknowledged_ssus: - _id: M-Shop - _id: ScienComp acknowledgement: "During the work on this thesis, I received substantial support from IST Austria’s scientific service units. A big thank you to Todor Asenov and other Miba Machine Shop team members for their help with fabrication of experimental prototypes. In addition, I would like to thank Scientific Computing team for the support with high performance computing.\r\nFinancial support was provided by the European Research Council (ERC) under grant agreement No 715767 - MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling, which I gratefully acknowledge." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Ruslan full_name: Guseinov, Ruslan id: 3AB45EE2-F248-11E8-B48F-1D18A9856A87 last_name: Guseinov orcid: 0000-0001-9819-5077 citation: ama: 'Guseinov R. Computational design of curved thin shells: From glass façades to programmable matter. 2020. doi:10.15479/AT:ISTA:8366' apa: 'Guseinov, R. (2020). Computational design of curved thin shells: From glass façades to programmable matter. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8366' chicago: 'Guseinov, Ruslan. “Computational Design of Curved Thin Shells: From Glass Façades to Programmable Matter.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8366.' ieee: 'R. Guseinov, “Computational design of curved thin shells: From glass façades to programmable matter,” Institute of Science and Technology Austria, 2020.' ista: 'Guseinov R. 2020. Computational design of curved thin shells: From glass façades to programmable matter. Institute of Science and Technology Austria.' mla: 'Guseinov, Ruslan. Computational Design of Curved Thin Shells: From Glass Façades to Programmable Matter. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8366.' short: 'R. Guseinov, Computational Design of Curved Thin Shells: From Glass Façades to Programmable Matter, Institute of Science and Technology Austria, 2020.' date_created: 2020-09-10T16:19:55Z date_published: 2020-09-21T00:00:00Z date_updated: 2024-02-21T12:44:29Z day: '21' ddc: - '000' degree_awarded: PhD department: - _id: BeBi doi: 10.15479/AT:ISTA:8366 ec_funded: 1 file: - access_level: open_access checksum: f8da89553da36037296b0a80f14ebf50 content_type: application/pdf creator: rguseino date_created: 2020-09-10T16:11:49Z date_updated: 2020-09-10T16:11:49Z file_id: '8367' file_name: thesis_rguseinov.pdf file_size: 70950442 relation: main_file success: 1 - access_level: closed checksum: e8fd944c960c20e0e27e6548af69121d content_type: application/x-zip-compressed creator: rguseino date_created: 2020-09-11T09:39:48Z date_updated: 2020-09-16T15:11:01Z file_id: '8374' file_name: thesis_source.zip file_size: 76207597 relation: source_file file_date_updated: 2020-09-16T15:11:01Z has_accepted_license: '1' keyword: - computer-aided design - shape modeling - self-morphing - mechanical engineering language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '118' project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication_identifier: isbn: - 978-3-99078-010-7 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7151' relation: research_data status: deleted - id: '7262' relation: part_of_dissertation status: public - id: '8562' relation: part_of_dissertation status: public - id: '1001' relation: part_of_dissertation status: public - id: '8375' relation: research_data status: public status: public supervisor: - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 title: 'Computational design of curved thin shells: From glass façades to programmable matter' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7525' abstract: - lang: eng text: "The medial habenula (MHb) is an evolutionary conserved epithalamic structure important for the modulation of emotional memory. It is involved in regulation of anxiety, compulsive behavior, addiction (nicotinic and opioid), sexual and feeding behavior. MHb receives inputs from septal regions and projects exclusively to the interpeduncular nucleus (IPN). Distinct sub-regions of the septum project to different subnuclei of MHb: the bed nucleus of anterior commissure projects to dorsal MHb and the triangular septum projects to ventral MHb. Furthermore, the dorsal and ventral MHb project to the lateral and rostral/central IPN, respectively. Importantly, these projections have unique features of prominent co-release of different neurotransmitters and requirement of a peculiar type of calcium channel for release. In general, synaptic neurotransmission requires an activity-dependent influx of Ca2+ into the presynaptic terminal through voltage-gated calcium channels. The calcium channel family most commonly involved in neurotransmitter release comprises three members, P/Q-, N- and R-type with Cav2.1, Cav2.2 and Cav2.3 subunits, respectively. In contrast to most CNS synapses that mainly express Cav2.1 and/or Cav2.2, MHb terminals in the IPN exclusively express Cav2.3. In other parts of the brain, such as the hippocampus, Cav2.3 is mostly located to postsynaptic elements. This unusual presynaptic location of Cav2.3 in the MHb-IPN pathway implies unique mechanisms of glutamate release in this pathway. One potential example of such uniqueness is the facilitation of release by GABAB receptor (GBR) activation. Presynaptic GBRs usually inhibit the release of neurotransmitters by inhibiting presynaptic calcium channels. MHb shows the highest expression levels of GBR in the brain. GBRs comprise two subunits, GABAB1 (GB1) and GABAB2 (GB2), and are associated with auxiliary subunits, called potassium channel tetramerization domain containing proteins (KCTD) 8, 12, 12b and 16. Among these four subunits, KCTD12b is exclusively expressed in ventral MHb, and KCTD8 shows the strongest expression in the whole MHb among other brain regions, indicating that KCTD8 and KCTD12b may be involved in the unique mechanisms of neurotransmitter release mediated by Cav2.3 and regulated by GBRs in this pathway. \r\nIn the present study, we first verified that neurotransmission in both dorsal and ventral MHb-IPN pathways is mainly mediated by Cav2.3 using a selective blocker of R-type channels, SNX-482. We next found that baclofen, a GBR agonist, has facilitatory effects on release from ventral MHb terminal in rostral IPN, whereas it has inhibitory effects on release from dorsal MHb terminals in lateral IPN, indicating that KCTD12b expressed exclusively in ventral MHb may have a role in the facilitatory effects of GBR activation. In a heterologous expression system using HEK cells, we found that KCTD8 and KCTD12b but not KCTD12 directly bind with Cav2.3. Pre-embedding immunogold electron microscopy data show that Cav2.3 and KCTD12b are distributed most densely in presynaptic active zone in IPN with KCTD12b being present only in rostral/central but not lateral IPN, whereas GABAB, KCTD8 and KCTD12 are distributed most densely in perisynaptic sites with KCTD12 present more frequently in postsynaptic elements and only in rostral/central IPN. In freeze-fracture replica labelling, Cav2.3, KCTD8 and KCTD12b are co-localized with each other in the same active zone indicating that they may form complexes regulating vesicle release in rostral IPN. \r\nOn electrophysiological studies of wild type (WT) mice, we found that paired-pulse ratio in rostral IPN of KCTD12b knock-out (KO) mice is lower than those of WT and KCTD8 KO mice. Consistent with this finding, in mean variance analysis, release probability in rostral IPN of KCTD12b KO mice is higher than that of WT and KCTD8 KO mice. Although paired-pulse ratios are not different between WT and KCTD8 KO mice, the mean variance analysis revealed significantly lower release probability in rostral IPN of KCTD8 KO than WT mice. These results demonstrate bidirectional regulation of Cav2.3-mediated release by KCTD8 and KCTD12b without GBR activation in rostral IPN. Finally, we examined the baclofen effects in rostral IPN of KCTD8 and KCTD12b KO mice, and found the facilitation of release remained in both KO mice, indicating that the peculiar effects of the GBR activation in this pathway do not depend on the selective expression of these KCTD subunits in ventral MHb. However, we found that presynaptic potentiation of evoked EPSC amplitude by baclofen falls to baseline after washout faster in KCTD12b KO mice than WT, KCTD8 KO and KCTD8/12b double KO mice. This result indicates that KCTD12b is involved in sustained potentiation of vesicle release by GBR activation, whereas KCTD8 is involved in its termination in the absence of KCTD12b. Consistent with these functional findings, replica labelling revealed an increase in density of KCTD8, but not Cav2.3 or GBR at active zone in rostral IPN of KCTD12b KO mice compared with that of WT mice, suggesting that increased association of KCTD8 with Cav2.3 facilitates the release probability and termination of the GBR effect in the absence of KCTD12b.\r\nIn summary, our study provided new insights into the physiological roles of presynaptic Cav2.3, GBRs and their auxiliary subunits KCTDs at an evolutionary conserved neuronal circuit. Future studies will be required to identify the exact molecular mechanism underlying the GBR-mediated presynaptic potentiation on ventral MHb terminals. It remains to be determined whether the prominent presence of presynaptic KCTDs at active zone could exert similar neuromodulatory functions in different pathways of the brain.\r\n" acknowledged_ssus: - _id: EM-Fac alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Pradeep full_name: Bhandari, Pradeep id: 45EDD1BC-F248-11E8-B48F-1D18A9856A87 last_name: Bhandari orcid: 0000-0003-0863-4481 citation: ama: Bhandari P. Localization and functional role of Cav2.3 in the medial habenula to interpeduncular nucleus pathway. 2020. doi:10.15479/AT:ISTA:7525 apa: Bhandari, P. (2020). Localization and functional role of Cav2.3 in the medial habenula to interpeduncular nucleus pathway. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7525 chicago: Bhandari, Pradeep. “Localization and Functional Role of Cav2.3 in the Medial Habenula to Interpeduncular Nucleus Pathway.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7525. ieee: P. Bhandari, “Localization and functional role of Cav2.3 in the medial habenula to interpeduncular nucleus pathway,” Institute of Science and Technology Austria, 2020. ista: Bhandari P. 2020. Localization and functional role of Cav2.3 in the medial habenula to interpeduncular nucleus pathway. Institute of Science and Technology Austria. mla: Bhandari, Pradeep. Localization and Functional Role of Cav2.3 in the Medial Habenula to Interpeduncular Nucleus Pathway. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7525. short: P. Bhandari, Localization and Functional Role of Cav2.3 in the Medial Habenula to Interpeduncular Nucleus Pathway, Institute of Science and Technology Austria, 2020. date_created: 2020-02-26T10:56:37Z date_published: 2020-02-28T00:00:00Z date_updated: 2023-09-07T13:20:03Z day: '28' ddc: - '570' degree_awarded: PhD department: - _id: RySh doi: 10.15479/AT:ISTA:7525 file: - access_level: open_access checksum: 4589234fdb12b4ad72273b311723a7b4 content_type: application/pdf creator: pbhandari date_created: 2020-02-28T08:37:53Z date_updated: 2021-03-01T23:30:04Z embargo: 2021-02-28 file_id: '7538' file_name: Pradeep Bhandari Thesis.pdf file_size: 9646346 relation: main_file title: Localization and functional role of Cav2.3 in the medial habenula to interpeduncular nucleus pathway - access_level: closed checksum: aa79490553ca0a5c9b6fbcd152e93928 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: pbhandari date_created: 2020-02-28T08:47:14Z date_updated: 2021-03-01T23:30:04Z embargo_to: open_access file_id: '7539' file_name: Pradeep Bhandari Thesis.docx file_size: 35252164 relation: source_file title: Localization and functional role of Cav2.3 in the medial habenula to interpeduncular nucleus pathway file_date_updated: 2021-03-01T23:30:04Z has_accepted_license: '1' keyword: - Cav2.3 - medial habenula (MHb) - interpeduncular nucleus (IPN) language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: '79' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 title: Localization and functional role of Cav2.3 in the medial habenula to interpeduncular nucleus pathway type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8657' abstract: - lang: eng text: "Synthesis of proteins – translation – is a fundamental process of life. Quantitative studies anchor translation into the context of bacterial physiology and reveal several mathematical relationships, called “growth laws,” which capture physiological feedbacks between protein synthesis and cell growth. Growth laws describe the dependency of the ribosome abundance as a function of growth rate, which can change depending on the growth conditions. Perturbations of translation reveal that bacteria employ a compensatory strategy in which the reduced translation capability results in increased expression of the translation machinery.\r\nPerturbations of translation are achieved in various ways; clinically interesting is the application of translation-targeting antibiotics – translation inhibitors. The antibiotic effects on bacterial physiology are often poorly understood. Bacterial responses to two or more simultaneously applied antibiotics are even more puzzling. The combined antibiotic effect determines the type of drug interaction, which ranges from synergy (the effect is stronger than expected) to antagonism (the effect is weaker) and suppression (one of the drugs loses its potency).\r\nIn the first part of this work, we systematically measure the pairwise interaction network for translation inhibitors that interfere with different steps in translation. We find that the interactions are surprisingly diverse and tend to be more antagonistic. To explore the underlying mechanisms, we begin with a minimal biophysical model of combined antibiotic action. We base this model on the kinetics of antibiotic uptake and binding together with the physiological response described by the growth laws. The biophysical model explains some drug interactions, but not all; it specifically fails to predict suppression.\r\nIn the second part of this work, we hypothesize that elusive suppressive drug interactions result from the interplay between ribosomes halted in different stages of translation. To elucidate this putative mechanism of drug interactions between translation inhibitors, we generate translation bottlenecks genetically using in- ducible control of translation factors that regulate well-defined translation cycle steps. These perturbations accurately mimic antibiotic action and drug interactions, supporting that the interplay of different translation bottlenecks partially causes these interactions.\r\nWe extend this approach by varying two translation bottlenecks simultaneously. This approach reveals the suppression of translocation inhibition by inhibited translation. We rationalize this effect by modeling dense traffic of ribosomes that move on transcripts in a translation factor-mediated manner. This model predicts a dissolution of traffic jams caused by inhibited translocation when the density of ribosome traffic is reduced by lowered initiation. We base this model on the growth laws and quantitative relationships between different translation and growth parameters.\r\nIn the final part of this work, we describe a set of tools aimed at quantification of physiological and translation parameters. We further develop a simple model that directly connects the abundance of a translation factor with the growth rate, which allows us to extract physiological parameters describing initiation. We demonstrate the development of tools for measuring translation rate.\r\nThis thesis showcases how a combination of high-throughput growth rate mea- surements, genetics, and modeling can reveal mechanisms of drug interactions. Furthermore, by a gradual transition from combinations of antibiotics to precise genetic interventions, we demonstrated the equivalency between genetic and chemi- cal perturbations of translation. These findings tile the path for quantitative studies of antibiotic combinations and illustrate future approaches towards the quantitative description of translation." acknowledged_ssus: - _id: LifeSc - _id: M-Shop acknowledgement: I thank Life Science Facilities for their continuous support with providing top-notch laboratory materials, keeping the devices humming, and coordinating the repairs and building of custom-designed laboratory equipment with the MIBA Machine shop. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Bor full_name: Kavcic, Bor id: 350F91D2-F248-11E8-B48F-1D18A9856A87 last_name: Kavcic orcid: 0000-0001-6041-254X citation: ama: 'Kavcic B. Perturbations of protein synthesis: from antibiotics to genetics and physiology. 2020. doi:10.15479/AT:ISTA:8657' apa: 'Kavcic, B. (2020). Perturbations of protein synthesis: from antibiotics to genetics and physiology. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8657' chicago: 'Kavcic, Bor. “Perturbations of Protein Synthesis: From Antibiotics to Genetics and Physiology.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8657.' ieee: 'B. Kavcic, “Perturbations of protein synthesis: from antibiotics to genetics and physiology,” Institute of Science and Technology Austria, 2020.' ista: 'Kavcic B. 2020. Perturbations of protein synthesis: from antibiotics to genetics and physiology. Institute of Science and Technology Austria.' mla: 'Kavcic, Bor. Perturbations of Protein Synthesis: From Antibiotics to Genetics and Physiology. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8657.' short: 'B. Kavcic, Perturbations of Protein Synthesis: From Antibiotics to Genetics and Physiology, Institute of Science and Technology Austria, 2020.' date_created: 2020-10-13T16:46:14Z date_published: 2020-10-14T00:00:00Z date_updated: 2023-09-07T13:20:48Z day: '14' ddc: - '571' - '530' - '570' degree_awarded: PhD department: - _id: GaTk doi: 10.15479/AT:ISTA:8657 file: - access_level: open_access checksum: d708ecd62b6fcc3bc1feb483b8dbe9eb content_type: application/pdf creator: bkavcic date_created: 2020-10-15T06:41:20Z date_updated: 2021-10-07T22:30:03Z embargo: 2021-10-06 file_id: '8663' file_name: kavcicB_thesis202009.pdf file_size: 52636162 relation: main_file - access_level: closed checksum: bb35f2352a04db19164da609f00501f3 content_type: application/zip creator: bkavcic date_created: 2020-10-15T06:41:53Z date_updated: 2021-10-07T22:30:03Z embargo_to: open_access file_id: '8664' file_name: 2020b.zip file_size: 321681247 relation: source_file file_date_updated: 2021-10-07T22:30:03Z has_accepted_license: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: '271' publication_identifier: isbn: - 978-3-99078-011-4 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7673' relation: part_of_dissertation status: public - id: '8250' relation: part_of_dissertation status: public status: public supervisor: - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 - first_name: Mark Tobias full_name: Bollenbach, Mark Tobias id: 3E6DB97A-F248-11E8-B48F-1D18A9856A87 last_name: Bollenbach orcid: 0000-0003-4398-476X title: 'Perturbations of protein synthesis: from antibiotics to genetics and physiology' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7680' abstract: - lang: eng text: "Proteins and their complex dynamic interactions regulate cellular mechanisms from sensing and transducing extracellular signals, to mediating genetic responses, and sustaining or changing cell morphology. To manipulate these protein-protein interactions (PPIs) that govern the behavior and fate of cells, synthetically constructed, genetically encoded tools provide the means to precisely target proteins of interest (POIs), and control their subcellular localization and activity in vitro and in vivo. Ideal synthetic tools react to an orthogonal cue, i.e. a trigger that does not activate any other endogenous process, thereby allowing manipulation of the POI alone.\r\nIn optogenetics, naturally occurring photosensory domain from plants, algae and bacteria are re-purposed and genetically fused to POIs. Illumination with light of a specific wavelength triggers a conformational change that can mediate PPIs, such as dimerization or oligomerization. By using light as a trigger, these tools can be activated with high spatial and temporal precision, on subcellular and millisecond scales. Chemogenetic tools consist of protein domains that recognize and bind small molecules. By genetic fusion to POIs, these domains can mediate PPIs upon addition of their specific ligands, which are often synthetically designed to provide highly specific interactions and exhibit good bioavailability.\r\nMost optogenetic tools to mediate PPIs are based on well-studied photoreceptors responding to red, blue or near-UV light, leaving a striking gap in the green band of the visible light spectrum. Among both optogenetic and chemogenetic tools, there is an abundance of methods to induce PPIs, but tools to disrupt them require UV illumination, rely on covalent linkage and subsequent enzymatic cleavage or initially result in protein clustering of unknown stoichiometry.\r\nThis work describes how the recently structurally and photochemically characterized green-light responsive cobalamin-binding domains (CBDs) from bacterial transcription factors were re-purposed to function as a green-light responsive optogenetic tool. In contrast to previously engineered optogenetic tools, CBDs do not induce PPI, but rather confer a PPI already upon expression, which can be rapidly disrupted by illumination. This was employed to mimic inhibition of constitutive activity of a growth factor receptor, and successfully implement for cell signalling in mammalian cells and in vivo to rescue development in zebrafish. This work further describes the development and application of a chemically induced de-dimerizer (CDD) based on a recently identified and structurally described bacterial oxyreductase. CDD forms a dimer upon expression in absence of its cofactor, the flavin derivative F420. Safety and of domain expression and ligand exposure are demonstrated in vitro and in vivo in zebrafish. The system is further applied to inhibit cell signalling output from a chimeric receptor upon F420 treatment.\r\nCBDs and CDD expand the repertoire of synthetic tools by providing novel mechanisms of mediating PPIs, and by recognizing previously not utilized cues. In the future, they can readily be combined with existing synthetic tools to functionally manipulate PPIs in vitro and in vivo." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Stephanie full_name: Kainrath, Stephanie id: 32CFBA64-F248-11E8-B48F-1D18A9856A87 last_name: Kainrath citation: ama: Kainrath S. Synthetic tools for optogenetic and chemogenetic inhibition of cellular signals. 2020. doi:10.15479/AT:ISTA:7680 apa: Kainrath, S. (2020). Synthetic tools for optogenetic and chemogenetic inhibition of cellular signals. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7680 chicago: Kainrath, Stephanie. “Synthetic Tools for Optogenetic and Chemogenetic Inhibition of Cellular Signals.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7680. ieee: S. Kainrath, “Synthetic tools for optogenetic and chemogenetic inhibition of cellular signals,” Institute of Science and Technology Austria, 2020. ista: Kainrath S. 2020. Synthetic tools for optogenetic and chemogenetic inhibition of cellular signals. Institute of Science and Technology Austria. mla: Kainrath, Stephanie. Synthetic Tools for Optogenetic and Chemogenetic Inhibition of Cellular Signals. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7680. short: S. Kainrath, Synthetic Tools for Optogenetic and Chemogenetic Inhibition of Cellular Signals, Institute of Science and Technology Austria, 2020. date_created: 2020-04-24T16:00:51Z date_published: 2020-04-24T00:00:00Z date_updated: 2023-09-22T09:20:10Z day: '24' ddc: - '570' degree_awarded: PhD department: - _id: CaGu doi: 10.15479/AT:ISTA:7680 file: - access_level: open_access checksum: fb9a4468eb27be92690728e35c823796 content_type: application/pdf creator: stgingl date_created: 2020-04-28T11:19:21Z date_updated: 2021-10-31T23:30:05Z embargo: 2021-10-30 file_id: '7692' file_name: Thesis_without-signatures_PDFA.pdf file_size: 3268017 relation: main_file - access_level: closed checksum: f6c80ca97104a631a328cb79a2c53493 content_type: application/octet-stream creator: stgingl date_created: 2020-04-28T11:19:24Z date_updated: 2021-10-31T23:30:05Z embargo_to: open_access file_id: '7693' file_name: Thesis_without signatures.docx file_size: 5167703 relation: source_file file_date_updated: 2021-10-31T23:30:05Z has_accepted_license: '1' language: - iso: eng month: '04' oa: 1 oa_version: None page: '98' publication_identifier: eissn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '1028' relation: dissertation_contains status: public status: public supervisor: - first_name: Harald L full_name: Janovjak, Harald L id: 33BA6C30-F248-11E8-B48F-1D18A9856A87 last_name: Janovjak orcid: 0000-0002-8023-9315 title: Synthetic tools for optogenetic and chemogenetic inhibition of cellular signals type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8620' abstract: - lang: eng text: "The development of the human brain occurs through a tightly regulated series of dynamic and adaptive processes during prenatal and postnatal life. A disruption of this strictly orchestrated series of events can lead to a number of neurodevelopmental conditions, including Autism Spectrum Disorders (ASDs). ASDs are a very common, etiologically and phenotypically heterogeneous group of disorders sharing the core symptoms of social interaction and communication deficits and restrictive and repetitive interests and behaviors. They are estimated to affect one in 59 individuals in the U.S. and, over the last three decades, mutations in more than a hundred genetic loci have been convincingly linked to ASD pathogenesis. Yet, for the vast majority of these ASD-risk genes their role during brain development and precise molecular function still remain elusive.\r\nDe novo loss of function mutations in the ubiquitin ligase-encoding gene Cullin 3 (CUL3) lead to ASD. In the study described here, we used Cul3 mouse models to evaluate the consequences of Cul3 mutations in vivo. Our results show that Cul3 heterozygous knockout mice exhibit deficits in motor coordination as well as ASD-relevant social and cognitive impairments. Cul3+/-, Cul3+/fl Emx1-Cre and Cul3fl/fl Emx1-Cre mutant brains display cortical lamination abnormalities due to defective migration of post-mitotic excitatory neurons, as well as reduced numbers of excitatory and inhibitory neurons. In line with the observed abnormal cortical organization, Cul3 heterozygous deletion is associated with decreased spontaneous excitatory and inhibitory activity in the cortex. At the molecular level we show that Cul3 regulates cytoskeletal and adhesion protein abundance in the mouse embryonic cortex. Abnormal regulation of cytoskeletal proteins in Cul3 mutant neural cells results in atypical organization of the actin mesh at the cell leading edge. Of note, heterozygous deletion of Cul3 in adult mice does not induce the majority of the behavioral defects observed in constitutive Cul3 haploinsufficient animals, pointing to a critical time-window for Cul3 deficiency.\r\nIn conclusion, our data indicate that Cul3 plays a critical role in the regulation of cytoskeletal proteins and neuronal migration. ASD-associated defects and behavioral abnormalities are primarily due to dosage sensitive Cul3 functions at early brain developmental stages." acknowledged_ssus: - _id: Bio - _id: PreCl acknowledgement: I would like to especially thank Armel Nicolas from the Proteomics and Christoph Sommer from the Bioimaging Facilities for the data analysis, and to thank the team of the Preclinical Facility, especially Sabina Deixler, Angela Schlerka, Anita Lepold, Mihalea Mihai and Michael Schun for taking care of the mouse line maintenance and their great support. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Jasmin full_name: Morandell, Jasmin id: 4739D480-F248-11E8-B48F-1D18A9856A87 last_name: Morandell citation: ama: Morandell J. Illuminating the role of Cul3 in autism spectrum disorder pathogenesis. 2020. doi:10.15479/AT:ISTA:8620 apa: Morandell, J. (2020). Illuminating the role of Cul3 in autism spectrum disorder pathogenesis. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8620 chicago: Morandell, Jasmin. “Illuminating the Role of Cul3 in Autism Spectrum Disorder Pathogenesis.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8620. ieee: J. Morandell, “Illuminating the role of Cul3 in autism spectrum disorder pathogenesis,” Institute of Science and Technology Austria, 2020. ista: Morandell J. 2020. Illuminating the role of Cul3 in autism spectrum disorder pathogenesis. Institute of Science and Technology Austria. mla: Morandell, Jasmin. Illuminating the Role of Cul3 in Autism Spectrum Disorder Pathogenesis. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8620. short: J. Morandell, Illuminating the Role of Cul3 in Autism Spectrum Disorder Pathogenesis, Institute of Science and Technology Austria, 2020. date_created: 2020-10-07T14:53:13Z date_published: 2020-10-12T00:00:00Z date_updated: 2023-09-07T13:22:14Z day: '12' ddc: - '610' degree_awarded: PhD department: - _id: GaNo doi: 10.15479/AT:ISTA:8620 file: - access_level: open_access checksum: 7ee83e42de3e5ce2fedb44dff472f75f content_type: application/pdf creator: jmorande date_created: 2020-10-07T14:41:49Z date_updated: 2021-10-16T22:30:04Z embargo: 2021-10-15 file_id: '8621' file_name: Jasmin_Morandell_Thesis-2020_final.pdf file_size: 16155786 relation: main_file - access_level: closed checksum: 5e0464af453734210ce7aab7b4a92e3a content_type: application/x-zip-compressed creator: jmorande date_created: 2020-10-07T14:45:07Z date_updated: 2021-10-16T22:30:04Z embargo_to: open_access file_id: '8622' file_name: Jasmin_Morandell_Thesis-2020_final.zip file_size: 24344152 relation: source_file file_date_updated: 2021-10-16T22:30:04Z has_accepted_license: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: '138' project: - _id: 2548AE96-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: W1232-B24 name: Molecular Drug Targets - _id: 05A0D778-7A3F-11EA-A408-12923DDC885E grant_number: F07807 name: Neural stem cells in autism and epilepsy publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7800' relation: part_of_dissertation status: public - id: '8131' relation: part_of_dissertation status: public status: public supervisor: - first_name: Gaia full_name: Novarino, Gaia id: 3E57A680-F248-11E8-B48F-1D18A9856A87 last_name: Novarino orcid: 0000-0002-7673-7178 title: Illuminating the role of Cul3 in autism spectrum disorder pathogenesis type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8340' abstract: - lang: eng text: Mitochondria are sites of oxidative phosphorylation in eukaryotic cells. Oxidative phosphorylation operates by a chemiosmotic mechanism made possible by redox-driven proton pumping machines which establish a proton motive force across the inner mitochondrial membrane. This electrochemical proton gradient is used to drive ATP synthesis, which powers the majority of cellular processes such as protein synthesis, locomotion and signalling. In this thesis I investigate the structures and molecular mechanisms of two inner mitochondrial proton pumping enzymes, respiratory complex I and transhydrogenase. I present the first high-resolution structure of the full transhydrogenase from any species, and a significantly improved structure of complex I. Improving the resolution from 3.3 Å available previously to up to 2.3 Å in this thesis allowed us to model bound water molecules, crucial in the proton pumping mechanism. For both enzymes, up to five cryo-EM datasets with different substrates and inhibitors bound were solved to delineate the catalytic cycle and understand the proton pumping mechanism. In transhydrogenase, the proton channel is gated by reversible detachment of the NADP(H)-binding domain which opens the proton channel to the opposite sites of the membrane. In complex I, the proton channels are gated by reversible protonation of key glutamate and lysine residues and breaking of the water wire connecting the proton pumps with the quinone reduction site. The tight coupling between the redox and the proton pumping reactions in transhydrogenase is achieved by controlling the NADP(H) exchange which can only happen when the NADP(H)-binding domain interacts with the membrane domain. In complex I, coupling is achieved by cycling of the whole complex between the closed state, in which quinone can get reduced, and the open state, in which NADH can induce quinol ejection from the binding pocket. On the basis of these results I propose detailed mechanisms for catalytic cycles of transhydrogenase and complex I that are consistent with a large amount of previous work. In both enzymes, conformational and electrostatic mechanisms contribute to the overall catalytic process. Results presented here could be used for better understanding of the human pathologies arising from deficiencies of complex I or transhydrogenase and could be used to develop novel therapies. acknowledged_ssus: - _id: EM-Fac acknowledgement: 'I acknowledge the support of IST facilities, especially the Electron Miscroscopy facility for providing training and resources. Special thanks also go to cryo-EM specialists who helped me to collect the data present here: Dr Valentin Hodirnau (IST Austria), Dr Tom Heuser (IMBA, Vienna), Dr Rebecca Thompson (Uni. of Leeds) and Dr Jirka Nováček (CEITEC). This work has been supported by iNEXT, project number 653706, funded by the Horizon 2020 programme of the European Union. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385.' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Domen full_name: Kampjut, Domen id: 37233050-F248-11E8-B48F-1D18A9856A87 last_name: Kampjut citation: ama: Kampjut D. Molecular mechanisms of mitochondrial redox-coupled proton pumping enzymes. 2020. doi:10.15479/AT:ISTA:8340 apa: Kampjut, D. (2020). Molecular mechanisms of mitochondrial redox-coupled proton pumping enzymes. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8340 chicago: Kampjut, Domen. “Molecular Mechanisms of Mitochondrial Redox-Coupled Proton Pumping Enzymes.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8340. ieee: D. Kampjut, “Molecular mechanisms of mitochondrial redox-coupled proton pumping enzymes,” Institute of Science and Technology Austria, 2020. ista: Kampjut D. 2020. Molecular mechanisms of mitochondrial redox-coupled proton pumping enzymes. Institute of Science and Technology Austria. mla: Kampjut, Domen. Molecular Mechanisms of Mitochondrial Redox-Coupled Proton Pumping Enzymes. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8340. short: D. Kampjut, Molecular Mechanisms of Mitochondrial Redox-Coupled Proton Pumping Enzymes, Institute of Science and Technology Austria, 2020. date_created: 2020-09-07T18:42:23Z date_published: 2020-09-09T00:00:00Z date_updated: 2023-09-07T13:26:17Z day: '09' ddc: - '572' degree_awarded: PhD department: - _id: LeSa doi: 10.15479/AT:ISTA:8340 ec_funded: 1 file: - access_level: closed checksum: dd270baf82121eb4472ad19d77bf227c content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dkampjut date_created: 2020-09-08T13:32:06Z date_updated: 2021-09-11T22:30:04Z embargo_to: open_access file_id: '8345' file_name: ThesisFull20200908.docx file_size: 166146359 relation: source_file - access_level: open_access checksum: 82fce6f95ffa47ecc4ebca67ea2cc38c content_type: application/pdf creator: dernst date_created: 2020-09-14T15:02:20Z date_updated: 2021-09-11T22:30:04Z embargo: 2021-09-10 file_id: '8393' file_name: 2020_Thesis_Kampjut.pdf file_size: 13873769 relation: main_file file_date_updated: 2021-09-11T22:30:04Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: None page: '242' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication_identifier: isbn: - 978-3-99078-008-4 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '6848' relation: part_of_dissertation status: public status: public supervisor: - first_name: Leonid A full_name: Sazanov, Leonid A id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 title: Molecular mechanisms of mitochondrial redox-coupled proton pumping enzymes type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8983' abstract: - lang: eng text: Metabolic adaptation is a critical feature of migrating cells. It tunes the metabolic programs of migrating cells to allow them to efficiently exert their crucial roles in development, inflammatory responses and tumor metastasis. Cell migration through physically challenging contexts requires energy. However, how the metabolic reprogramming that underlies in vivo cell invasion is controlled is still unanswered. In my PhD project, I identify a novel conserved metabolic shift in Drosophila melanogaster immune cells that by modulating their bioenergetic potential controls developmentally programmed tissue invasion. We show that this regulation requires a novel conserved nuclear protein, named Atossa. Atossa enhances the transcription of a set of proteins, including an RNA helicase Porthos and two metabolic enzymes, each of which increases the tissue invasion of leading Drosophila macrophages and can rescue the atossa mutant phenotype. Porthos selectively regulates the translational efficiency of a subset of mRNAs containing a 5’-UTR cis-regulatory TOP-like sequence. These 5’TOPL mRNA targets encode mitochondrial-related proteins, including subunits of mitochondrial oxidative phosphorylation (OXPHOS) components III and V and other metabolic-related proteins. Porthos powers up mitochondrial OXPHOS to engender a sufficient ATP supply, which is required for tissue invasion of leading macrophages. Atossa’s two vertebrate orthologs rescue the invasion defect. In my PhD project, I elucidate that Atossa displays a conserved developmental metabolic control to modulate metabolic capacities and the cellular energy state, through altered transcription and translation, to aid the tissue infiltration of leading cells into energy demanding barriers. acknowledged_ssus: - _id: Bio - _id: LifeSc - _id: E-Lib - _id: CampIT acknowledgement: Also, I would like to express my appreciation and thanks to the Bioimaging facility, LSF, GSO, library, and IT people at IST Austria. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Shamsi full_name: Emtenani, Shamsi id: 49D32318-F248-11E8-B48F-1D18A9856A87 last_name: Emtenani orcid: 0000-0001-6981-6938 citation: ama: Emtenani S. Metabolic regulation of Drosophila macrophage tissue invasion. 2020. doi:10.15479/AT:ISTA:8983 apa: Emtenani, S. (2020). Metabolic regulation of Drosophila macrophage tissue invasion. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8983 chicago: Emtenani, Shamsi. “Metabolic Regulation of Drosophila Macrophage Tissue Invasion.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8983. ieee: S. Emtenani, “Metabolic regulation of Drosophila macrophage tissue invasion,” Institute of Science and Technology Austria, 2020. ista: Emtenani S. 2020. Metabolic regulation of Drosophila macrophage tissue invasion. Institute of Science and Technology Austria. mla: Emtenani, Shamsi. Metabolic Regulation of Drosophila Macrophage Tissue Invasion. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8983. short: S. Emtenani, Metabolic Regulation of Drosophila Macrophage Tissue Invasion, Institute of Science and Technology Austria, 2020. date_created: 2020-12-30T15:41:26Z date_published: 2020-12-30T00:00:00Z date_updated: 2023-09-07T13:24:17Z day: '30' ddc: - '570' degree_awarded: PhD department: - _id: DaSi doi: 10.15479/AT:ISTA:8983 file: - access_level: open_access checksum: ec2797ab7a6f253b35df0572b36d1b43 content_type: application/pdf creator: semtenan date_created: 2020-12-30T15:34:01Z date_updated: 2021-12-31T23:30:04Z embargo: 2021-12-30 file_id: '8984' file_name: Thesis_Shamsi_Emtenani_pdfA.pdf file_size: 10848175 relation: main_file - access_level: closed checksum: cc30e6608a9815414024cf548dff3b3a content_type: application/pdf creator: semtenan date_created: 2020-12-30T15:37:36Z date_updated: 2021-12-31T23:30:04Z embargo_to: open_access file_id: '8985' file_name: Thesis_Shamsi_Emtenani_source file.pdf file_size: 10073648 relation: source_file file_date_updated: 2021-12-31T23:30:04Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: '141' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '8557' relation: part_of_dissertation status: public - id: '6187' relation: part_of_dissertation status: public status: public supervisor: - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 title: Metabolic regulation of Drosophila macrophage tissue invasion type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7258' abstract: - lang: eng text: Many flows encountered in nature and applications are characterized by a chaotic motion known as turbulence. Turbulent flows generate intense friction with pipe walls and are responsible for considerable amounts of energy losses at world scale. The nature of turbulent friction and techniques aimed at reducing it have been subject of extensive research over the last century, but no definite answer has been found yet. In this thesis we show that in pipes at moderate turbulent Reynolds numbers friction is better described by the power law first introduced by Blasius and not by the Prandtl–von Kármán formula. At higher Reynolds numbers, large scale motions gradually become more important in the flow and can be related to the change in scaling of friction. Next, we present a series of new techniques that can relaminarize turbulence by suppressing a key mechanism that regenerates it at walls, the lift–up effect. In addition, we investigate the process of turbulence decay in several experiments and discuss the drag reduction potential. Finally, we examine the behavior of friction under pulsating conditions inspired by the human heart cycle and we show that under such circumstances turbulent friction can be reduced to produce energy savings. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Davide full_name: Scarselli, Davide id: 40315C30-F248-11E8-B48F-1D18A9856A87 last_name: Scarselli orcid: 0000-0001-5227-4271 citation: ama: Scarselli D. New approaches to reduce friction in turbulent pipe flow. 2020. doi:10.15479/AT:ISTA:7258 apa: Scarselli, D. (2020). New approaches to reduce friction in turbulent pipe flow. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7258 chicago: Scarselli, Davide. “New Approaches to Reduce Friction in Turbulent Pipe Flow.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7258. ieee: D. Scarselli, “New approaches to reduce friction in turbulent pipe flow,” Institute of Science and Technology Austria, 2020. ista: Scarselli D. 2020. New approaches to reduce friction in turbulent pipe flow. Institute of Science and Technology Austria. mla: Scarselli, Davide. New Approaches to Reduce Friction in Turbulent Pipe Flow. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7258. short: D. Scarselli, New Approaches to Reduce Friction in Turbulent Pipe Flow, Institute of Science and Technology Austria, 2020. date_created: 2020-01-12T16:07:26Z date_published: 2020-01-13T00:00:00Z date_updated: 2023-09-15T12:20:08Z day: '13' ddc: - '532' degree_awarded: PhD department: - _id: BjHo doi: 10.15479/AT:ISTA:7258 ec_funded: 1 file: - access_level: closed checksum: 4df1ab24e9896635106adde5a54615bf content_type: application/zip creator: dscarsel date_created: 2020-01-12T15:57:14Z date_updated: 2021-01-13T23:30:05Z embargo_to: open_access file_id: '7259' file_name: 2020_Scarselli_Thesis.zip file_size: 26640830 relation: source_file - access_level: open_access checksum: 48659ab98e3414293c7a721385c2fd1c content_type: application/pdf creator: dscarsel date_created: 2020-01-12T15:56:14Z date_updated: 2021-01-13T23:30:05Z embargo: 2021-01-12 file_id: '7260' file_name: 2020_Scarselli_Thesis.pdf file_size: 8515844 relation: main_file file_date_updated: 2021-01-13T23:30:05Z has_accepted_license: '1' language: - iso: eng month: '01' oa: 1 oa_version: None page: '174' project: - _id: 25152F3A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '306589' name: Decoding the complexity of turbulence at its origin - _id: 25104D44-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '737549' name: Eliminating turbulence in oil pipelines - _id: 25136C54-B435-11E9-9278-68D0E5697425 grant_number: HO 4393/1-2 name: Experimental studies of the turbulence transition and transport processes in turbulent Taylor-Couette currents publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '6228' relation: part_of_dissertation status: public - id: '6486' relation: part_of_dissertation status: public - id: '461' relation: part_of_dissertation status: public - id: '422' relation: part_of_dissertation status: public status: public supervisor: - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 title: New approaches to reduce friction in turbulent pipe flow type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8653' abstract: - lang: eng text: "Mutations are the raw material of evolution and come in many different flavors. Point mutations change a single letter in the DNA sequence, while copy number mutations like duplications or deletions add or remove many letters of the DNA sequence simultaneously. Each type of mutation exhibits specific properties like its rate of formation and reversal. \r\nGene expression is a fundamental phenotype that can be altered by both, point and copy number mutations. The following thesis is concerned with the dynamics of gene expression evolution and how it is affected by the properties exhibited by point and copy number mutations. Specifically, we are considering i) copy number mutations during adaptation to fluctuating environments and ii) the interaction of copy number and point mutations during adaptation to constant environments.  " alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Isabella full_name: Tomanek, Isabella id: 3981F020-F248-11E8-B48F-1D18A9856A87 last_name: Tomanek orcid: 0000-0001-6197-363X citation: ama: Tomanek I. The evolution of gene expression by copy number and point mutations. 2020. doi:10.15479/AT:ISTA:8653 apa: Tomanek, I. (2020). The evolution of gene expression by copy number and point mutations. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8653 chicago: Tomanek, Isabella. “The Evolution of Gene Expression by Copy Number and Point Mutations.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8653. ieee: I. Tomanek, “The evolution of gene expression by copy number and point mutations,” Institute of Science and Technology Austria, 2020. ista: Tomanek I. 2020. The evolution of gene expression by copy number and point mutations. Institute of Science and Technology Austria. mla: Tomanek, Isabella. The Evolution of Gene Expression by Copy Number and Point Mutations. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8653. short: I. Tomanek, The Evolution of Gene Expression by Copy Number and Point Mutations, Institute of Science and Technology Austria, 2020. date_created: 2020-10-13T13:02:33Z date_published: 2020-10-13T00:00:00Z date_updated: 2023-09-07T13:22:42Z day: '13' ddc: - '576' degree_awarded: PhD department: - _id: CaGu doi: 10.15479/AT:ISTA:8653 file: - access_level: closed checksum: c01d9f59794b4b70528f37637c17ad02 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: itomanek date_created: 2020-10-16T12:14:21Z date_updated: 2021-10-20T22:30:03Z embargo_to: open_access file_id: '8666' file_name: Thesis_ITomanek_final_201016.docx file_size: 25131884 relation: source_file - access_level: open_access checksum: f8edbc3b0f81a780e13ca1e561d42d8b content_type: application/pdf creator: itomanek date_created: 2020-10-16T12:14:21Z date_updated: 2021-10-20T22:30:03Z embargo: 2021-10-19 file_id: '8667' file_name: Thesis_ITomanek_final_201016.pdf file_size: 15405675 relation: main_file file_date_updated: 2021-10-20T22:30:03Z has_accepted_license: '1' keyword: - duplication - amplification - promoter - CNV - AMGET - experimental evolution - Escherichia coli language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: '117' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7652' relation: research_data status: public status: public supervisor: - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 title: The evolution of gene expression by copy number and point mutations type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8822' abstract: - lang: eng text: "Self-organization is a hallmark of plant development manifested e.g. by intricate leaf vein patterns, flexible formation of vasculature during organogenesis or its regeneration following wounding. Spontaneously arising channels transporting the phytohormone auxin, created by coordinated polar localizations of PIN-FORMED 1 (PIN1) auxin exporter, provide positional cues for these as well as other plant patterning processes. To find regulators acting downstream of auxin and the TIR1/AFB auxin signaling pathway essential for PIN1 coordinated polarization during auxin canalization, we performed microarray experiments. Besides the known components of general PIN polarity maintenance, such as PID and PIP5K kinases, we identified and characterized a new regulator of auxin canalization, the transcription factor WRKY DNA-BINDING PROTEIN 23 (WRKY23).\r\nNext, we designed a subsequent microarray experiment to further uncover other molecular players, downstream of auxin-TIR1/AFB-WRKY23 involved in the regulation of auxin-mediated PIN repolarization. We identified a novel and crucial part of the molecular machinery underlying auxin canalization. The auxin-regulated malectin-type receptor-like kinase CAMEL and the associated leucine-rich repeat receptor-like kinase CANAR target and directly phosphorylate PIN auxin transporters. camel and canar mutants are impaired in PIN1 subcellular trafficking and auxin-mediated repolarization leading to defects in auxin transport, ultimately to leaf venation and vasculature regeneration defects. Our results describe the CAMEL-CANAR receptor complex, which is required for auxin feed-back on its own transport and thus for coordinated tissue polarization during auxin canalization." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Jakub full_name: Hajny, Jakub id: 4800CC20-F248-11E8-B48F-1D18A9856A87 last_name: Hajny orcid: 0000-0003-2140-7195 citation: ama: Hajny J. Identification and characterization of the molecular machinery of auxin-dependent canalization during vasculature formation and regeneration. 2020. doi:10.15479/AT:ISTA:8822 apa: Hajny, J. (2020). Identification and characterization of the molecular machinery of auxin-dependent canalization during vasculature formation and regeneration. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8822 chicago: Hajny, Jakub. “Identification and Characterization of the Molecular Machinery of Auxin-Dependent Canalization during Vasculature Formation and Regeneration.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8822. ieee: J. Hajny, “Identification and characterization of the molecular machinery of auxin-dependent canalization during vasculature formation and regeneration,” Institute of Science and Technology Austria, 2020. ista: Hajny J. 2020. Identification and characterization of the molecular machinery of auxin-dependent canalization during vasculature formation and regeneration. Institute of Science and Technology Austria. mla: Hajny, Jakub. Identification and Characterization of the Molecular Machinery of Auxin-Dependent Canalization during Vasculature Formation and Regeneration. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8822. short: J. Hajny, Identification and Characterization of the Molecular Machinery of Auxin-Dependent Canalization during Vasculature Formation and Regeneration, Institute of Science and Technology Austria, 2020. date_created: 2020-12-01T12:38:18Z date_published: 2020-12-01T00:00:00Z date_updated: 2023-09-19T10:39:33Z day: '01' ddc: - '580' degree_awarded: PhD department: - _id: JiFr doi: 10.15479/AT:ISTA:8822 file: - access_level: closed checksum: 210a9675af5e4c78b0b56d920ac82866 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: jhajny date_created: 2020-12-04T07:27:52Z date_updated: 2021-07-16T22:30:03Z embargo_to: open_access file_id: '8919' file_name: Jakub Hajný IST Austria final_JH.docx file_size: 91279806 relation: source_file - access_level: open_access checksum: 1781385b4aa73eba89cc76c6172f71d2 content_type: application/pdf creator: jhajny date_created: 2020-12-09T15:04:41Z date_updated: 2021-12-08T23:30:03Z embargo: 2021-12-07 file_id: '8933' file_name: Jakub Hajný IST Austria final_JH-merged without Science.pdf file_size: 68707697 relation: main_file file_date_updated: 2021-12-08T23:30:03Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: '249' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7427' relation: part_of_dissertation status: public - id: '6260' relation: part_of_dissertation status: public - id: '7500' relation: part_of_dissertation status: public - id: '191' relation: part_of_dissertation status: public - id: '449' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 title: Identification and characterization of the molecular machinery of auxin-dependent canalization during vasculature formation and regeneration type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8350' abstract: - lang: eng text: "Cytoplasm is a gel-like crowded environment composed of tens of thousands of macromolecules, organelles, cytoskeletal networks and cytosol. The structure of the cytoplasm is thought to be highly organized and heterogeneous due to the crowding of its constituents and their effective compartmentalization. In such an environment, the diffusive dynamics of the molecules is very restricted, an effect that is further amplified by clustering and anchoring of molecules. Despite the jammed nature of the cytoplasm at the microscopic scale, large-scale reorganization of cytoplasm is essential for important cellular functions, such as nuclear positioning and cell division. How such mesoscale reorganization of the cytoplasm is achieved, especially for very large cells such as oocytes or syncytial tissues that can span hundreds of micrometers in size, has only begun to be understood.\r\nIn this thesis, I focus on the recent advances in elucidating the molecular, cellular and biophysical principles underlying cytoplasmic organization across different scales, structures and species. First, I outline which of these principles have been identified by reductionist approaches, such as in vitro reconstitution assays, where boundary conditions and components can be modulated at ease. I then describe how the theoretical and experimental framework established in these reduced systems have been applied to their more complex in vivo counterparts, in particular oocytes and embryonic syncytial structures, and discuss how such complex biological systems can initiate symmetry breaking and establish patterning.\r\nSpecifically, I examine an example of large-scale reorganizations taking place in zebrafish embryos, where extensive cytoplasmic streaming leads to the segregation of cytoplasm from yolk granules along the animal-vegetal axis of the embryo. Using biophysical experimentation and theory, I investigate the forces underlying this process, to show that this process does not rely on cortical actin reorganization, as previously thought, but instead on a cell-cycle-dependent bulk actin polymerization wave traveling from the animal to the vegetal pole of the embryo. This wave functions in segregation by both pulling cytoplasm animally and pushing yolk granules vegetally. Cytoplasm pulling is mediated by bulk actin network flows exerting friction forces on the cytoplasm, while yolk granule pushing is achieved by a mechanism closely resembling actin comet formation on yolk granules. This study defines a novel role of bulk actin polymerization waves in embryo polarization via cytoplasmic segregation. Lastly, I describe the cytoplasmic reorganizations taking place during zebrafish oocyte maturation, where the initial segregation of the cytoplasm and yolk granules occurs. Here, I demonstrate a previously uncharacterized wave of microtubule aster formation, traveling the oocyte along the animal-vegetal axis. Further research is required to determine the role of such microtubule structures in cytoplasmic reorganizations therein.\r\nCollectively, these studies provide further evidence for the coupling between cell cytoskeleton and cell cycle machinery, which can underlie a core self-organizing mechanism for orchestrating large-scale reorganizations in a cell-cycle-tunable manner, where the modulations of the force-generating machinery and cytoplasmic mechanics can be harbored to fulfill cellular functions." acknowledged_ssus: - _id: PreCl - _id: Bio - _id: EM-Fac acknowledgement: "I would have had no fish and hence no results without our wonderful fish facility crew, Verena Mayer, Eva Schlegl, Andreas Mlak and Matthias Nowak. Special thanks to Verena for being always happy to help and dealing with our chaotic schedules in the lab. Danke auch, Verena, für deine Geduld, mit mir auf Deutsch zu sprechen. Das hat mir sehr geholfen.\r\nSpecial thanks to the Bioimaging and EM facilities at IST Austria for supporting us every day. Very special thanks would go to Robert Hauschild for his continuous support on data analysis and also to Jack Merrin for designing and building microfabricated chambers for the project and for the various discussions on making zebrafish extracts." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Shayan full_name: Shamipour, Shayan id: 40B34FE2-F248-11E8-B48F-1D18A9856A87 last_name: Shamipour citation: ama: Shamipour S. Bulk actin dynamics drive phase segregation in zebrafish oocytes . 2020. doi:10.15479/AT:ISTA:8350 apa: Shamipour, S. (2020). Bulk actin dynamics drive phase segregation in zebrafish oocytes . Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8350 chicago: Shamipour, Shayan. “Bulk Actin Dynamics Drive Phase Segregation in Zebrafish Oocytes .” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8350. ieee: S. Shamipour, “Bulk actin dynamics drive phase segregation in zebrafish oocytes ,” Institute of Science and Technology Austria, 2020. ista: Shamipour S. 2020. Bulk actin dynamics drive phase segregation in zebrafish oocytes . Institute of Science and Technology Austria. mla: Shamipour, Shayan. Bulk Actin Dynamics Drive Phase Segregation in Zebrafish Oocytes . Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8350. short: S. Shamipour, Bulk Actin Dynamics Drive Phase Segregation in Zebrafish Oocytes , Institute of Science and Technology Austria, 2020. date_created: 2020-09-09T11:12:10Z date_published: 2020-09-09T00:00:00Z date_updated: 2023-09-27T14:16:45Z day: '09' ddc: - '570' degree_awarded: PhD department: - _id: BjHo - _id: CaHe doi: 10.15479/AT:ISTA:8350 file: - access_level: closed checksum: 6e47871c74f85008b9876112eb3fcfa1 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: sshamip date_created: 2020-09-09T11:06:27Z date_updated: 2021-09-11T22:30:05Z embargo_to: open_access file_id: '8351' file_name: Shayan-Thesis-Final.docx file_size: 65194814 relation: source_file - access_level: open_access checksum: 1b44c57f04d7e8a6fe41b1c9c55a52a3 content_type: application/pdf creator: sshamip date_created: 2020-09-09T11:06:13Z date_updated: 2021-09-11T22:30:05Z embargo: 2021-09-10 file_id: '8352' file_name: Shayan-Thesis-Final.pdf file_size: 23729605 relation: main_file file_date_updated: 2021-09-11T22:30:05Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: None page: '107' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '661' relation: part_of_dissertation status: public - id: '6508' relation: part_of_dissertation status: public - id: '7001' relation: part_of_dissertation status: public - id: '735' relation: part_of_dissertation status: public status: public supervisor: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 title: 'Bulk actin dynamics drive phase segregation in zebrafish oocytes ' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7902' abstract: - lang: eng text: "Mosaic genetic analysis has been widely used in different model organisms such as the fruit fly to study gene-function in a cell-autonomous or tissue-specific fashion. More recently, and less easily conducted, mosaic genetic analysis in mice has also been enabled with the ambition to shed light on human gene function and disease. These genetic tools are of particular interest, but not restricted to, the study of the brain. Notably, the MADM technology offers a genetic approach in mice to visualize and concomitantly manipulate small subsets of genetically defined cells at a clonal level and single cell resolution. MADM-based analysis has already advanced the study of genetic mechanisms regulating brain development and is expected that further MADM-based analysis of genetic alterations will continue to reveal important insights on the fundamental principles of development and disease to potentially assist in the development of new therapies or treatments.\r\nIn summary, this work completed and characterized the necessary genome-wide genetic tools to perform MADM-based analysis at single cell level of the vast majority of mouse genes in virtually any cell type and provided a protocol to perform lineage tracing using the novel MADM resource. Importantly, this work also explored and revealed novel aspects of biologically relevant events in an in vivo context, such as the chromosome-specific bias of chromatid sister segregation pattern, the generation of cell-type diversity in the cerebral cortex and in the cerebellum and finally, the relevance of the interplay between the cell-autonomous gene function and cell-non-autonomous (community) effects in radial glial progenitor lineage progression.\r\nThis work provides a foundation and opens the door to further elucidating the molecular mechanisms underlying neuronal diversity and astrocyte generation." acknowledged_ssus: - _id: PreCl - _id: Bio alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Ximena full_name: Contreras, Ximena id: 475990FE-F248-11E8-B48F-1D18A9856A87 last_name: Contreras citation: ama: Contreras X. Genetic dissection of neural development in health and disease at single cell resolution. 2020. doi:10.15479/AT:ISTA:7902 apa: Contreras, X. (2020). Genetic dissection of neural development in health and disease at single cell resolution. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7902 chicago: Contreras, Ximena. “Genetic Dissection of Neural Development in Health and Disease at Single Cell Resolution.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7902. ieee: X. Contreras, “Genetic dissection of neural development in health and disease at single cell resolution,” Institute of Science and Technology Austria, 2020. ista: Contreras X. 2020. Genetic dissection of neural development in health and disease at single cell resolution. Institute of Science and Technology Austria. mla: Contreras, Ximena. Genetic Dissection of Neural Development in Health and Disease at Single Cell Resolution. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7902. short: X. Contreras, Genetic Dissection of Neural Development in Health and Disease at Single Cell Resolution, Institute of Science and Technology Austria, 2020. date_created: 2020-05-29T08:27:32Z date_published: 2020-06-05T00:00:00Z date_updated: 2023-10-18T08:45:16Z day: '05' ddc: - '570' degree_awarded: PhD department: - _id: SiHi doi: 10.15479/AT:ISTA:7902 ec_funded: 1 file: - access_level: closed checksum: 43c172bf006c95b65992d473c7240d13 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: xcontreras date_created: 2020-06-05T08:18:08Z date_updated: 2021-06-07T22:30:03Z embargo_to: open_access file_id: '7927' file_name: PhDThesis_Contreras.docx file_size: 53134142 relation: source_file - access_level: open_access checksum: addfed9128271be05cae3608e03a6ec0 content_type: application/pdf creator: xcontreras date_created: 2020-06-05T08:18:07Z date_updated: 2021-06-07T22:30:03Z embargo: 2021-06-06 file_id: '7928' file_name: PhDThesis_Contreras.pdf file_size: 35117191 relation: main_file file_date_updated: 2021-06-07T22:30:03Z has_accepted_license: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: '214' project: - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '6830' relation: dissertation_contains status: public - id: '28' relation: dissertation_contains status: public - id: '7815' relation: dissertation_contains status: public status: public supervisor: - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 title: Genetic dissection of neural development in health and disease at single cell resolution type: dissertation user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8311' abstract: - lang: eng text: 'One of the core promises of blockchain technology is that of enabling trustworthy data dissemination in a trustless environment. What current blockchain systems deliver, however, is slow dissemination of public data, rendering blockchain technology unusable in settings where latency, transaction capacity, or data confidentiality are important. In this thesis we focus on providing solutions on two of the most pressing problems blockchain technology currently faces: scalability and data confidentiality. To address the scalability issue, we present OMNILEDGER, a novel scale-out distributed ledger that preserves long-term security under permissionless operation. It ensures security and correctness by using a bias-resistant public-randomness protocol for choosing large, statistically representative shards that process transactions, and by introducing an efficient cross-shard commit protocol that atomically handles transactions affecting multiple shards. To enable secure sharing of confidential data we present CALYPSO, the first fully decentralized, auditable access-control framework for secure blockchain-based data sharing which builds upon two abstractions. First, on-chain secrets enable collective management of (verifiably shared) secrets under a Byzantine adversary where an access-control blockchain enforces user-specific access rules and a secret-management cothority administers encrypted data. Second, skipchain-based identity and access management enables efficient administration of dynamic, sovereign identities and access policies and, in particular, permits clients to maintain long-term relationships with respect to evolving user identities thanks to the trust-delegating forward links of skipchains. In order to build OMNILEDGER and CALYPSO, we first build a set of tools for efficient decentralization, which are presented in Part II of this dissertation. These tools can be used in decentralized and distributed systems to achieve (1) scalable consensus (BYZCOIN), (2) bias- resistant distributed randomness creations (RANDHOUND), and (3) relationship-keeping between independently updating communication endpoints (SKIPCHAINIAC). Although we use this tools in the scope off this thesis, they can be (and already have been) used in a far wider scope.' article_processing_charge: No author: - first_name: Eleftherios full_name: Kokoris Kogias, Eleftherios id: f5983044-d7ef-11ea-ac6d-fd1430a26d30 last_name: Kokoris Kogias citation: ama: Kokoris Kogias E. Secure, confidential blockchains providing high throughput and low latency. 2019. doi:10.5075/epfl-thesis-7101 apa: Kokoris Kogias, E. (2019). Secure, confidential blockchains providing high throughput and low latency. École Polytechnique Fédérale de Lausanne. https://doi.org/10.5075/epfl-thesis-7101 chicago: Kokoris Kogias, Eleftherios. “Secure, Confidential Blockchains Providing High Throughput and Low Latency.” École Polytechnique Fédérale de Lausanne, 2019. https://doi.org/10.5075/epfl-thesis-7101. ieee: E. Kokoris Kogias, “Secure, confidential blockchains providing high throughput and low latency,” École Polytechnique Fédérale de Lausanne, 2019. ista: Kokoris Kogias E. 2019. Secure, confidential blockchains providing high throughput and low latency. École Polytechnique Fédérale de Lausanne. mla: Kokoris Kogias, Eleftherios. Secure, Confidential Blockchains Providing High Throughput and Low Latency. École Polytechnique Fédérale de Lausanne, 2019, doi:10.5075/epfl-thesis-7101. short: E. Kokoris Kogias, Secure, Confidential Blockchains Providing High Throughput and Low Latency, École Polytechnique Fédérale de Lausanne, 2019. date_created: 2020-08-27T11:22:24Z date_published: 2019-09-27T00:00:00Z date_updated: 2021-12-20T15:30:47Z day: '27' degree_awarded: PhD doi: 10.5075/epfl-thesis-7101 extern: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://www.doi.org/10.5075/epfl-thesis-7101 month: '09' oa: 1 oa_version: Published Version page: '244' publication_status: published publisher: École Polytechnique Fédérale de Lausanne status: public supervisor: - first_name: Bryan Alexander full_name: Ford, Bryan Alexander last_name: Ford title: Secure, confidential blockchains providing high throughput and low latency type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2019' ... --- _id: '6957' abstract: - lang: eng text: "In many shear flows like pipe flow, plane Couette flow, plane Poiseuille flow, etc. turbulence emerges subcritically. Here, when subjected to strong enough perturbations, the flow becomes turbulent in spite of the laminar base flow being linearly stable. The nature of this instability has puzzled the scientific community for decades. At onset, turbulence appears in localized patches and flows are spatio-temporally intermittent. In pipe flow the localized turbulent structures are referred to as puffs and in planar flows like plane Couette and channel flow, patches arise in the form of localized oblique bands. In this thesis, we study the onset of turbulence in channel flow in direct numerical simulations from a dynamical system theory perspective, as well as by performing experiments in a large aspect ratio channel.\r\n\r\nThe aim of the experimental work is to determine the critical Reynolds number where turbulence first becomes sustained. Recently, the onset of turbulence has been described in analogy to absorbing state phase transition (i.e. directed percolation). In particular, it has been shown that the critical point can be estimated from the competition between spreading and decay processes. Here, by performing experiments, we identify the mechanisms underlying turbulence proliferation in channel flow and find the critical Reynolds number, above which turbulence becomes sustained. Above the critical point, the continuous growth at the tip of the stripes outweighs the stochastic shedding of turbulent patches at the tail and the stripes expand. For growing stripes, the probability to decay decreases while the probability of stripe splitting increases. Consequently, and unlike for the puffs in pipe flow, neither of these two processes is time-independent i.e. memoryless. Coupling between stripe expansion and creation of new stripes via splitting leads to a significantly lower critical point ($Re_c=670+/-10$) than most earlier studies suggest. \r\n\r\nWhile the above approach sheds light on how turbulence first becomes sustained, it provides no insight into the origin of the stripes themselves. In the numerical part of the thesis we investigate how turbulent stripes form from invariant solutions of the Navier-Stokes equations. The origin of these turbulent stripes can be identified by applying concepts from the dynamical system theory. In doing so, we identify the exact coherent structures underlying stripes and their bifurcations and how they give rise to the turbulent attractor in phase space. We first report a family of localized nonlinear traveling wave solutions of the Navier-Stokes equations in channel flow. These solutions show structural similarities with turbulent stripes in experiments like obliqueness, quasi-streamwise streaks and vortices, etc. A parametric study of these traveling wave solution is performed, with parameters like Reynolds number, stripe tilt angle and domain size, including the stability of the solutions. These solutions emerge through saddle-node bifurcations and form a phase space skeleton for the turbulent stripes observed in the experiments. The lower branches of these TW solutions at different tilt angles undergo Hopf bifurcation and new solutions branches of relative periodic orbits emerge. These RPO solutions do not belong to the same family and therefore the routes to chaos for different angles are different. \r\n\r\nIn shear flows, turbulence at onset is transient in nature. \ Consequently,turbulence can not be tracked to lower Reynolds numbers, where the dynamics may simplify. Before this happens, turbulence becomes short-lived and laminarizes. In the last part of the thesis, we show that using numerical simulations we can continue turbulent stripes in channel flow past the 'relaminarization barrier' all the way to their origin. Here, turbulent stripe dynamics simplifies and the fluctuations are no longer stochastic and the stripe settles down to a relative periodic orbit. This relative periodic orbit originates from the aforementioned traveling wave solutions. Starting from the relative periodic orbit, a small increase in speed i.e. Reynolds number gives rise to chaos and the attractor dimension sharply increases in contrast to the classical transition scenario where the instabilities affect the flow globally and give rise to much more gradual route to turbulence." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Chaitanya S full_name: Paranjape, Chaitanya S id: 3D85B7C4-F248-11E8-B48F-1D18A9856A87 last_name: Paranjape citation: ama: Paranjape CS. Onset of turbulence in plane Poiseuille flow. 2019. doi:10.15479/AT:ISTA:6957 apa: Paranjape, C. S. (2019). Onset of turbulence in plane Poiseuille flow. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6957 chicago: Paranjape, Chaitanya S. “Onset of Turbulence in Plane Poiseuille Flow.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6957. ieee: C. S. Paranjape, “Onset of turbulence in plane Poiseuille flow,” Institute of Science and Technology Austria, 2019. ista: Paranjape CS. 2019. Onset of turbulence in plane Poiseuille flow. Institute of Science and Technology Austria. mla: Paranjape, Chaitanya S. Onset of Turbulence in Plane Poiseuille Flow. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6957. short: C.S. Paranjape, Onset of Turbulence in Plane Poiseuille Flow, Institute of Science and Technology Austria, 2019. date_created: 2019-10-22T12:08:43Z date_published: 2019-10-24T00:00:00Z date_updated: 2023-09-07T12:53:25Z day: '24' ddc: - '532' degree_awarded: PhD department: - _id: BjHo doi: 10.15479/AT:ISTA:6957 file: - access_level: closed checksum: 7ba298ba0ce7e1d11691af6b8eaf0a0a content_type: application/zip creator: cparanjape date_created: 2019-10-23T09:54:43Z date_updated: 2020-07-14T12:47:46Z file_id: '6962' file_name: Chaitanya_Paranjape_source_files_tex_figures.zip file_size: 45828099 relation: source_file - access_level: open_access checksum: 642697618314e31ac31392da7909c2d9 content_type: application/pdf creator: cparanjape date_created: 2019-10-23T10:37:09Z date_updated: 2020-07-14T12:47:46Z file_id: '6963' file_name: Chaitanya_Paranjape_Thesis.pdf file_size: 19504197 relation: main_file file_date_updated: 2020-07-14T12:47:46Z has_accepted_license: '1' keyword: - Instabilities - Turbulence - Nonlinear dynamics language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: '138' publication_identifier: eissn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 title: Onset of turbulence in plane Poiseuille flow type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '7186' abstract: - lang: eng text: "Tissue morphogenesis in developmental or physiological processes is regulated by molecular\r\nand mechanical signals. While the molecular signaling cascades are increasingly well\r\ndescribed, the mechanical signals affecting tissue shape changes have only recently been\r\nstudied in greater detail. To gain more insight into the mechanochemical and biophysical\r\nbasis of an epithelial spreading process (epiboly) in early zebrafish development, we studied\r\ncell-cell junction formation and actomyosin network dynamics at the boundary between\r\nsurface layer epithelial cells (EVL) and the yolk syncytial layer (YSL). During zebrafish epiboly,\r\nthe cell mass sitting on top of the yolk cell spreads to engulf the yolk cell by the end of\r\ngastrulation. It has been previously shown that an actomyosin ring residing within the YSL\r\npulls on the EVL tissue through a cable-constriction and a flow-friction motor, thereby\r\ndragging the tissue vegetal wards. Pulling forces are likely transmitted from the YSL\r\nactomyosin ring to EVL cells; however, the nature and formation of the junctional structure\r\nmediating this process has not been well described so far. Therefore, our main aim was to\r\ndetermine the nature, dynamics and potential function of the EVL-YSL junction during this\r\nepithelial tissue spreading. Specifically, we show that the EVL-YSL junction is a\r\nmechanosensitive structure, predominantly made of tight junction (TJ) proteins. The process\r\nof TJ mechanosensation depends on the retrograde flow of non-junctional, phase-separated\r\nZonula Occludens-1 (ZO-1) protein clusters towards the EVL-YSL boundary. Interestingly, we\r\ncould demonstrate that ZO-1 is present in a non-junctional pool on the surface of the yolk\r\ncell, and ZO-1 undergoes a phase separation process that likely renders the protein\r\nresponsive to flows. These flows are directed towards the junction and mediate proper\r\ntension-dependent recruitment of ZO-1. Upon reaching the EVL-YSL junction ZO-1 gets\r\nincorporated into the junctional pool mediated through its direct actin-binding domain.\r\nWhen the non-junctional pool and/or ZO-1 direct actin binding is absent, TJs fail in their\r\nproper mechanosensitive responses resulting in slower tissue spreading. We could further\r\ndemonstrate that depletion of ZO proteins within the YSL results in diminished actomyosin\r\nring formation. This suggests that a mechanochemical feedback loop is at work during\r\nzebrafish epiboly: ZO proteins help in proper actomyosin ring formation and actomyosin\r\ncontractility and flows positively influence ZO-1 junctional recruitment. Finally, such a\r\nmesoscale polarization process mediated through the flow of phase-separated protein\r\nclusters might have implications for other processes such as immunological synapse\r\nformation, C. elegans zygote polarization and wound healing." acknowledged_ssus: - _id: Bio - _id: LifeSc - _id: EM-Fac - _id: SSU alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Cornelia full_name: Schwayer, Cornelia id: 3436488C-F248-11E8-B48F-1D18A9856A87 last_name: Schwayer orcid: 0000-0001-5130-2226 citation: ama: Schwayer C. Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. 2019. doi:10.15479/AT:ISTA:7186 apa: Schwayer, C. (2019). Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7186 chicago: Schwayer, Cornelia. “Mechanosensation of Tight Junctions Depends on ZO-1 Phase Separation and Flow.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:7186. ieee: C. Schwayer, “Mechanosensation of tight junctions depends on ZO-1 phase separation and flow,” Institute of Science and Technology Austria, 2019. ista: Schwayer C. 2019. Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. Institute of Science and Technology Austria. mla: Schwayer, Cornelia. Mechanosensation of Tight Junctions Depends on ZO-1 Phase Separation and Flow. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:7186. short: C. Schwayer, Mechanosensation of Tight Junctions Depends on ZO-1 Phase Separation and Flow, Institute of Science and Technology Austria, 2019. date_created: 2019-12-16T14:26:14Z date_published: 2019-12-16T00:00:00Z date_updated: 2023-09-07T12:56:42Z day: '16' ddc: - '570' degree_awarded: PhD department: - _id: CaHe doi: 10.15479/AT:ISTA:7186 file: - access_level: closed checksum: 585583c1c875c5d9525703a539668a7c content_type: application/zip creator: cschwayer date_created: 2019-12-19T15:18:11Z date_updated: 2020-07-14T12:47:52Z file_id: '7194' file_name: DocumentSourceFiles.zip file_size: 19431292 relation: source_file - access_level: open_access checksum: 9b9b24351514948d27cec659e632e2cd content_type: application/pdf creator: cschwayer date_created: 2019-12-19T15:19:21Z date_updated: 2020-07-14T12:47:52Z file_id: '7195' file_name: Thesis_CS_final.pdf file_size: 19226428 relation: main_file file_date_updated: 2020-07-14T12:47:52Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: '107' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '1096' relation: dissertation_contains status: public - id: '7001' relation: part_of_dissertation status: public status: public supervisor: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 title: Mechanosensation of tight junctions depends on ZO-1 phase separation and flow type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6681' abstract: - lang: eng text: "The first part of the thesis considers the computational aspects of the homotopy groups πd(X) of a topological space X. It is well known that there is no algorithm to decide whether the fundamental group π1(X) of a given finite simplicial complex X is trivial. On the other hand, there are several algorithms that, given a finite simplicial complex X that is simply connected (i.e., with π1(X) trivial), compute the higher homotopy group πd(X) for any given d ≥ 2.\r\nHowever, these algorithms come with a caveat: They compute the isomorphism type of πd(X), d ≥ 2 as an abstract finitely generated abelian group given by generators and relations, but they work with very implicit representations of the elements of πd(X). We present an algorithm that, given a simply connected space X, computes πd(X) and represents its elements as simplicial maps from suitable triangulations of the d-sphere Sd to X. For fixed d, the algorithm runs in time exponential in size(X), the number of simplices of X. Moreover, we prove that this is optimal: For every fixed d ≥ 2,\r\nwe construct a family of simply connected spaces X such that for any simplicial map representing a generator of πd(X), the size of the triangulation of S d on which the map is defined, is exponential in size(X).\r\nIn the second part of the thesis, we prove that the following question is algorithmically undecidable for d < ⌊3(k+1)/2⌋, k ≥ 5 and (k, d) ̸= (5, 7), which covers essentially everything outside the meta-stable range: Given a finite simplicial complex K of dimension k, decide whether there exists a piecewise-linear (i.e., linear on an arbitrarily fine subdivision of K) embedding f : K ↪→ Rd of K into a d-dimensional Euclidean space." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Stephan Y full_name: Zhechev, Stephan Y id: 3AA52972-F248-11E8-B48F-1D18A9856A87 last_name: Zhechev citation: ama: Zhechev SY. Algorithmic aspects of homotopy theory and embeddability. 2019. doi:10.15479/AT:ISTA:6681 apa: Zhechev, S. Y. (2019). Algorithmic aspects of homotopy theory and embeddability. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6681 chicago: Zhechev, Stephan Y. “Algorithmic Aspects of Homotopy Theory and Embeddability.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6681. ieee: S. Y. Zhechev, “Algorithmic aspects of homotopy theory and embeddability,” Institute of Science and Technology Austria, 2019. ista: Zhechev SY. 2019. Algorithmic aspects of homotopy theory and embeddability. Institute of Science and Technology Austria. mla: Zhechev, Stephan Y. Algorithmic Aspects of Homotopy Theory and Embeddability. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6681. short: S.Y. Zhechev, Algorithmic Aspects of Homotopy Theory and Embeddability, Institute of Science and Technology Austria, 2019. date_created: 2019-07-26T11:14:34Z date_published: 2019-08-08T00:00:00Z date_updated: 2023-09-07T13:10:36Z day: '08' ddc: - '514' degree_awarded: PhD department: - _id: UlWa doi: 10.15479/AT:ISTA:6681 file: - access_level: open_access checksum: 3231e7cbfca3b5687366f84f0a57a0c0 content_type: application/pdf creator: szhechev date_created: 2019-08-07T13:02:50Z date_updated: 2020-07-14T12:47:37Z file_id: '6771' file_name: Stephan_Zhechev_thesis.pdf file_size: 1464227 relation: main_file - access_level: closed checksum: 85d65eb27b4377a9e332ee37a70f08b6 content_type: application/octet-stream creator: szhechev date_created: 2019-08-07T13:03:22Z date_updated: 2020-07-14T12:47:37Z file_id: '6772' file_name: Stephan_Zhechev_thesis.tex file_size: 303988 relation: source_file - access_level: closed checksum: 86b374d264ca2dd53e712728e253ee75 content_type: application/zip creator: szhechev date_created: 2019-08-07T13:03:34Z date_updated: 2020-07-14T12:47:37Z file_id: '6773' file_name: supplementary_material.zip file_size: 1087004 relation: supplementary_material file_date_updated: 2020-07-14T12:47:37Z has_accepted_license: '1' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: '104' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '6774' relation: part_of_dissertation status: public status: public supervisor: - first_name: Uli full_name: Wagner, Uli id: 36690CA2-F248-11E8-B48F-1D18A9856A87 last_name: Wagner orcid: 0000-0002-1494-0568 title: Algorithmic aspects of homotopy theory and embeddability tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6894' abstract: - lang: eng text: "Hybrid automata combine finite automata and dynamical systems, and model the interaction of digital with physical systems. Formal analysis that can guarantee the safety of all behaviors or rigorously witness failures, while unsolvable in general, has been tackled algorithmically using, e.g., abstraction, bounded model-checking, assisted theorem proving.\r\nNevertheless, very few methods have addressed the time-unbounded reachability analysis of hybrid automata and, for current sound and automatic tools, scalability remains critical. We develop methods for the polyhedral abstraction of hybrid automata, which construct coarse overapproximations and tightens them incrementally, in a CEGAR fashion. We use template polyhedra, i.e., polyhedra whose facets are normal to a given set of directions.\r\nWhile, previously, directions were given by the user, we introduce (1) the first method\r\nfor computing template directions from spurious counterexamples, so as to generalize and\r\neliminate them. The method applies naturally to convex hybrid automata, i.e., hybrid\r\nautomata with (possibly non-linear) convex constraints on derivatives only, while for linear\r\nODE requires further abstraction. Specifically, we introduce (2) the conic abstractions,\r\nwhich, partitioning the state space into appropriate (possibly non-uniform) cones, divide\r\ncurvy trajectories into relatively straight sections, suitable for polyhedral abstractions.\r\nFinally, we introduce (3) space-time interpolation, which, combining interval arithmetic\r\nand template refinement, computes appropriate (possibly non-uniform) time partitioning\r\nand template directions along spurious trajectories, so as to eliminate them.\r\nWe obtain sound and automatic methods for the reachability analysis over dense\r\nand unbounded time of convex hybrid automata and hybrid automata with linear ODE.\r\nWe build prototype tools and compare—favorably—our methods against the respective\r\nstate-of-the-art tools, on several benchmarks." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Mirco full_name: Giacobbe, Mirco id: 3444EA5E-F248-11E8-B48F-1D18A9856A87 last_name: Giacobbe orcid: 0000-0001-8180-0904 citation: ama: Giacobbe M. Automatic time-unbounded reachability analysis of hybrid systems. 2019. doi:10.15479/AT:ISTA:6894 apa: Giacobbe, M. (2019). Automatic time-unbounded reachability analysis of hybrid systems. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6894 chicago: Giacobbe, Mirco. “Automatic Time-Unbounded Reachability Analysis of Hybrid Systems.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6894. ieee: M. Giacobbe, “Automatic time-unbounded reachability analysis of hybrid systems,” Institute of Science and Technology Austria, 2019. ista: Giacobbe M. 2019. Automatic time-unbounded reachability analysis of hybrid systems. Institute of Science and Technology Austria. mla: Giacobbe, Mirco. Automatic Time-Unbounded Reachability Analysis of Hybrid Systems. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6894. short: M. Giacobbe, Automatic Time-Unbounded Reachability Analysis of Hybrid Systems, Institute of Science and Technology Austria, 2019. date_created: 2019-09-22T14:08:44Z date_published: 2019-09-30T00:00:00Z date_updated: 2023-09-19T09:30:43Z day: '30' ddc: - '000' degree_awarded: PhD department: - _id: ToHe doi: 10.15479/AT:ISTA:6894 file: - access_level: open_access checksum: 773beaf4a85dc2acc2c12b578fbe1965 content_type: application/pdf creator: mgiacobbe date_created: 2019-09-27T14:15:05Z date_updated: 2020-07-14T12:47:43Z file_id: '6916' file_name: giacobbe_thesis.pdf file_size: 4100685 relation: main_file - access_level: closed checksum: 97f1c3da71feefd27e6e625d32b4c75b content_type: application/gzip creator: mgiacobbe date_created: 2019-09-27T14:22:04Z date_updated: 2020-07-14T12:47:43Z file_id: '6917' file_name: giacobbe_thesis_src.tar.gz file_size: 7959732 relation: source_file file_date_updated: 2020-07-14T12:47:43Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '132' publication_identifier: eissn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '631' relation: part_of_dissertation status: public - id: '647' relation: part_of_dissertation status: public - id: '140' relation: part_of_dissertation status: public status: public supervisor: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 title: Automatic time-unbounded reachability analysis of hybrid systems tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '7172' abstract: - lang: eng text: "The development and growth of Arabidopsis thaliana is regulated by a combination of genetic programing and also by the environmental influences. An important role in these processes play the phytohormones and among them, auxin is crucial as it controls many important functions. It is transported through the whole plant body by creating local and temporal concentration maxima and minima, which have an impact on the cell status, tissue and organ identity. Auxin has the property to undergo a directional and finely regulated cell-to-cell transport, which is enabled by the transport proteins, localized on the plasma membrane. An important role in this process have the PIN auxin efflux proteins, which have an asymmetric/polar subcellular localization and determine the directionality of the auxin transport. During the last years, there were significant advances in understanding how the trafficking molecular machineries function, including studies on molecular interactions, function, subcellular localization and intracellular distribution. However, there is still a lack of detailed characterization on the steps of endocytosis, exocytosis, endocytic recycling and degradation. Due to this fact, I focused on the identification of novel trafficking factors and better characterization of the intracellular trafficking pathways. My PhD thesis consists of an introductory chapter, three experimental chapters, a chapter containing general discussion, conclusions and perspectives and also an appendix chapter with published collaborative papers.\r\nThe first chapter is separated in two different parts: I start by a general introduction to auxin biology and then I introduce the trafficking pathways in the model plant Arabidopsis thaliana. Then, I explain also the phosphorylation-signals for polar targeting and also the roles of the phytohormone strigolactone.\r\nThe second chapter includes the characterization of bar1/sacsin mutant, which was identified in a forward genetic screen for novel trafficking components in Arabidopsis thaliana, where by the implementation of an EMS-treated pPIN1::PIN1-GFP marker line and by using the established inhibitor of ARF-GEFs, Brefeldin A (BFA) as a tool to study trafficking processes, we identified a novel factor, which is mediating the adaptation of the plant cell to ARF-GEF inhibition. The mutation is in a previously uncharacterized gene, encoding a very big protein that we, based on its homologies, called SACSIN with domains suggesting roles as a molecular chaperon or as a component of the ubiquitin-proteasome system. Our physiology and imaging studies revealed that SACSIN is a crucial plant cell component of the adaptation to the ARF-GEF inhibition.\r\nThe third chapter includes six subchapters, where I focus on the role of the phytohormone strigolactone, which interferes with auxin feedback on PIN internalization. Strigolactone moderates the polar auxin transport by increasing the internalization of the PIN auxin efflux carriers, which reduces the canalization related growth responses. In addition, I also studied the role of phosphorylation in the strigolactone regulation of auxin feedback on PIN internalization. In this chapter I also present my results on the MAX2-dependence of strigolactone-mediated root growth inhibition and I also share my results on the auxin metabolomics profiling after application of GR24.\r\nIn the fourth chapter I studied the effect of two small molecules ES-9 and ES9-17, which were identified from a collection of small molecules with the property to impair the clathrin-mediated endocytosis.\r\nIn the fifth chapter, I discuss all my observations and experimental findings and suggest alternative hypothesis to interpret my results.\r\nIn the appendix there are three collaborative published projects. In the first, I participated in the characterization of the role of ES9 as a small molecule, which is inhibitor of clathrin- mediated endocytosis in different model organisms. In the second paper, I contributed to the characterization of another small molecule ES9-17, which is a non-protonophoric analog of ES9 and also impairs the clathrin-mediated endocytosis not only in plant cells, but also in mammalian HeLa cells. Last but not least, I also attach another paper, where I tried to establish the grafting method as a technique in our lab to study canalization related processes." acknowledged_ssus: - _id: LifeSc - _id: Bio alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Mina K full_name: Vasileva, Mina K id: 3407EB18-F248-11E8-B48F-1D18A9856A87 last_name: Vasileva citation: ama: Vasileva MK. Molecular mechanisms of endomembrane trafficking in Arabidopsis thaliana. 2019. doi:10.15479/AT:ISTA:7172 apa: Vasileva, M. K. (2019). Molecular mechanisms of endomembrane trafficking in Arabidopsis thaliana. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7172 chicago: Vasileva, Mina K. “Molecular Mechanisms of Endomembrane Trafficking in Arabidopsis Thaliana.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:7172. ieee: M. K. Vasileva, “Molecular mechanisms of endomembrane trafficking in Arabidopsis thaliana,” Institute of Science and Technology Austria, 2019. ista: Vasileva MK. 2019. Molecular mechanisms of endomembrane trafficking in Arabidopsis thaliana. Institute of Science and Technology Austria. mla: Vasileva, Mina K. Molecular Mechanisms of Endomembrane Trafficking in Arabidopsis Thaliana. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:7172. short: M.K. Vasileva, Molecular Mechanisms of Endomembrane Trafficking in Arabidopsis Thaliana, Institute of Science and Technology Austria, 2019. date_created: 2019-12-11T21:24:39Z date_published: 2019-12-12T00:00:00Z date_updated: 2023-09-19T10:39:33Z day: '12' ddc: - '570' degree_awarded: PhD department: - _id: JiFr doi: 10.15479/AT:ISTA:7172 file: - access_level: closed checksum: ef981c1a3b1d9da0edcbedcff4970d37 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: mvasilev date_created: 2019-12-12T09:32:36Z date_updated: 2020-07-14T12:47:51Z file_id: '7175' file_name: Thesis_Mina_final_upload_7.docx file_size: 20454014 relation: source_file - access_level: open_access checksum: 3882c4585e46c9cfb486e4225cad54ab content_type: application/pdf creator: mvasilev date_created: 2019-12-12T09:33:10Z date_updated: 2020-07-14T12:47:51Z file_id: '7176' file_name: Thesis_Mina_final_upload_7.pdf file_size: 11565025 relation: main_file file_date_updated: 2020-07-14T12:47:51Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: '192' publication_identifier: eissn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '1346' relation: part_of_dissertation status: public - id: '6377' relation: part_of_dissertation status: public - id: '449' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 title: Molecular mechanisms of endomembrane trafficking in Arabidopsis thaliana type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6473' abstract: - lang: eng text: "Single cells are constantly interacting with their environment and each other, more importantly, the accurate perception of environmental cues is crucial for growth, survival, and reproduction. This communication between cells and their environment can be formalized in mathematical terms and be quantified as the information flow between them, as prescribed by information theory. \r\nThe recent availability of real–time dynamical patterns of signaling molecules in single cells has allowed us to identify encoding about the identity of the environment in the time–series. However, efficient estimation of the information transmitted by these signals has been a data–analysis challenge due to the high dimensionality of the trajectories and the limited number of samples. In the first part of this thesis, we develop and evaluate decoding–based estimation methods to lower bound the mutual information and derive model–based precise information estimates for biological reaction networks governed by the chemical master equation. This is followed by applying the decoding-based methods to study the intracellular representation of extracellular changes in budding yeast, by observing the transient dynamics of nuclear translocation of 10 transcription factors in response to 3 stress conditions. Additionally, we apply these estimators to previously published data on ERK and Ca2+ signaling and yeast stress response. We argue that this single cell decoding-based measure of information provides an unbiased, quantitative and interpretable measure for the fidelity of biological signaling processes. \r\nFinally, in the last section, we deal with gene regulation which is primarily controlled by transcription factors (TFs) that bind to the DNA to activate gene expression. The possibility that non-cognate TFs activate transcription diminishes the accuracy of regulation with potentially disastrous effects for the cell. This ’crosstalk’ acts as a previously unexplored source of noise in biochemical networks and puts a strong constraint on their performance. To mitigate erroneous initiation we propose an out of equilibrium scheme that implements kinetic proofreading. We show that such architectures are favored over their equilibrium counterparts for complex organisms despite introducing noise in gene expression. " alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Sarah A full_name: Cepeda Humerez, Sarah A id: 3DEE19A4-F248-11E8-B48F-1D18A9856A87 last_name: Cepeda Humerez citation: ama: Cepeda Humerez SA. Estimating information flow in single cells. 2019. doi:10.15479/AT:ISTA:6473 apa: Cepeda Humerez, S. A. (2019). Estimating information flow in single cells. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6473 chicago: Cepeda Humerez, Sarah A. “Estimating Information Flow in Single Cells.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6473. ieee: S. A. Cepeda Humerez, “Estimating information flow in single cells,” Institute of Science and Technology Austria, 2019. ista: Cepeda Humerez SA. 2019. Estimating information flow in single cells. Institute of Science and Technology Austria. mla: Cepeda Humerez, Sarah A. Estimating Information Flow in Single Cells. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6473. short: S.A. Cepeda Humerez, Estimating Information Flow in Single Cells, Institute of Science and Technology Austria, 2019. date_created: 2019-05-21T00:11:23Z date_published: 2019-05-23T00:00:00Z date_updated: 2023-09-19T15:13:26Z day: '23' ddc: - '004' degree_awarded: PhD department: - _id: GaTk doi: 10.15479/AT:ISTA:6473 file: - access_level: closed checksum: 75f9184c1346e10a5de5f9cc7338309a content_type: application/zip creator: scepeda date_created: 2019-05-23T11:18:16Z date_updated: 2020-07-14T12:47:31Z file_id: '6480' file_name: Thesis_Cepeda.zip file_size: 23937464 relation: source_file - access_level: open_access checksum: afdc0633ddbd71d5b13550d7fb4f4454 content_type: application/pdf creator: scepeda date_created: 2019-05-23T11:18:13Z date_updated: 2020-07-14T12:47:31Z file_id: '6481' file_name: CepedaThesis.pdf file_size: 16646985 relation: main_file file_date_updated: 2020-07-14T12:47:31Z has_accepted_license: '1' keyword: - Information estimation - Time-series - data analysis language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: '135' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '1576' relation: dissertation_contains status: public - id: '6900' relation: dissertation_contains status: public - id: '281' relation: dissertation_contains status: public - id: '2016' relation: dissertation_contains status: public status: public supervisor: - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 title: Estimating information flow in single cells tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6071' abstract: - lang: eng text: 'Transcription factors, by binding to specific sequences on the DNA, control the precise spatio-temporal expression of genes inside a cell. However, this specificity is limited, leading to frequent incorrect binding of transcription factors that might have deleterious consequences on the cell. By constructing a biophysical model of TF-DNA binding in the context of gene regulation, I will first explore how regulatory constraints can strongly shape the distribution of a population in sequence space. Then, by directly linking this to a picture of multiple types of transcription factors performing their functions simultaneously inside the cell, I will explore the extent of regulatory crosstalk -- incorrect binding interactions between transcription factors and binding sites that lead to erroneous regulatory states -- and understand the constraints this places on the design of regulatory systems. I will then develop a generic theoretical framework to investigate the coevolution of multiple transcription factors and multiple binding sites, in the context of a gene regulatory network that performs a certain function. As a particular tractable version of this problem, I will consider the evolution of two transcription factors when they transmit upstream signals to downstream target genes. Specifically, I will describe the evolutionary steady states and the evolutionary pathways involved, along with their timescales, of a system that initially undergoes a transcription factor duplication event. To connect this important theoretical model to the prominent biological event of transcription factor duplication giving rise to paralogous families, I will then describe a bioinformatics analysis of C2H2 Zn-finger transcription factors, a major family in humans, and focus on the patterns of evolution that paralogs have undergone in their various protein domains in the recent past. ' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Roshan full_name: Prizak, Roshan id: 4456104E-F248-11E8-B48F-1D18A9856A87 last_name: Prizak citation: ama: Prizak R. Coevolution of transcription factors and their binding sites in sequence space. 2019. doi:10.15479/at:ista:th6071 apa: Prizak, R. (2019). Coevolution of transcription factors and their binding sites in sequence space. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:th6071 chicago: Prizak, Roshan. “Coevolution of Transcription Factors and Their Binding Sites in Sequence Space.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/at:ista:th6071. ieee: R. Prizak, “Coevolution of transcription factors and their binding sites in sequence space,” Institute of Science and Technology Austria, 2019. ista: Prizak R. 2019. Coevolution of transcription factors and their binding sites in sequence space. Institute of Science and Technology Austria. mla: Prizak, Roshan. Coevolution of Transcription Factors and Their Binding Sites in Sequence Space. Institute of Science and Technology Austria, 2019, doi:10.15479/at:ista:th6071. short: R. Prizak, Coevolution of Transcription Factors and Their Binding Sites in Sequence Space, Institute of Science and Technology Austria, 2019. date_created: 2019-03-06T16:16:10Z date_published: 2019-03-11T00:00:00Z date_updated: 2023-09-22T10:00:48Z day: '11' ddc: - '576' degree_awarded: PhD department: - _id: GaTk - _id: NiBa doi: 10.15479/at:ista:th6071 file: - access_level: open_access checksum: e60a72de35d270b31f1a23d50f224ec0 content_type: application/pdf creator: rprizak date_created: 2019-03-06T16:05:07Z date_updated: 2020-07-14T12:47:18Z file_id: '6072' file_name: Thesis_final_PDFA_RoshanPrizak.pdf file_size: 20995465 relation: main_file - access_level: closed checksum: 67c2630333d05ebafef5f018863a8465 content_type: application/zip creator: rprizak date_created: 2019-03-06T16:09:39Z date_updated: 2020-07-14T12:47:18Z file_id: '6073' file_name: thesis_v2_merge.zip file_size: 85705272 relation: source_file title: Latex files file_date_updated: 2020-07-14T12:47:18Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: '189' project: - _id: 254E9036-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P28844-B27 name: Biophysics of information processing in gene regulation publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '1358' relation: part_of_dissertation status: public - id: '955' relation: part_of_dissertation status: public status: public supervisor: - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 title: Coevolution of transcription factors and their binding sites in sequence space type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6179' abstract: - lang: eng text: "In the first part of this thesis we consider large random matrices with arbitrary expectation and a general slowly decaying correlation among its entries. We prove universality of the local eigenvalue statistics and optimal local laws for the resolvent in the bulk and edge regime. The main novel tool is a systematic diagrammatic control of a multivariate cumulant expansion.\r\nIn the second part we consider Wigner-type matrices and show that at any cusp singularity of the limiting eigenvalue distribution the local eigenvalue statistics are uni- versal and form a Pearcey process. Since the density of states typically exhibits only square root or cubic root cusp singularities, our work complements previous results on the bulk and edge universality and it thus completes the resolution of the Wigner- Dyson-Mehta universality conjecture for the last remaining universality type. Our analysis holds not only for exact cusps, but approximate cusps as well, where an ex- tended Pearcey process emerges. As a main technical ingredient we prove an optimal local law at the cusp, and extend the fast relaxation to equilibrium of the Dyson Brow- nian motion to the cusp regime.\r\nIn the third and final part we explore the entrywise linear statistics of Wigner ma- trices and identify the fluctuations for a large class of test functions with little regularity. This enables us to study the rectangular Young diagram obtained from the interlacing eigenvalues of the random matrix and its minor, and we find that, despite having the same limit, the fluctuations differ from those of the algebraic Young tableaux equipped with the Plancharel measure." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Dominik J full_name: Schröder, Dominik J id: 408ED176-F248-11E8-B48F-1D18A9856A87 last_name: Schröder orcid: 0000-0002-2904-1856 citation: ama: 'Schröder DJ. From Dyson to Pearcey: Universal statistics in random matrix theory. 2019. doi:10.15479/AT:ISTA:th6179' apa: 'Schröder, D. J. (2019). From Dyson to Pearcey: Universal statistics in random matrix theory. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th6179' chicago: 'Schröder, Dominik J. “From Dyson to Pearcey: Universal Statistics in Random Matrix Theory.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:th6179.' ieee: 'D. J. Schröder, “From Dyson to Pearcey: Universal statistics in random matrix theory,” Institute of Science and Technology Austria, 2019.' ista: 'Schröder DJ. 2019. From Dyson to Pearcey: Universal statistics in random matrix theory. Institute of Science and Technology Austria.' mla: 'Schröder, Dominik J. From Dyson to Pearcey: Universal Statistics in Random Matrix Theory. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:th6179.' short: 'D.J. Schröder, From Dyson to Pearcey: Universal Statistics in Random Matrix Theory, Institute of Science and Technology Austria, 2019.' date_created: 2019-03-28T08:58:59Z date_published: 2019-03-18T00:00:00Z date_updated: 2024-02-22T14:34:33Z day: '18' ddc: - '515' - '519' degree_awarded: PhD department: - _id: LaEr doi: 10.15479/AT:ISTA:th6179 ec_funded: 1 file: - access_level: closed checksum: 6926f66f28079a81c4937e3764be00fc content_type: application/x-gzip creator: dernst date_created: 2019-03-28T08:53:52Z date_updated: 2020-07-14T12:47:21Z file_id: '6180' file_name: 2019_Schroeder_Thesis.tar.gz file_size: 7104482 relation: source_file - access_level: open_access checksum: 7d0ebb8d1207e89768cdd497a5bf80fb content_type: application/pdf creator: dernst date_created: 2019-03-28T08:53:52Z date_updated: 2020-07-14T12:47:21Z file_id: '6181' file_name: 2019_Schroeder_Thesis.pdf file_size: 4228794 relation: main_file file_date_updated: 2020-07-14T12:47:21Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: '375' project: - _id: 258DCDE6-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '338804' name: Random matrices, universality and disordered quantum systems publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '1144' relation: part_of_dissertation status: public - id: '6186' relation: part_of_dissertation status: public - id: '6185' relation: part_of_dissertation status: public - id: '6182' relation: part_of_dissertation status: public - id: '1012' relation: part_of_dissertation status: public - id: '6184' relation: part_of_dissertation status: public status: public supervisor: - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 title: 'From Dyson to Pearcey: Universal statistics in random matrix theory' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6392' abstract: - lang: eng text: "The regulation of gene expression is one of the most fundamental processes in living systems. In recent years, thanks to advances in sequencing technology and automation, it has become possible to study gene expression quantitatively, genome-wide and in high-throughput. This leads to the possibility of exploring changes in gene expression in the context of many external perturbations and their combinations, and thus of characterising the basic principles governing gene regulation. In this thesis, I present quantitative experimental approaches to studying transcriptional and protein level changes in response to combinatorial drug treatment, as well as a theoretical data-driven approach to analysing thermodynamic principles guiding transcription of protein coding genes. \r\nIn the first part of this work, I present a novel methodological framework for quantifying gene expression changes in drug combinations, termed isogrowth profiling. External perturbations through small molecule drugs influence the growth rate of the cell, leading to wide-ranging changes in cellular physiology and gene expression. This confounds the gene expression changes specifically elicited by the particular drug. Combinatorial perturbations, owing to the increased stress they exert, influence the growth rate even more strongly and hence suffer the convolution problem to a greater extent when measuring gene expression changes. Isogrowth profiling is a way to experimentally abstract non-specific, growth rate related changes, by performing the measurement using varying ratios of two drugs at such concentrations that the overall inhibition rate is constant. Using a robotic setup for automated high-throughput re-dilution culture of Saccharomyces cerevisiae, the budding yeast, I investigate all pairwise interactions of four small molecule drugs through sequencing RNA along a growth isobole. Through principal component analysis, I demonstrate here that isogrowth profiling can uncover drug-specific as well as drug-interaction-specific gene expression changes. I show that drug-interaction-specific gene expression changes can be used for prediction of higher-order drug interactions. I propose a simplified generalised framework of isogrowth profiling, with few measurements needed for each drug pair, enabling the broad application of isogrowth profiling to high-throughput screening of inhibitors of cellular growth and beyond. Such high-throughput screenings of gene expression changes specific to pairwise drug interactions will be instrumental for predicting the higher-order interactions of the drugs.\r\n\r\nIn the second part of this work, I extend isogrowth profiling to single-cell measurements of gene expression, characterising population heterogeneity in the budding yeast in response to combinatorial drug perturbation while controlling for non-specific growth rate effects. Through flow cytometry of strains with protein products fused to green fluorescent protein, I discover multiple proteins with bi-modally distributed expression levels in the population in response to drug treatment. I characterize more closely the effect of an ionic stressor, lithium chloride, and find that it inhibits the splicing of mRNA, most strongly affecting ribosomal protein transcripts and leading to a bi-stable behaviour of a small ribosomal subunit protein Rps22B. Time-lapse microscopy of a microfluidic culture system revealed that the induced Rps22B heterogeneity leads to preferential survival of Rps22B-low cells after long starvation, but to preferential proliferation of Rps22B-high cells after short starvation. Overall, this suggests that yeast cells might use splicing of ribosomal genes for bet-hedging in fluctuating environments. I give specific examples of how further exploration of cellular heterogeneity in yeast in response to external perturbation has the potential to reveal yet-undiscovered gene regulation circuitry.\r\n\r\nIn the last part of this thesis, a re-analysis of a published sequencing dataset of nascent elongating transcripts is used to characterise the thermodynamic constraints for RNA polymerase II (RNAP) elongation. Population-level data on RNAP position throughout the transcribed genome with single nucleotide resolution are used to infer the sequence specific thermodynamic determinants of RNAP pausing and backtracking. This analysis reveals that the basepairing strength of the eight nucleotide-long RNA:DNA duplex relative to the basepairing strength of the same sequence when in DNA:DNA duplex, and the change in this quantity during RNA polymerase movement, is the key determinant of RNAP pausing. This is true for RNAP pausing while elongating, but also of RNAP pausing while backtracking and of the backtracking length. The quantitative dependence of RNAP pausing on basepairing energetics is used to infer the increase in pausing due to transcriptional mismatches, leading to a hypothesis that pervasive RNA polymerase II pausing is due to basepairing energetics, as an evolutionary cost for increased RNA polymerase II fidelity.\r\n\r\nThis work advances our understanding of the general principles governing gene expression, with the goal of making computational predictions of single-cell gene expression responses to combinatorial perturbations based on the individual perturbations possible. This ability would substantially facilitate the design of drug combination treatments and, in the long term, lead to our increased ability to more generally design targeted manipulations to any biological system. " acknowledged_ssus: - _id: LifeSc - _id: M-Shop - _id: Bio alternative_title: - IST Austria Thesis author: - first_name: Martin full_name: Lukacisin, Martin id: 298FFE8C-F248-11E8-B48F-1D18A9856A87 last_name: Lukacisin orcid: 0000-0001-6549-4177 citation: ama: Lukacisin M. Quantitative investigation of gene expression principles through combinatorial drug perturbation and theory. 2019. doi:10.15479/AT:ISTA:6392 apa: Lukacisin, M. (2019). Quantitative investigation of gene expression principles through combinatorial drug perturbation and theory. IST Austria. https://doi.org/10.15479/AT:ISTA:6392 chicago: Lukacisin, Martin. “Quantitative Investigation of Gene Expression Principles through Combinatorial Drug Perturbation and Theory.” IST Austria, 2019. https://doi.org/10.15479/AT:ISTA:6392. ieee: M. Lukacisin, “Quantitative investigation of gene expression principles through combinatorial drug perturbation and theory,” IST Austria, 2019. ista: Lukacisin M. 2019. Quantitative investigation of gene expression principles through combinatorial drug perturbation and theory. IST Austria. mla: Lukacisin, Martin. Quantitative Investigation of Gene Expression Principles through Combinatorial Drug Perturbation and Theory. IST Austria, 2019, doi:10.15479/AT:ISTA:6392. short: M. Lukacisin, Quantitative Investigation of Gene Expression Principles through Combinatorial Drug Perturbation and Theory, IST Austria, 2019. date_created: 2019-05-09T19:53:00Z date_published: 2019-05-09T00:00:00Z date_updated: 2023-09-22T09:19:41Z day: '09' ddc: - '570' department: - _id: ToBo doi: 10.15479/AT:ISTA:6392 extern: '1' file: - access_level: closed checksum: 829bda074444857c7935171237bb7c0c content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: mlukacisin date_created: 2019-05-10T13:51:49Z date_updated: 2020-07-14T12:47:29Z embargo_to: open_access file_id: '6409' file_name: Thesis_Draft_v3.4Final.docx file_size: 43740796 relation: hidden - access_level: open_access checksum: 56cb5e97f5f8fc41692401b53832d8e0 content_type: application/pdf creator: mlukacisin date_created: 2019-05-10T14:13:42Z date_updated: 2021-02-11T11:17:16Z embargo: 2020-04-17 file_id: '6410' file_name: Thesis_Draft_v3.4FinalA.pdf file_size: 35228388 relation: main_file file_date_updated: 2021-02-11T11:17:16Z has_accepted_license: '1' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: '103' publication_identifier: isbn: - 978-3-99078-001-5 issn: - 2663-337X publication_status: published publisher: IST Austria related_material: record: - id: '1029' relation: part_of_dissertation status: public status: public supervisor: - first_name: Mark Tobias full_name: Bollenbach, Mark Tobias id: 3E6DB97A-F248-11E8-B48F-1D18A9856A87 last_name: Bollenbach orcid: 0000-0003-4398-476X title: Quantitative investigation of gene expression principles through combinatorial drug perturbation and theory type: dissertation user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2019' ... --- _id: '6435' abstract: - lang: eng text: "Social insect colonies tend to have numerous members which function together like a single organism in such harmony that the term ``super-organism'' is often used. In this analogy the reproductive caste is analogous to the primordial germ\r\ncells of a metazoan, while the sterile worker caste corresponds to somatic cells. The worker castes, like tissues, are\r\nin charge of all functions of a living being, besides reproduction. The establishment of new super-organismal units\r\n(i.e. new colonies) is accomplished by the co-dependent castes. The term oftentimes goes beyond a metaphor. We invoke it when we speak about the metabolic rate, thermoregulation, nutrient regulation and gas exchange of a social insect colony. Furthermore, we assert that the super-organism has an immune system, and benefits from ``social immunity''.\r\n\r\nSocial immunity was first summoned by evolutionary biologists to resolve the apparent discrepancy between the expected high frequency of disease outbreak amongst numerous, closely related tightly-interacting hosts, living in stable and microbially-rich environments, against the exceptionally scarce epidemic accounts in natural populations. Social\r\nimmunity comprises a multi-layer assembly of behaviours which have evolved to effectively keep the pathogenic enemies of a colony at bay. The field of social immunity has drawn interest, as it becomes increasingly urgent to stop\r\nthe collapse of pollinator species and curb the growth of invasive pests. In the past decade, several mechanisms of\r\nsocial immune responses have been dissected, but many more questions remain open.\r\n\r\nI present my work in two experimental chapters. In the first, I use invasive garden ants (*Lasius neglectus*) to study how pathogen load and its distribution among nestmates affect the grooming response of the group. Any given group of ants will carry out the same total grooming work, but will direct their grooming effort towards individuals\r\ncarrying a relatively higher spore load. Contrary to expectation, the highest risk of transmission does not stem from grooming highly contaminated ants, but instead, we suggest that the grooming response likely minimizes spore loss to the environment, reducing contamination from inadvertent pickup from the substrate.\r\n\r\nThe second is a comparative developmental approach. I follow black garden ant queens (*Lasius niger*) and their colonies from mating flight, through hibernation for a year. Colonies which grow fast from the start, have a lower chance of survival through hibernation, and those which survive grow at a lower pace later. This is true for colonies of naive\r\nand challenged queens. Early pathogen exposure of the queens changes colony dynamics in an unexpected way: colonies from exposed queens are more likely to grow slowly and recover in numbers only after they survive hibernation.\r\n\r\nIn addition to the two experimental chapters, this thesis includes a co-authored published review on organisational\r\nimmunity, where we enlist the experimental evidence and theoretical framework on which this hypothesis is built,\r\nidentify the caveats and underline how the field is ripe to overcome them. In a final chapter, I describe my part in\r\ntwo collaborative efforts, one to develop an image-based tracker, and the second to develop a classifier for ant\r\nbehaviour." acknowledged_ssus: - _id: Bio - _id: ScienComp - _id: M-Shop - _id: LifeSc alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Barbara E full_name: Casillas Perez, Barbara E id: 351ED2AA-F248-11E8-B48F-1D18A9856A87 last_name: Casillas Perez citation: ama: Casillas Perez BE. Collective defenses of garden ants against a fungal pathogen. 2019. doi:10.15479/AT:ISTA:6435 apa: Casillas Perez, B. E. (2019). Collective defenses of garden ants against a fungal pathogen. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6435 chicago: Casillas Perez, Barbara E. “Collective Defenses of Garden Ants against a Fungal Pathogen.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6435. ieee: B. E. Casillas Perez, “Collective defenses of garden ants against a fungal pathogen,” Institute of Science and Technology Austria, 2019. ista: Casillas Perez BE. 2019. Collective defenses of garden ants against a fungal pathogen. Institute of Science and Technology Austria. mla: Casillas Perez, Barbara E. Collective Defenses of Garden Ants against a Fungal Pathogen. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6435. short: B.E. Casillas Perez, Collective Defenses of Garden Ants against a Fungal Pathogen, Institute of Science and Technology Austria, 2019. date_created: 2019-05-13T08:58:35Z date_published: 2019-05-07T00:00:00Z date_updated: 2023-09-07T12:57:04Z day: '07' ddc: - '570' - '006' - '578' - '592' degree_awarded: PhD department: - _id: SyCr doi: 10.15479/AT:ISTA:6435 ec_funded: 1 file: - access_level: open_access checksum: 6daf2d2086111aa8fd3fbc919a3e2833 content_type: application/pdf creator: casillas date_created: 2019-05-13T09:16:20Z date_updated: 2021-02-11T11:17:15Z embargo: 2020-05-08 file_id: '6438' file_name: tesisDoctoradoBC.pdf file_size: 3895187 relation: main_file - access_level: closed checksum: 3d221aaff7559a7060230a1ff610594f content_type: application/zip creator: casillas date_created: 2019-05-13T09:16:20Z date_updated: 2020-07-14T12:47:30Z embargo_to: open_access file_id: '6439' file_name: tesisDoctoradoBC.zip file_size: 7365118 relation: source_file file_date_updated: 2021-02-11T11:17:15Z has_accepted_license: '1' keyword: - Social Immunity - Sanitary care - Social Insects - Organisational Immunity - Colony development - Multi-target tracking language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: '183' project: - _id: 2649B4DE-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '771402' name: Epidemics in ant societies on a chip publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '1999' relation: part_of_dissertation status: public status: public supervisor: - first_name: Sylvia M full_name: Cremer, Sylvia M id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 title: Collective defenses of garden ants against a fungal pathogen type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6269' abstract: - lang: eng text: 'Clathrin-Mediated Endocytosis (CME) is an aspect of cellular trafficking that is constantly regulated for mediating developmental and physiological responses. The main aim of my thesis is to decipher the basic mechanisms of CME and post-endocytic trafficking in the whole multicellular organ systems of Arabidopsis. The first chapter of my thesis describes the search for new components involved in CME. Tandem affinity purification was conducted using CLC and its interacting partners were identified. Amongst the identified proteins were the Auxilin-likes1 and 2 (Axl1/2), putative uncoating factors, for which we made a full functional analysis. Over-expression of Axl1/2 causes extreme modifications in the dynamics of the machinery proteins and inhibition of endocytosis altogether. However the loss of function of the axl1/2 did not present any cellular or physiological phenotype, meaning Auxilin-likes do not form the major uncoating machinery. The second chapter of my thesis describes the establishment/utilisation of techniques to capture the dynamicity and the complexity of CME and post-endocytic trafficking. We have studied the development of endocytic pits at the PM – specifically, the mode of membrane remodeling during pit development and the role of actin in it, given plant cells possess high turgor pressure. Utilizing the improved z-resolution of TIRF and VAEM techniques, we captured the time-lapse of the endocytic events at the plasma membrane; and using particle detection software, we quantitatively analysed all the endocytic trajectories in an unbiased way to obtain the endocytic rate of the system. This together with the direct analysis of cargo internalisation from the PM provided an estimate on the endocytic potential of the cell. We also developed a methodology for ultrastructural analysis of different populations of Clathrin-Coated Structures (CCSs) in both PM and endomembranes in unroofed protoplasts. Structural analysis, together with the intensity profile of CCSs at the PM show that the mode of CCP development at the PM follows ‘Constant curvature model’; meaning that clathrin polymerisation energy is a major contributing factor of membrane remodeling. In addition, other analyses clearly show that actin is not required for membrane remodeling during invagination or any other step of CCP development, despite the prevalent high turgor pressure. However, actin is essential in orchestrating the post-endocytic trafficking of CCVs facilitating the EE formation. We also observed that the uncoating process post-endocytosis is not immediate; an alternative mechanism of uncoating – Sequential multi-step process – functions in the cell. Finally we also looked at one of the important physiological stimuli modulating the process – hormone, auxin. auxin has been known to influence CME before. We have made a detailed study on the concentration-time based effect of auxin on the machinery proteins, CCP development, and the specificity of cargoes endocytosed. To this end, we saw no general effect of auxin on CME at earlier time points. However, very low concentration of IAA, such as 50nM, accelerates endocytosis of specifically PIN2 through CME. Such a tight regulatory control with high specificity to PIN2 could be essential in modulating its polarity. ' acknowledged_ssus: - _id: Bio - _id: EM-Fac alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Madhumitha full_name: Narasimhan, Madhumitha id: 44BF24D0-F248-11E8-B48F-1D18A9856A87 last_name: Narasimhan orcid: 0000-0002-8600-0671 citation: ama: Narasimhan M. Clathrin-Mediated endocytosis, post-endocytic trafficking and their regulatory controls in plants . 2019. doi:10.15479/at:ista:th1075 apa: Narasimhan, M. (2019). Clathrin-Mediated endocytosis, post-endocytic trafficking and their regulatory controls in plants . Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:th1075 chicago: Narasimhan, Madhumitha. “Clathrin-Mediated Endocytosis, Post-Endocytic Trafficking and Their Regulatory Controls in Plants .” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/at:ista:th1075. ieee: M. Narasimhan, “Clathrin-Mediated endocytosis, post-endocytic trafficking and their regulatory controls in plants ,” Institute of Science and Technology Austria, 2019. ista: Narasimhan M. 2019. Clathrin-Mediated endocytosis, post-endocytic trafficking and their regulatory controls in plants . Institute of Science and Technology Austria. mla: Narasimhan, Madhumitha. Clathrin-Mediated Endocytosis, Post-Endocytic Trafficking and Their Regulatory Controls in Plants . Institute of Science and Technology Austria, 2019, doi:10.15479/at:ista:th1075. short: M. Narasimhan, Clathrin-Mediated Endocytosis, Post-Endocytic Trafficking and Their Regulatory Controls in Plants , Institute of Science and Technology Austria, 2019. date_created: 2019-04-09T14:37:06Z date_published: 2019-02-04T00:00:00Z date_updated: 2023-09-08T11:43:03Z day: '04' ddc: - '575' degree_awarded: PhD department: - _id: JiFr doi: 10.15479/at:ista:th1075 file: - access_level: open_access checksum: c958f27dd752712886e7e2638b847a3c content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:18Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6270' file_name: Supplementary_movie_1.avi file_size: 5402078 relation: main_file - access_level: open_access checksum: 8786fdc29c62987c0aad3c866a4d3691 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:18Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6271' file_name: 3.7_supplementary_movie_10.avi file_size: 5927736 relation: main_file - access_level: open_access checksum: 25f784c5159d6f4d966b2f9b371ebaf6 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:18Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6272' file_name: 3.7_supplementary_movie_9.avi file_size: 9570210 relation: main_file - access_level: open_access checksum: 917069272a7a08d1f38224d5e12765d6 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:18Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6273' file_name: 3.7_supplementary_movie_8.avi file_size: 2827360 relation: main_file - access_level: open_access checksum: 81e74f5ca0ad70050504f18192236dc0 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:18Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6274' file_name: 3.7_supplementary_movie_7.avi file_size: 5771410 relation: main_file - access_level: open_access checksum: 47eb37b27a2930252713924307ea8c6f content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:18Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6275' file_name: 3.7_supplementary_movie_6.avi file_size: 1113486 relation: main_file - access_level: open_access checksum: f68f66721041ce84e331959c9a5779c3 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:18Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6276' file_name: 3.7_supplementary_movie_5.avi file_size: 1057232 relation: main_file - access_level: open_access checksum: 67c01cefab51b363c5e214fe4cd671f3 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:23Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6277' file_name: 3.7_supplementary_movie_3.avi file_size: 127472916 relation: main_file - access_level: open_access checksum: e5a397edbee05b8821e2b19b3c1a9260 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:19Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6278' file_name: 3.7_supplementary_movie_4.avi file_size: 3181238 relation: main_file - access_level: open_access checksum: 32d92b2a9277f956fdb0b42351d07c0b content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:19Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6279' file_name: 3.7_supplementary_movie_2.avi file_size: 5970952 relation: main_file - access_level: open_access checksum: efe7001f5d9a8c61e631e12d5f324ade content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:21Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6280' file_name: 3.7_Supplementary_movie_1.avi file_size: 39835236 relation: main_file - access_level: open_access checksum: eeb0a5603c6449c5f34eacd5ff0b3a16 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:21Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6281' file_name: 2.5_Suppl_Movie_4_AP2A1_TagRFP.avi file_size: 3696740 relation: main_file - access_level: open_access checksum: 8e7c00ef6223bf0e177deb168338af13 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:21Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6282' file_name: 2.5_Suppl_Movie_3_TPLATE_GFP.avi file_size: 6741232 relation: main_file - access_level: open_access checksum: 3636006a7cb709a7543d6581e359b28d content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:22Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6283' file_name: 2.5_Suppl_Movie_2_CLC_GFP.avi file_size: 2445946 relation: main_file - access_level: open_access checksum: 39ca5519a6e9a38356e7b3704004fea7 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:22Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6284' file_name: 2.5_Suppl_Movie_1_CLC_GFPxAxl1_mcherry.avi file_size: 58594 relation: main_file - access_level: open_access checksum: 4fcdaa3a6c645514a3b3205f0f69dc76 content_type: application/pdf creator: dernst date_created: 2019-04-09T14:35:33Z date_updated: 2021-02-11T11:17:15Z embargo: 2020-02-11 file_id: '6285' file_name: 2019_Thesis_Narasimhan.pdf file_size: 10553937 relation: main_file - access_level: closed checksum: 268f0b6bad21d5f0d671e5d4b88104a7 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-09T14:35:36Z date_updated: 2020-07-14T12:47:26Z embargo_to: open_access file_id: '6286' file_name: 2019_Thesis_Narasimhan_source.docx file_size: 135291990 relation: source_file file_date_updated: 2021-02-11T23:30:15Z has_accepted_license: '1' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: '138' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '412' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 title: 'Clathrin-Mediated endocytosis, post-endocytic trafficking and their regulatory controls in plants ' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6947' abstract: - lang: eng text: Lymph nodes are es s ential organs of the immune s ys tem where adaptive immune responses originate, and consist of various leukocyte populations and a stromal backbone. Fibroblastic reticular cells (FRCs) are the main stromal cells and form a sponge-like extracellular matrix network, called conduits , which they thems elves enwrap and contract. Lymph, containing s oluble antigens , arrive in lymph nodes via afferent lymphatic vessels that connect to the s ubcaps ular s inus and conduit network. According to the current paradigm, the conduit network dis tributes afferent lymph through lymph nodes and thus provides acces s for immune cells to lymph-borne antigens. An elas tic caps ule s urrounds the organ and confines the immune cells and FRC network. Lymph nodes are completely packed with lymphocytes and lymphocyte numbers directly dictates the size of the organ. Although lymphocytes cons tantly enter and leave the lymph node, its s ize remains remarkedly s table under homeostatic conditions. It is only partly known how the cellularity and s ize of the lymph node is regulated and how the lymph node is able to swell in inflammation. The role of the FRC network in lymph node s welling and trans fer of fluids are inves tigated in this thes is. Furthermore, we s tudied what trafficking routes are us ed by cancer cells in lymph nodes to form distal metastases.We examined the role of a mechanical feedback in regulation of lymph node swelling. Using parallel plate compression and UV-las er cutting experiments we dis s ected the mechanical force dynamics of the whole lymph node, and individually for FRCs and the caps ule. Physical forces generated by packed lymphocytes directly affect the tens ion on the FRC network and capsule, which increases its resistance to swelling. This implies a feedback mechanism between tis s ue pres s ure and ability of lymphocytes to enter the organ. Following inflammation, the lymph node swells ∼10 fold in two weeks . Yet, what is the role for tens ion on the FRC network and caps ule, and how are lymphocytes able to enter in conditions that resist swelling remain open ques tions . We s how that tens ion on the FRC network is important to limit the swelling rate of the organ so that the FRC network can grow in a coordinated fashion. This is illustrated by interfering with FRC contractility, which leads to faster swelling rates and a dis organized FRC network in the inflamed lymph node. Growth of the FRC network in turn is expected to releas e tens ion on thes e s tructures and lowers the res is tance to swelling, thereby allowing more lymphocytes to enter the organ and drive more swelling. Halt of swelling coincides with a thickening of the caps ule, which forms a thick res is tant band around the organ and lowers tens ion on the FRC network to form a new force equilibrium.The FRC and conduit network are further believed to be a privileged s ite of s oluble information within the lymph node, although many details remain uns olved. We s how by 3D ultra-recons truction that FRCs and antigen pres enting cells cover the s urface of conduit s ys tem for more than 99% and we dis cus s the implications for s oluble information exchangeat the conduit level.Finally, there is an ongoing debate in the cancer field whether and how cancer cells in lymph nodes s eed dis tal metas tas es . We s how that cancer cells infus ed into the lymph node can utilize trafficking routes of immune cells and rapidly migrate to blood vessels. Once in the blood circulation, these cells are able to form metastases in distal tissues. acknowledged_ssus: - _id: Bio - _id: PreCl - _id: EM-Fac alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Frank P full_name: Assen, Frank P id: 3A8E7F24-F248-11E8-B48F-1D18A9856A87 last_name: Assen orcid: 0000-0003-3470-6119 citation: ama: 'Assen FP. Lymph node mechanics: Deciphering the interplay between stroma contractility, morphology and lymphocyte trafficking. 2019. doi:10.15479/AT:ISTA:6947' apa: 'Assen, F. P. (2019). Lymph node mechanics: Deciphering the interplay between stroma contractility, morphology and lymphocyte trafficking. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6947' chicago: 'Assen, Frank P. “Lymph Node Mechanics: Deciphering the Interplay between Stroma Contractility, Morphology and Lymphocyte Trafficking.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6947.' ieee: 'F. P. Assen, “Lymph node mechanics: Deciphering the interplay between stroma contractility, morphology and lymphocyte trafficking,” Institute of Science and Technology Austria, 2019.' ista: 'Assen FP. 2019. Lymph node mechanics: Deciphering the interplay between stroma contractility, morphology and lymphocyte trafficking. Institute of Science and Technology Austria.' mla: 'Assen, Frank P. Lymph Node Mechanics: Deciphering the Interplay between Stroma Contractility, Morphology and Lymphocyte Trafficking. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6947.' short: 'F.P. Assen, Lymph Node Mechanics: Deciphering the Interplay between Stroma Contractility, Morphology and Lymphocyte Trafficking, Institute of Science and Technology Austria, 2019.' date_created: 2019-10-14T16:54:52Z date_published: 2019-10-09T00:00:00Z date_updated: 2023-09-13T08:50:57Z day: '9' ddc: - '570' degree_awarded: PhD department: - _id: MiSi doi: 10.15479/AT:ISTA:6947 file: - access_level: closed checksum: 53a739752a500f84d0f8ec953cbbd0b6 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: fassen date_created: 2019-11-06T12:30:02Z date_updated: 2020-11-07T23:30:03Z embargo_to: open_access file_id: '6990' file_name: PhDthesis_FrankAssen_revised2.docx file_size: 214172667 relation: source_file - access_level: open_access checksum: 8c156b65d9347bb599623a4b09f15d15 content_type: application/pdf creator: fassen date_created: 2019-11-06T12:30:57Z date_updated: 2020-11-07T23:30:03Z embargo: 2020-11-06 file_id: '6991' file_name: PhDthesis_FrankAssen_revised2.pdf file_size: 83637532 relation: main_file file_date_updated: 2020-11-07T23:30:03Z has_accepted_license: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: '142' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '664' relation: part_of_dissertation status: public - id: '402' relation: part_of_dissertation status: public status: public supervisor: - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 title: 'Lymph node mechanics: Deciphering the interplay between stroma contractility, morphology and lymphocyte trafficking' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6849' abstract: - lang: eng text: 'Brain function is mediated by complex dynamical interactions between excitatory and inhibitory cell types. The Cholecystokinin-expressing inhibitory cells (CCK-interneurons) are one of the least studied types, despite being suspected to play important roles in cognitive processes. We studied the network effects of optogenetic silencing of CCK-interneurons in the CA1 hippocampal area during exploration and sleep states. The cell firing pattern in response to light pulses allowed us to classify the recorded neurons in 5 classes, including disinhibited and non-responsive pyramidal cell and interneurons, and the inhibited interneurons corresponding to the CCK group. The light application, which inhibited the activity of CCK interneurons triggered wider changes in the firing dynamics of cells. We observed rate changes (i.e. remapping) of pyramidal cells during the exploration session in which the light was applied relative to the previous control session that was not restricted neither in time nor space to the light delivery. Also, the disinhibited pyramidal cells had higher increase in bursting than in single spike firing rate as a result of CCK silencing. In addition, the firing activity patterns during exploratory periods were more weakly reactivated in sleep for those periods in which CCK-interneuron were silenced than in the unaffected periods. Furthermore, light pulses during sleep disrupted the reactivation of recent waking patterns. Hence, silencing CCK neurons during exploration suppressed the reactivation of waking firing patterns in sleep and CCK interneuron activity was also required during sleep for the normal reactivation of waking patterns. These findings demonstrate the involvement of CCK cells in reactivation-related memory consolidation. An important part of our analysis was to test the relationship of the identified CCKinterneurons to brain oscillations. Our findings showed that these cells exhibited different oscillatory behaviour during anaesthesia and natural waking and sleep conditions. We showed that: 1) Contrary to the past studies performed under anaesthesia, the identified CCKinterneurons fired on the descending portion of the theta phase in waking exploration. 2) CCKinterneuron preferred phases around the trough of gamma oscillations. 3) Contrary to anaesthesia conditions, the average firing rate of the CCK-interneurons increased around the peak activity of the sharp-wave ripple (SWR) events in natural sleep, which is congruent with new reports about their functional connectivity. We also found that light driven CCK-interneuron silencing altered the dynamics on the CA1 network oscillatory activity: 1) Pyramidal cells negatively shifted their preferred theta phases when the light was applied, while interneurons responses were less consistent. 2) As a population, pyramidal cells negatively shifted their preferred activity during gamma oscillations, albeit we did not find gamma modulation differences related to the light application when pyramidal cells were subdivided into the disinhibited and unaffected groups. 3) During the peak of SWR events, all but the CCK-interneurons had a reduction in their relative firing rate change during the light application as compared to the change observed at SWR initiation. Finally, regarding to the place field activity of the recorded pyramidal neurons, we showed that the disinhibited pyramidal cells had reduced place field similarity, coherence and spatial information, but only during the light application. The mechanisms behind such observed behaviours might involve eCB signalling and plastic changes in CCK-interneuron synapses. In conclusion, the observed changes related to the light-mediated silencing of CCKinterneurons have unravelled characteristics of this interneuron subpopulation that might change the understanding not only of their particular network interactions, but also of the current theories about the emergence of certain cognitive processes such as place coding needed for navigation or hippocampus-dependent memory consolidation. ' acknowledged_ssus: - _id: Bio - _id: PreCl - _id: M-Shop alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Dámaris K full_name: Rangel Guerrero, Dámaris K id: 4871BCE6-F248-11E8-B48F-1D18A9856A87 last_name: Rangel Guerrero orcid: 0000-0002-8602-4374 citation: ama: Rangel Guerrero DK. The role of CCK-interneurons in regulating hippocampal network dynamics. 2019. doi:10.15479/AT:ISTA:6849 apa: Rangel Guerrero, D. K. (2019). The role of CCK-interneurons in regulating hippocampal network dynamics. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6849 chicago: Rangel Guerrero, Dámaris K. “The Role of CCK-Interneurons in Regulating Hippocampal Network Dynamics.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6849. ieee: D. K. Rangel Guerrero, “The role of CCK-interneurons in regulating hippocampal network dynamics,” Institute of Science and Technology Austria, 2019. ista: Rangel Guerrero DK. 2019. The role of CCK-interneurons in regulating hippocampal network dynamics. Institute of Science and Technology Austria. mla: Rangel Guerrero, Dámaris K. The Role of CCK-Interneurons in Regulating Hippocampal Network Dynamics. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6849. short: D.K. Rangel Guerrero, The Role of CCK-Interneurons in Regulating Hippocampal Network Dynamics, Institute of Science and Technology Austria, 2019. date_created: 2019-09-06T06:54:16Z date_published: 2019-09-09T00:00:00Z date_updated: 2023-09-19T10:01:12Z day: '09' ddc: - '570' degree_awarded: PhD department: - _id: JoCs doi: 10.15479/AT:ISTA:6849 file: - access_level: closed checksum: 244dc4f74dbfc94f414156092298831f content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: drangel date_created: 2019-09-09T13:09:45Z date_updated: 2021-02-10T23:30:09Z embargo_to: open_access file_id: '6865' file_name: Thesis_Damaris_Rangel_source.docx file_size: 18253100 relation: source_file - access_level: open_access checksum: 59c73be40eeaa1c4db24067270151555 content_type: application/pdf creator: drangel date_created: 2019-09-09T13:09:52Z date_updated: 2020-09-11T22:30:04Z embargo: 2020-09-10 file_id: '6866' file_name: Thesis_Damaris_Rangel_pdfa.pdf file_size: 2160109 relation: main_file request_a_copy: 0 file_date_updated: 2021-02-10T23:30:09Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '97' publication_identifier: isbn: - '9783990780039' issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '5914' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 title: The role of CCK-interneurons in regulating hippocampal network dynamics type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '7132' abstract: - lang: eng text: "A major challenge in neuroscience research is to dissect the circuits that orchestrate behavior in health and disease. Proteins from a wide range of non-mammalian species, such as microbial opsins, have been successfully transplanted to specific neuronal targets to override their natural communication patterns. The goal of our work is to manipulate synaptic communication in a manner that closely incorporates the functional intricacies of synapses by preserving temporal encoding (i.e. the firing pattern of the presynaptic neuron) and connectivity (i.e. target specific synapses rather than specific neurons). Our strategy to achieve this goal builds on the use of non-mammalian transplants to create a synthetic synapse. The mode of modulation comes from pre-synaptic uptake of a synthetic neurotransmitter (SN) into synaptic vesicles by means of a genetically targeted transporter selective for the SN. Upon natural vesicular release, exposure of the SN to the synaptic cleft will modify the post-synaptic potential through an orthogonal ligand gated ion channel. To achieve this goal we have functionally characterized a mixed cationic methionine-gated ion channel from Arabidopsis thaliana, designed a method to functionally characterize a synthetic transporter in isolated synaptic vesicles without the need for transgenic animals, identified and extracted multiple prokaryotic uptake systems that are substrate specific for methionine (Met), and established a primary/cell line co-culture system that would allow future combinatorial testing of this orthogonal transmitter-transporter-channel trifecta.\r\nSynthetic synapses will provide a unique opportunity to manipulate synaptic communication while maintaining the electrophysiological integrity of the pre-synaptic cell. In this way, information may be preserved that was generated in upstream circuits and that could be essential for concerted function and information processing." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Catherine full_name: Mckenzie, Catherine id: 3EEDE19A-F248-11E8-B48F-1D18A9856A87 last_name: Mckenzie citation: ama: Mckenzie C. Design and characterization of methods and biological components to realize synthetic neurotransmission. 2019. doi:10.15479/at:ista:7132 apa: Mckenzie, C. (2019). Design and characterization of methods and biological components to realize synthetic neurotransmission. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:7132 chicago: Mckenzie, Catherine. “Design and Characterization of Methods and Biological Components to Realize Synthetic Neurotransmission.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/at:ista:7132. ieee: C. Mckenzie, “Design and characterization of methods and biological components to realize synthetic neurotransmission,” Institute of Science and Technology Austria, 2019. ista: Mckenzie C. 2019. Design and characterization of methods and biological components to realize synthetic neurotransmission. Institute of Science and Technology Austria. mla: Mckenzie, Catherine. Design and Characterization of Methods and Biological Components to Realize Synthetic Neurotransmission. Institute of Science and Technology Austria, 2019, doi:10.15479/at:ista:7132. short: C. Mckenzie, Design and Characterization of Methods and Biological Components to Realize Synthetic Neurotransmission, Institute of Science and Technology Austria, 2019. date_created: 2019-11-27T09:07:14Z date_published: 2019-06-27T00:00:00Z date_updated: 2024-03-27T23:30:21Z day: '27' ddc: - '571' - '573' degree_awarded: PhD department: - _id: HaJa doi: 10.15479/at:ista:7132 file: - access_level: closed checksum: 34d0fe0f6e0af97b5937205a3e350423 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-11-27T09:06:10Z date_updated: 2020-07-14T12:47:50Z file_id: '7133' file_name: McKenzie PhD Thesis August 2018 - Corrected Final.docx file_size: 5054633 relation: source_file - access_level: open_access checksum: 140dfb5e3df7edca34f4b6fcc55d876f content_type: application/pdf creator: dernst date_created: 2019-11-27T09:06:10Z date_updated: 2020-07-14T12:47:50Z file_id: '7134' file_name: McKenzie PhD Thesis August 2018 - Corrected Final.pdf file_size: 3231837 relation: main_file file_date_updated: 2020-07-14T12:47:50Z has_accepted_license: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: '95' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '6266' relation: old_edition status: public status: public supervisor: - first_name: Harald L full_name: Janovjak, Harald L id: 33BA6C30-F248-11E8-B48F-1D18A9856A87 last_name: Janovjak orcid: 0000-0002-8023-9315 title: Design and characterization of methods and biological components to realize synthetic neurotransmission type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6825' abstract: - lang: eng text: "The solving of complex tasks requires the functions of more than one brain area and their interaction. Whilst spatial navigation and memory is dependent on the hippocampus, flexible behavior relies on the medial prefrontal cortex (mPFC). To further examine the roles of the hippocampus and mPFC, we recorded their neural activity during a task that depends on both of these brain regions.\r\nWith tetrodes, we recorded the extracellular activity of dorsal hippocampal CA1 (HPC) and mPFC neurons in Long-Evans rats performing a rule-switching task on the plus-maze. The plus-maze task had a spatial component since it required navigation along one of the two start arms and at the maze center a choice between one of the two goal arms. Which goal contained a reward depended on the rule currently in place. After an uncued rule change the animal had to abandon the old strategy and switch to the new rule, testing cognitive flexibility. Investigating the coordination of activity between the HPC and mPFC allows determination during which task stages their interaction is required. Additionally, comparing neural activity patterns in these two brain regions allows delineation of the specialized functions of the HPC and mPFC in this task. We analyzed neural activity in the HPC and mPFC in terms of oscillatory interactions, rule coding and replay.\r\nWe found that theta coherence between the HPC and mPFC is increased at the center and goals of the maze, both when the rule was stable or has changed. Similar results were found for locking of HPC and mPFC neurons to HPC theta oscillations. However, no differences in HPC-mPFC theta coordination were observed between the spatially- and cue-guided rule. Phase locking of HPC and mPFC neurons to HPC gamma oscillations was not modulated by\r\nmaze position or rule type. We found that the HPC coded for the two different rules with cofiring relationships between\r\ncell pairs. However, we could not find conclusive evidence for rule coding in the mPFC. Spatially-selective firing in the mPFC generalized between the two start and two goal arms. With Bayesian positional decoding, we found that the mPFC reactivated non-local positions during awake immobility periods. Replay of these non-local positions could represent entire behavioral trajectories resembling trajectory replay of the HPC. Furthermore, mPFC\r\ntrajectory-replay at the goal positively correlated with rule-switching performance. \r\nFinally, HPC and mPFC trajectory replay occurred independently of each other. These results show that the mPFC can replay ordered patterns of activity during awake immobility, possibly underlying its role in flexible behavior. " alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Karola full_name: Käfer, Karola id: 2DAA49AA-F248-11E8-B48F-1D18A9856A87 last_name: Käfer citation: ama: Käfer K. The hippocampus and medial prefrontal cortex during flexible behavior. 2019. doi:10.15479/AT:ISTA:6825 apa: Käfer, K. (2019). The hippocampus and medial prefrontal cortex during flexible behavior. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6825 chicago: Käfer, Karola. “The Hippocampus and Medial Prefrontal Cortex during Flexible Behavior.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6825. ieee: K. Käfer, “The hippocampus and medial prefrontal cortex during flexible behavior,” Institute of Science and Technology Austria, 2019. ista: Käfer K. 2019. The hippocampus and medial prefrontal cortex during flexible behavior. Institute of Science and Technology Austria. mla: Käfer, Karola. The Hippocampus and Medial Prefrontal Cortex during Flexible Behavior. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6825. short: K. Käfer, The Hippocampus and Medial Prefrontal Cortex during Flexible Behavior, Institute of Science and Technology Austria, 2019. date_created: 2019-08-21T15:00:57Z date_published: 2019-08-24T00:00:00Z date_updated: 2023-09-07T13:01:42Z day: '24' ddc: - '570' degree_awarded: PhD department: - _id: JoCs doi: 10.15479/AT:ISTA:6825 file: - access_level: open_access checksum: 2664420e332a33338568f4f3bfc59287 content_type: application/pdf creator: kkaefer date_created: 2019-09-03T08:07:13Z date_updated: 2020-09-06T22:30:03Z embargo: 2020-09-05 file_id: '6846' file_name: Thesis_Kaefer_PDFA.pdf file_size: 3205202 relation: main_file request_a_copy: 0 - access_level: closed checksum: 9a154eab6f07aa590a3d2651dc0d926a content_type: application/zip creator: kkaefer date_created: 2019-09-03T08:07:17Z date_updated: 2020-09-15T22:30:05Z embargo_to: open_access file_id: '6847' file_name: Thesis_Kaefer.zip file_size: 2506835 relation: main_file file_date_updated: 2020-09-15T22:30:05Z has_accepted_license: '1' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: '89' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '5949' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 title: The hippocampus and medial prefrontal cortex during flexible behavior type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6546' abstract: - lang: eng text: "Invasive migration plays a crucial role not only during development and homeostasis but also in pathological states, such as tumor metastasis. Drosophila macrophage migration into the extended germband is an interesting system to study invasive migration. It carries similarities to immune cell transmigration and cancer cell invasion, therefore studying this process could also bring new understanding of invasion in higher organisms. In our work, we uncover a highly conserved member of the major facilitator family that plays a role in tissue invasion through regulation of glycosylation on a subgroup of proteins and/or by aiding the precise timing of DN-Cadherin downregulation. \r\n\r\nAberrant display of the truncated core1 O-glycan T-antigen is a common feature of human cancer cells that correlates with metastasis. Here we show that T-antigen in Drosophila melanogaster macrophages is involved in their developmentally programmed tissue invasion. Higher macrophage T-antigen levels require an atypical major facilitator superfamily (MFS) member that we named Minerva which enables macrophage dissemination and invasion. We characterize for the first time the T and Tn glycoform O-glycoproteome of the Drosophila melanogaster embryo, and determine that Minerva increases the presence of T-antigen on proteins in pathways previously linked to cancer, most strongly on the sulfhydryl oxidase Qsox1 which we show is required for macrophage tissue entry. Minerva’s vertebrate ortholog, MFSD1, rescues the minerva mutant’s migration and T-antigen glycosylation defects. We thus identify \r\na key conserved regulator that orchestrates O-glycosylation on a protein subset to activate \r\na program governing migration steps important for both development and cancer metastasis. \r\n" acknowledged_ssus: - _id: Bio alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Katarina full_name: Valosková, Katarina id: 46F146FC-F248-11E8-B48F-1D18A9856A87 last_name: Valosková citation: ama: Valosková K. The role of a highly conserved major facilitator superfamily member in Drosophila embryonic macrophage migration. 2019. doi:10.15479/AT:ISTA:6546 apa: Valosková, K. (2019). The role of a highly conserved major facilitator superfamily member in Drosophila embryonic macrophage migration. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6546 chicago: Valosková, Katarina. “The Role of a Highly Conserved Major Facilitator Superfamily Member in Drosophila Embryonic Macrophage Migration.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6546. ieee: K. Valosková, “The role of a highly conserved major facilitator superfamily member in Drosophila embryonic macrophage migration,” Institute of Science and Technology Austria, 2019. ista: Valosková K. 2019. The role of a highly conserved major facilitator superfamily member in Drosophila embryonic macrophage migration. Institute of Science and Technology Austria. mla: Valosková, Katarina. The Role of a Highly Conserved Major Facilitator Superfamily Member in Drosophila Embryonic Macrophage Migration. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6546. short: K. Valosková, The Role of a Highly Conserved Major Facilitator Superfamily Member in Drosophila Embryonic Macrophage Migration, Institute of Science and Technology Austria, 2019. date_created: 2019-06-07T12:49:19Z date_published: 2019-06-07T00:00:00Z date_updated: 2023-09-19T10:15:54Z day: '07' ddc: - '570' degree_awarded: PhD department: - _id: DaSi doi: 10.15479/AT:ISTA:6546 file: - access_level: closed checksum: 68949c2d96210b45b981a23e9c9cd93c content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: khribikova date_created: 2019-06-07T13:00:04Z date_updated: 2020-07-14T12:47:33Z embargo_to: open_access file_id: '6549' file_name: Katarina Valoskova_PhD thesis_final version.docx file_size: 14110626 relation: source_file - access_level: open_access checksum: 555329cd76e196c96f5278c480ee2e6e content_type: application/pdf creator: khribikova date_created: 2019-06-07T13:00:08Z date_updated: 2021-02-11T11:17:14Z embargo: 2020-06-07 file_id: '6550' file_name: Katarina Valoskova_PhD thesis_final version.pdf file_size: 10054156 relation: main_file file_date_updated: 2021-02-11T11:17:14Z has_accepted_license: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: '141' project: - _id: 253CDE40-B435-11E9-9278-68D0E5697425 grant_number: '24283' name: Examination of the role of a MFS transporter in the migration of Drosophila immune cells publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '6187' relation: part_of_dissertation status: public - id: '544' relation: part_of_dissertation status: public status: public supervisor: - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 title: The role of a highly conserved major facilitator superfamily member in Drosophila embryonic macrophage migration type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6363' abstract: - lang: eng text: "Distinguishing between similar experiences is achieved by the brain \ in a process called pattern separation. In the hippocampus, pattern \ separation reduces the interference of memories and increases the storage capacity by decorrelating similar inputs patterns of neuronal activity into \ non-overlapping output firing patterns. Winners-take-all (WTA) mechanism \ is a theoretical model for pattern separation in which a \"winner\" \ cell suppresses the activity of the neighboring neurons through feedback inhibition. However, if the network properties of the dentate gyrus support WTA as a biologically conceivable model remains unknown. Here, we showed that the connectivity rules of PV+interneurons and their synaptic properties are optimizedfor efficient pattern separation. We found using multiple whole-cell in vitrorecordings that PV+interneurons mainly connect to granule cells (GC) through lateral inhibition, a form of feedback inhibition in which a GC inhibits other GCs but not \ itself through the activation of PV+interneurons. Thus, lateral inhibition between GC–PV+interneurons was ~10 times more abundant than recurrent connections. Furthermore, the GC–PV+interneuron connectivity was more spatially confined \ but less abundant than PV+interneurons–GC connectivity, leading to an \ asymmetrical distribution of excitatory and inhibitory connectivity. Our network model of the dentate gyrus with incorporated real connectivity rules efficiently decorrelates neuronal activity patterns using WTA as the primary mechanism. \ This process relied on lateral inhibition, fast-signaling properties of \ PV+interneurons and the asymmetrical distribution of excitatory and inhibitory connectivity. Finally, we found that silencing the activity of PV+interneurons in vivoleads to acute deficits in discrimination between similar environments, suggesting that PV+interneuron networks are necessary for behavioral relevant computations. Our results demonstrate that PV+interneurons possess unique connectivity and fast signaling properties that confer to the dentate \ gyrus network properties that allow the emergence of pattern separation. Thus, our results contribute to the knowledge of how specific forms of network organization underlie sophisticated types of information processing. \r\n" alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: 'Claudia ' full_name: 'Espinoza Martinez, Claudia ' id: 31FFEE2E-F248-11E8-B48F-1D18A9856A87 last_name: Espinoza Martinez orcid: 0000-0003-4710-2082 citation: ama: Espinoza Martinez C. Parvalbumin+ interneurons enable efficient pattern separation in hippocampal microcircuits. 2019. doi:10.15479/AT:ISTA:6363 apa: Espinoza Martinez, C. (2019). Parvalbumin+ interneurons enable efficient pattern separation in hippocampal microcircuits. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6363 chicago: Espinoza Martinez, Claudia . “Parvalbumin+ Interneurons Enable Efficient Pattern Separation in Hippocampal Microcircuits.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6363. ieee: C. Espinoza Martinez, “Parvalbumin+ interneurons enable efficient pattern separation in hippocampal microcircuits,” Institute of Science and Technology Austria, 2019. ista: Espinoza Martinez C. 2019. Parvalbumin+ interneurons enable efficient pattern separation in hippocampal microcircuits. Institute of Science and Technology Austria. mla: Espinoza Martinez, Claudia. Parvalbumin+ Interneurons Enable Efficient Pattern Separation in Hippocampal Microcircuits. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6363. short: C. Espinoza Martinez, Parvalbumin+ Interneurons Enable Efficient Pattern Separation in Hippocampal Microcircuits, Institute of Science and Technology Austria, 2019. date_created: 2019-04-30T11:56:10Z date_published: 2019-04-30T00:00:00Z date_updated: 2023-09-15T12:03:48Z day: '30' ddc: - '570' degree_awarded: PhD department: - _id: PeJo doi: 10.15479/AT:ISTA:6363 file: - access_level: open_access checksum: 77c6c05cfe8b58c8abcf1b854375d084 content_type: application/pdf creator: cespinoza date_created: 2019-05-07T16:00:39Z date_updated: 2021-02-11T11:17:15Z embargo: 2020-05-09 file_id: '6389' file_name: Espinozathesis_all2.pdf file_size: 13966891 relation: main_file - access_level: closed checksum: f6aa819f127691a2b0fc21c76eb09746 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: cespinoza date_created: 2019-05-07T16:00:48Z date_updated: 2020-07-14T12:47:28Z embargo_to: open_access file_id: '6390' file_name: Espinoza_Thesis.docx file_size: 11159900 relation: source_file file_date_updated: 2021-02-11T11:17:15Z has_accepted_license: '1' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: '140' publication_identifier: isbn: - 978-3-99078-000-8 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '21' relation: part_of_dissertation status: public status: public supervisor: - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 title: Parvalbumin+ interneurons enable efficient pattern separation in hippocampal microcircuits type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6891' abstract: - lang: eng text: "While cells of mesenchymal or epithelial origin perform their effector functions in a purely anchorage dependent manner, cells derived from the hematopoietic lineage are not committed to operate only within a specific niche. Instead, these cells are able to function autonomously of the molecular composition in a broad range of tissue compartments. By this means, cells of the hematopoietic lineage retain the capacity to disseminate into connective tissue and recirculate between organs, building the foundation for essential processes such as tissue regeneration or immune surveillance. \r\nCells of the immune system, specifically leukocytes, are extraordinarily good at performing this task. These cells are able to flexibly shift their mode of migration between an adhesion-mediated and an adhesion-independent manner, instantaneously accommodating for any changes in molecular composition of the external scaffold. The key component driving directed leukocyte migration is the chemokine receptor 7, which guides the cell along gradients of chemokine ligand. Therefore, the physical destination of migrating leukocytes is purely deterministic, i.e. given by global directional cues such as chemokine gradients. \r\nNevertheless, these cells typically reside in three-dimensional scaffolds of inhomogeneous complexity, raising the question whether cells are able to locally discriminate between multiple optional migration routes. Current literature provides evidence that leukocytes, specifically dendritic cells, do indeed probe their surrounding by virtue of multiple explorative protrusions. However, it remains enigmatic how these cells decide which one is the more favorable route to follow and what are the key players involved in performing this task. Due to the heterogeneous environment of most tissues, and the vast adaptability of migrating leukocytes, at this time it is not clear to what extent leukocytes are able to optimize their migratory strategy by adapting their level of adhesiveness. And, given the fact that leukocyte migration is characterized by branched cell shapes in combination with high migration velocities, it is reasonable to assume that these cells require fine tuned shape maintenance mechanisms that tightly coordinate protrusion and adhesion dynamics in a spatiotemporal manner. \r\nTherefore, this study aimed to elucidate how rapidly migrating leukocytes opt for an ideal migratory path while maintaining a continuous cell shape and balancing adhesive forces to efficiently navigate through complex microenvironments. \r\nThe results of this study unraveled a role for the microtubule cytoskeleton in promoting the decision making process during path finding and for the first time point towards a microtubule-mediated function in cell shape maintenance of highly ramified cells such as dendritic cells. Furthermore, we found that migrating low-adhesive leukocytes are able to instantaneously adapt to increased tensile load by engaging adhesion receptors. This response was only occurring tangential to the substrate while adhesive properties in the vertical direction were not increased. As leukocytes are primed for rapid migration velocities, these results demonstrate that leukocyte integrins are able to confer a high level of traction forces parallel to the cell membrane along the direction of migration without wasting energy in gluing the cell to the substrate. \r\nThus, the data in the here presented thesis provide new insights into the pivotal role of cytoskeletal dynamics and the mechanisms of force transduction during leukocyte migration. \r\nThereby the here presented results help to further define fundamental principles underlying leukocyte migration and open up potential therapeutic avenues of clinical relevance.\r\n" alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Aglaja full_name: Kopf, Aglaja id: 31DAC7B6-F248-11E8-B48F-1D18A9856A87 last_name: Kopf orcid: 0000-0002-2187-6656 citation: ama: Kopf A. The implication of cytoskeletal dynamics on leukocyte migration. 2019. doi:10.15479/AT:ISTA:6891 apa: Kopf, A. (2019). The implication of cytoskeletal dynamics on leukocyte migration. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6891 chicago: Kopf, Aglaja. “The Implication of Cytoskeletal Dynamics on Leukocyte Migration.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6891. ieee: A. Kopf, “The implication of cytoskeletal dynamics on leukocyte migration,” Institute of Science and Technology Austria, 2019. ista: Kopf A. 2019. The implication of cytoskeletal dynamics on leukocyte migration. Institute of Science and Technology Austria. mla: Kopf, Aglaja. The Implication of Cytoskeletal Dynamics on Leukocyte Migration. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6891. short: A. Kopf, The Implication of Cytoskeletal Dynamics on Leukocyte Migration, Institute of Science and Technology Austria, 2019. date_created: 2019-09-19T08:19:44Z date_published: 2019-07-24T00:00:00Z date_updated: 2023-10-18T08:49:17Z day: '24' ddc: - '570' degree_awarded: PhD department: - _id: MiSi doi: 10.15479/AT:ISTA:6891 file: - access_level: closed checksum: 00d100d6468e31e583051e0a006b640c content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: akopf date_created: 2019-10-15T05:28:42Z date_updated: 2020-10-17T22:30:03Z embargo_to: open_access file_id: '6950' file_name: Kopf_PhD_Thesis.docx file_size: 74735267 relation: source_file - access_level: open_access checksum: 5d1baa899993ae6ca81aebebe1797000 content_type: application/pdf creator: akopf date_created: 2019-10-15T05:28:47Z date_updated: 2020-10-17T22:30:03Z embargo: 2020-10-16 file_id: '6951' file_name: Kopf_PhD_Thesis1.pdf file_size: 52787224 relation: main_file file_date_updated: 2020-10-17T22:30:03Z has_accepted_license: '1' keyword: - cell biology - immunology - leukocyte - migration - microfluidics language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '171' project: - _id: 265E2996-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: W01250-B20 name: Nano-Analytics of Cellular Systems publication_identifier: eissn: - 2663-337X isbn: - 978-3-99078-002-2 publication_status: published publisher: Institute of Science and Technology Austria related_material: link: - relation: press_release url: https://ist.ac.at/en/news/feeling-like-a-cell/ record: - id: '6328' relation: part_of_dissertation status: public - id: '15' relation: part_of_dissertation status: public - id: '6877' relation: part_of_dissertation status: public status: public supervisor: - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 title: The implication of cytoskeletal dynamics on leukocyte migration type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6371' abstract: - lang: eng text: "Decades of studies have revealed the mechanisms of gene regulation in molecular detail. We make use of such well-described regulatory systems to explore how the molecular mechanisms of protein-protein and protein-DNA interactions shape the dynamics and evolution of gene regulation. \r\n\r\ni) We uncover how the biophysics of protein-DNA binding determines the potential of regulatory networks to evolve and adapt, which can be captured using a simple mathematical model. \r\nii) The evolution of regulatory connections can lead to a significant amount of crosstalk between binding proteins. We explore the effect of crosstalk on gene expression from a target promoter, which seems to be modulated through binding competition at non-specific DNA sites. \r\niii) We investigate how the very same biophysical characteristics as in i) can generate significant fitness costs for cells through global crosstalk, meaning non-specific DNA binding across the genomic background. \r\niv) Binding competition between proteins at a target promoter is a prevailing regulatory feature due to the prevalence of co-regulation at bacterial promoters. However, the dynamics of these systems are not always straightforward to determine even if the molecular mechanisms of regulation are known. A detailed model of the biophysical interactions reveals that interference between the regulatory proteins can constitute a new, generic form of system memory that records the history of the input signals at the promoter. \r\n\r\nWe demonstrate how the biophysics of protein-DNA binding can be harnessed to investigate the principles that shape and ultimately limit cellular gene regulation. These results provide a basis for studies of higher-level functionality, which arises from the underlying regulation. \ \r\n" alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Claudia full_name: Igler, Claudia id: 46613666-F248-11E8-B48F-1D18A9856A87 last_name: Igler citation: ama: Igler C. On the nature of gene regulatory design - The biophysics of transcription factor binding shapes gene regulation. 2019. doi:10.15479/AT:ISTA:6371 apa: Igler, C. (2019). On the nature of gene regulatory design - The biophysics of transcription factor binding shapes gene regulation. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6371 chicago: Igler, Claudia. “On the Nature of Gene Regulatory Design - The Biophysics of Transcription Factor Binding Shapes Gene Regulation.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6371. ieee: C. Igler, “On the nature of gene regulatory design - The biophysics of transcription factor binding shapes gene regulation,” Institute of Science and Technology Austria, 2019. ista: Igler C. 2019. On the nature of gene regulatory design - The biophysics of transcription factor binding shapes gene regulation. Institute of Science and Technology Austria. mla: Igler, Claudia. On the Nature of Gene Regulatory Design - The Biophysics of Transcription Factor Binding Shapes Gene Regulation. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6371. short: C. Igler, On the Nature of Gene Regulatory Design - The Biophysics of Transcription Factor Binding Shapes Gene Regulation, Institute of Science and Technology Austria, 2019. date_created: 2019-05-03T11:55:51Z date_published: 2019-05-03T00:00:00Z date_updated: 2024-02-21T13:45:52Z day: '03' ddc: - '576' - '579' degree_awarded: PhD department: - _id: CaGu doi: 10.15479/AT:ISTA:6371 file: - access_level: open_access checksum: c0085d47c58c9cbcab1b0a783480f6da content_type: application/pdf creator: cigler date_created: 2019-05-03T11:54:52Z date_updated: 2021-02-11T11:17:13Z embargo: 2020-05-02 file_id: '6373' file_name: IglerClaudia_OntheNatureofGeneRegulatoryDesign.pdf file_size: 12597663 relation: main_file - access_level: closed checksum: 2eac954de1c8bbf7e6fb35ed0221ae8c content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: cigler date_created: 2019-05-03T11:54:54Z date_updated: 2020-07-14T12:47:28Z embargo_to: open_access file_id: '6374' file_name: IglerClaudia_OntheNatureofGeneRegulatoryDesign.docx file_size: 34644426 relation: source_file file_date_updated: 2021-02-11T11:17:13Z has_accepted_license: '1' keyword: - gene regulation - biophysics - transcription factor binding - bacteria language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: '152' project: - _id: 251EE76E-B435-11E9-9278-68D0E5697425 grant_number: '24573' name: Design principles underlying genetic switch architecture (DOC Fellowship) publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '67' relation: part_of_dissertation status: public - id: '5585' relation: popular_science status: public status: public supervisor: - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 title: On the nature of gene regulatory design - The biophysics of transcription factor binding shapes gene regulation type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '49' abstract: - lang: eng text: Nowadays, quantum computation is receiving more and more attention as an alternative to the classical way of computing. For realizing a quantum computer, different devices are investigated as potential quantum bits. In this thesis, the focus is on Ge hut wires, which turned out to be promising candidates for implementing hole spin quantum bits. The advantages of Ge as a material system are the low hyperfine interaction for holes and the strong spin orbit coupling, as well as the compatibility with the highly developed CMOS processes in industry. In addition, Ge can also be isotopically purified which is expected to boost the spin coherence times. The strong spin orbit interaction for holes in Ge on the one hand enables the full electrical control of the quantum bit and on the other hand should allow short spin manipulation times. Starting with a bare Si wafer, this work covers the entire process reaching from growth over the fabrication and characterization of hut wire devices up to the demonstration of hole spin resonance. From experiments with single quantum dots, a large g-factor anisotropy between the in-plane and the out-of-plane direction was found. A comparison to a theoretical model unveiled the heavy-hole character of the lowest energy states. The second part of the thesis addresses double quantum dot devices, which were realized by adding two gate electrodes to a hut wire. In such devices, Pauli spin blockade was observed, which can serve as a read-out mechanism for spin quantum bits. Applying oscillating electric fields in spin blockade allowed the demonstration of continuous spin rotations and the extraction of a lower bound for the spin dephasing time. Despite the strong spin orbit coupling in Ge, the obtained value for the dephasing time is comparable to what has been recently reported for holes in Si. All in all, the presented results point out the high potential of Ge hut wires as a platform for long-lived, fast and fully electrically tunable hole spin quantum bits. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Hannes full_name: Watzinger, Hannes id: 35DF8E50-F248-11E8-B48F-1D18A9856A87 last_name: Watzinger citation: ama: Watzinger H. Ge hut wires - from growth to hole spin resonance. 2018. doi:10.15479/AT:ISTA:th_1033 apa: Watzinger, H. (2018). Ge hut wires - from growth to hole spin resonance. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_1033 chicago: Watzinger, Hannes. “Ge Hut Wires - from Growth to Hole Spin Resonance.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_1033. ieee: H. Watzinger, “Ge hut wires - from growth to hole spin resonance,” Institute of Science and Technology Austria, 2018. ista: Watzinger H. 2018. Ge hut wires - from growth to hole spin resonance. Institute of Science and Technology Austria. mla: Watzinger, Hannes. Ge Hut Wires - from Growth to Hole Spin Resonance. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_1033. short: H. Watzinger, Ge Hut Wires - from Growth to Hole Spin Resonance, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:21Z date_published: 2018-07-30T00:00:00Z date_updated: 2023-09-07T12:27:43Z day: '30' ddc: - '530' degree_awarded: PhD department: - _id: GeKa doi: 10.15479/AT:ISTA:th_1033 file: - access_level: open_access checksum: b653b5216251f938ddbeafd1de88667c content_type: application/pdf creator: dernst date_created: 2019-04-09T07:13:28Z date_updated: 2020-07-14T12:46:35Z file_id: '6249' file_name: 2018_Thesis_Watzinger.pdf file_size: 85539748 relation: main_file - access_level: closed checksum: 39bcf8de7ac5b1bb516b11ce2f966785 content_type: application/zip creator: dernst date_created: 2019-04-09T07:13:27Z date_updated: 2020-07-14T12:46:35Z file_id: '6250' file_name: 2018_Thesis_Watzinger_source.zip file_size: 21830697 relation: source_file file_date_updated: 2020-07-14T12:46:35Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '77' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '8005' pubrep_id: '1033' status: public supervisor: - first_name: Georgios full_name: Katsaros, Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros orcid: 0000-0001-8342-202X title: Ge hut wires - from growth to hole spin resonance tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '201' abstract: - lang: eng text: 'We describe arrangements of three-dimensional spheres from a geometrical and topological point of view. Real data (fitting this setup) often consist of soft spheres which show certain degree of deformation while strongly packing against each other. In this context, we answer the following questions: If we model a soft packing of spheres by hard spheres that are allowed to overlap, can we measure the volume in the overlapped areas? Can we be more specific about the overlap volume, i.e. quantify how much volume is there covered exactly twice, three times, or k times? What would be a good optimization criteria that rule the arrangement of soft spheres while making a good use of the available space? Fixing a particular criterion, what would be the optimal sphere configuration? The first result of this thesis are short formulas for the computation of volumes covered by at least k of the balls. The formulas exploit information contained in the order-k Voronoi diagrams and its closely related Level-k complex. The used complexes lead to a natural generalization into poset diagrams, a theoretical formalism that contains the order-k and degree-k diagrams as special cases. In parallel, we define different criteria to determine what could be considered an optimal arrangement from a geometrical point of view. Fixing a criterion, we find optimal soft packing configurations in 2D and 3D where the ball centers lie on a lattice. As a last step, we use tools from computational topology on real physical data, to show the potentials of higher-order diagrams in the description of melting crystals. The results of the experiments leaves us with an open window to apply the theories developed in this thesis in real applications.' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Mabel full_name: Iglesias Ham, Mabel id: 41B58C0C-F248-11E8-B48F-1D18A9856A87 last_name: Iglesias Ham citation: ama: Iglesias Ham M. Multiple covers with balls. 2018. doi:10.15479/AT:ISTA:th_1026 apa: Iglesias Ham, M. (2018). Multiple covers with balls. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_1026 chicago: Iglesias Ham, Mabel. “Multiple Covers with Balls.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_1026. ieee: M. Iglesias Ham, “Multiple covers with balls,” Institute of Science and Technology Austria, 2018. ista: Iglesias Ham M. 2018. Multiple covers with balls. Institute of Science and Technology Austria. mla: Iglesias Ham, Mabel. Multiple Covers with Balls. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_1026. short: M. Iglesias Ham, Multiple Covers with Balls, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:45:10Z date_published: 2018-06-11T00:00:00Z date_updated: 2023-09-07T12:25:32Z day: '11' ddc: - '514' - '516' degree_awarded: PhD department: - _id: HeEd doi: 10.15479/AT:ISTA:th_1026 file: - access_level: closed checksum: dd699303623e96d1478a6ae07210dd05 content_type: application/zip creator: kschuh date_created: 2019-02-05T07:43:31Z date_updated: 2020-07-14T12:45:24Z file_id: '5918' file_name: IST-2018-1025-v2+5_ist-thesis-iglesias-11June2018(1).zip file_size: 11827713 relation: source_file - access_level: open_access checksum: ba163849a190d2b41d66fef0e4983294 content_type: application/pdf creator: kschuh date_created: 2019-02-05T07:43:45Z date_updated: 2020-07-14T12:45:24Z file_id: '5919' file_name: IST-2018-1025-v2+4_ThesisIglesiasFinal11June2018.pdf file_size: 4783846 relation: main_file file_date_updated: 2020-07-14T12:45:24Z has_accepted_license: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: '171' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7712' pubrep_id: '1026' status: public supervisor: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 title: Multiple covers with balls type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '68' abstract: - lang: eng text: The most common assumption made in statistical learning theory is the assumption of the independent and identically distributed (i.i.d.) data. While being very convenient mathematically, it is often very clearly violated in practice. This disparity between the machine learning theory and applications underlies a growing demand in the development of algorithms that learn from dependent data and theory that can provide generalization guarantees similar to the independent situations. This thesis is dedicated to two variants of dependencies that can arise in practice. One is a dependence on the level of samples in a single learning task. Another dependency type arises in the multi-task setting when the tasks are dependent on each other even though the data for them can be i.i.d. In both cases we model the data (samples or tasks) as stochastic processes and introduce new algorithms for both settings that take into account and exploit the resulting dependencies. We prove the theoretical guarantees on the performance of the introduced algorithms under different evaluation criteria and, in addition, we compliment the theoretical study by the empirical one, where we evaluate some of the algorithms on two real world datasets to highlight their practical applicability. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Alexander full_name: Zimin, Alexander id: 37099E9C-F248-11E8-B48F-1D18A9856A87 last_name: Zimin citation: ama: Zimin A. Learning from dependent data. 2018. doi:10.15479/AT:ISTA:TH1048 apa: Zimin, A. (2018). Learning from dependent data. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:TH1048 chicago: Zimin, Alexander. “Learning from Dependent Data.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:TH1048. ieee: A. Zimin, “Learning from dependent data,” Institute of Science and Technology Austria, 2018. ista: Zimin A. 2018. Learning from dependent data. Institute of Science and Technology Austria. mla: Zimin, Alexander. Learning from Dependent Data. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:TH1048. short: A. Zimin, Learning from Dependent Data, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:27Z date_published: 2018-09-01T00:00:00Z date_updated: 2023-09-07T12:29:07Z day: '01' ddc: - '004' - '519' degree_awarded: PhD department: - _id: ChLa doi: 10.15479/AT:ISTA:TH1048 ec_funded: 1 file: - access_level: open_access checksum: e849dd40a915e4d6c5572b51b517f098 content_type: application/pdf creator: dernst date_created: 2019-04-09T07:32:47Z date_updated: 2020-07-14T12:47:40Z file_id: '6253' file_name: 2018_Thesis_Zimin.pdf file_size: 1036137 relation: main_file - access_level: closed checksum: da092153cec55c97461bd53c45c5d139 content_type: application/zip creator: dernst date_created: 2019-04-09T07:32:47Z date_updated: 2020-07-14T12:47:40Z file_id: '6254' file_name: 2018_Thesis_Zimin_Source.zip file_size: 637490 relation: source_file file_date_updated: 2020-07-14T12:47:40Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '92' project: - _id: 2532554C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '308036' name: Lifelong Learning of Visual Scene Understanding publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7986' pubrep_id: '1048' status: public supervisor: - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 title: Learning from dependent data type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '83' abstract: - lang: eng text: "A proof system is a protocol between a prover and a verifier over a common input in which an honest prover convinces the verifier of the validity of true statements. Motivated by the success of decentralized cryptocurrencies, exemplified by Bitcoin, the focus of this thesis will be on proof systems which found applications in some sustainable alternatives to Bitcoin, such as the Spacemint and Chia cryptocurrencies. In particular, we focus on proofs of space and proofs of sequential work.\r\nProofs of space (PoSpace) were suggested as more ecological, economical, and egalitarian alternative to the energy-wasteful proof-of-work mining of Bitcoin. However, the state-of-the-art constructions of PoSpace are based on sophisticated graph pebbling lower bounds, and are therefore complex. Moreover, when these PoSpace are used in cryptocurrencies like Spacemint, miners can only start mining after ensuring that a commitment to their space is already added in a special transaction to the blockchain. Proofs of sequential work (PoSW) are proof systems in which a prover, upon receiving a statement x and a time parameter T, computes a proof which convinces the verifier that T time units had passed since x was received. Whereas Spacemint assumes synchrony to retain some interesting Bitcoin dynamics, Chia requires PoSW with unique proofs, i.e., PoSW in which it is hard to come up with more than one accepting proof for any true statement. In this thesis we construct simple and practically-efficient PoSpace and PoSW. When using our PoSpace in cryptocurrencies, miners can start mining on the fly, like in Bitcoin, and unlike current constructions of PoSW, which either achieve efficient verification of sequential work, or faster-than-recomputing verification of correctness of proofs, but not both at the same time, ours achieve the best of these two worlds." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Hamza M full_name: Abusalah, Hamza M id: 40297222-F248-11E8-B48F-1D18A9856A87 last_name: Abusalah citation: ama: Abusalah HM. Proof systems for sustainable decentralized cryptocurrencies. 2018. doi:10.15479/AT:ISTA:TH_1046 apa: Abusalah, H. M. (2018). Proof systems for sustainable decentralized cryptocurrencies. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:TH_1046 chicago: Abusalah, Hamza M. “Proof Systems for Sustainable Decentralized Cryptocurrencies.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:TH_1046. ieee: H. M. Abusalah, “Proof systems for sustainable decentralized cryptocurrencies,” Institute of Science and Technology Austria, 2018. ista: Abusalah HM. 2018. Proof systems for sustainable decentralized cryptocurrencies. Institute of Science and Technology Austria. mla: Abusalah, Hamza M. Proof Systems for Sustainable Decentralized Cryptocurrencies. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:TH_1046. short: H.M. Abusalah, Proof Systems for Sustainable Decentralized Cryptocurrencies, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:32Z date_published: 2018-09-05T00:00:00Z date_updated: 2023-09-07T12:30:23Z day: '05' ddc: - '004' degree_awarded: PhD department: - _id: KrPi doi: 10.15479/AT:ISTA:TH_1046 ec_funded: 1 file: - access_level: open_access checksum: c4b5f7d111755d1396787f41886fc674 content_type: application/pdf creator: dernst date_created: 2019-04-09T06:43:41Z date_updated: 2020-07-14T12:48:11Z file_id: '6245' file_name: 2018_Thesis_Abusalah.pdf file_size: 876241 relation: main_file - access_level: closed checksum: 0f382ac56b471c48fd907d63eb87dafe content_type: application/x-gzip creator: dernst date_created: 2019-04-09T06:43:41Z date_updated: 2020-07-14T12:48:11Z file_id: '6246' file_name: 2018_Thesis_Abusalah_source.tar.gz file_size: 2029190 relation: source_file file_date_updated: 2020-07-14T12:48:11Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '59' project: - _id: 258C570E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '259668' name: Provable Security for Physical Cryptography - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7971' pubrep_id: '1046' related_material: record: - id: '1229' relation: part_of_dissertation status: public - id: '1235' relation: part_of_dissertation status: public - id: '1236' relation: part_of_dissertation status: public - id: '559' relation: part_of_dissertation status: public status: public supervisor: - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 title: Proof systems for sustainable decentralized cryptocurrencies type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '197' abstract: - lang: eng text: Modern computer vision systems heavily rely on statistical machine learning models, which typically require large amounts of labeled data to be learned reliably. Moreover, very recently computer vision research widely adopted techniques for representation learning, which further increase the demand for labeled data. However, for many important practical problems there is relatively small amount of labeled data available, so it is problematic to leverage full potential of the representation learning methods. One way to overcome this obstacle is to invest substantial resources into producing large labelled datasets. Unfortunately, this can be prohibitively expensive in practice. In this thesis we focus on the alternative way of tackling the aforementioned issue. We concentrate on methods, which make use of weakly-labeled or even unlabeled data. Specifically, the first half of the thesis is dedicated to the semantic image segmentation task. We develop a technique, which achieves competitive segmentation performance and only requires annotations in a form of global image-level labels instead of dense segmentation masks. Subsequently, we present a new methodology, which further improves segmentation performance by leveraging tiny additional feedback from a human annotator. By using our methods practitioners can greatly reduce the amount of data annotation effort, which is required to learn modern image segmentation models. In the second half of the thesis we focus on methods for learning from unlabeled visual data. We study a family of autoregressive models for modeling structure of natural images and discuss potential applications of these models. Moreover, we conduct in-depth study of one of these applications, where we develop the state-of-the-art model for the probabilistic image colorization task. acknowledgement: I also gratefully acknowledge the support of NVIDIA Corporation with the donation of the GPUs used for this research. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Alexander full_name: Kolesnikov, Alexander id: 2D157DB6-F248-11E8-B48F-1D18A9856A87 last_name: Kolesnikov citation: ama: Kolesnikov A. Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images. 2018. doi:10.15479/AT:ISTA:th_1021 apa: Kolesnikov, A. (2018). Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_1021 chicago: Kolesnikov, Alexander. “Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_1021. ieee: A. Kolesnikov, “Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images,” Institute of Science and Technology Austria, 2018. ista: Kolesnikov A. 2018. Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images. Institute of Science and Technology Austria. mla: Kolesnikov, Alexander. Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_1021. short: A. Kolesnikov, Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:45:09Z date_published: 2018-05-25T00:00:00Z date_updated: 2023-09-07T12:51:46Z day: '25' ddc: - '004' degree_awarded: PhD department: - _id: ChLa doi: 10.15479/AT:ISTA:th_1021 ec_funded: 1 file: - access_level: open_access checksum: bc678e02468d8ebc39dc7267dfb0a1c4 content_type: application/pdf creator: system date_created: 2018-12-12T10:14:57Z date_updated: 2020-07-14T12:45:22Z file_id: '5113' file_name: IST-2018-1021-v1+1_thesis-unsigned-pdfa.pdf file_size: 12918758 relation: main_file - access_level: closed checksum: bc66973b086da5a043f1162dcfb1fde4 content_type: application/zip creator: dernst date_created: 2019-04-05T09:34:49Z date_updated: 2020-07-14T12:45:22Z file_id: '6225' file_name: 2018_Thesis_Kolesnikov_source.zip file_size: 55973760 relation: source_file file_date_updated: 2020-07-14T12:45:22Z has_accepted_license: '1' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: '113' project: - _id: 2532554C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '308036' name: Lifelong Learning of Visual Scene Understanding publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7718' pubrep_id: '1021' status: public supervisor: - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 title: Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '200' abstract: - lang: eng text: This thesis is concerned with the inference of current population structure based on geo-referenced genetic data. The underlying idea is that population structure affects its spatial genetic structure. Therefore, genotype information can be utilized to estimate important demographic parameters such as migration rates. These indirect estimates of population structure have become very attractive, as genotype data is now widely available. However, there also has been much concern about these approaches. Importantly, genetic structure can be influenced by many complex patterns, which often cannot be disentangled. Moreover, many methods merely fit heuristic patterns of genetic structure, and do not build upon population genetics theory. Here, I describe two novel inference methods that address these shortcomings. In Chapter 2, I introduce an inference scheme based on a new type of signal, identity by descent (IBD) blocks. Recently, it has become feasible to detect such long blocks of genome shared between pairs of samples. These blocks are direct traces of recent coalescence events. As such, they contain ample signal for inferring recent demography. I examine sharing of IBD blocks in two-dimensional populations with local migration. Using a diffusion approximation, I derive formulas for an isolation by distance pattern of long IBD blocks and show that sharing of long IBD blocks approaches rapid exponential decay for growing sample distance. I describe an inference scheme based on these results. It can robustly estimate the dispersal rate and population density, which is demonstrated on simulated data. I also show an application to estimate mean migration and the rate of recent population growth within Eastern Europe. Chapter 3 is about a novel method to estimate barriers to gene flow in a two dimensional population. This inference scheme utilizes geographically localized allele frequency fluctuations - a classical isolation by distance signal. The strength of these local fluctuations increases on average next to a barrier, and there is less correlation across it. I again use a framework of diffusion of ancestral lineages to model this effect, and provide an efficient numerical implementation to fit the results to geo-referenced biallelic SNP data. This inference scheme is able to robustly estimate strong barriers to gene flow, as tests on simulated data confirm. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Harald full_name: Ringbauer, Harald id: 417FCFF4-F248-11E8-B48F-1D18A9856A87 last_name: Ringbauer orcid: 0000-0002-4884-9682 citation: ama: Ringbauer H. Inferring recent demography from spatial genetic structure. 2018. doi:10.15479/AT:ISTA:th_963 apa: Ringbauer, H. (2018). Inferring recent demography from spatial genetic structure. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_963 chicago: Ringbauer, Harald. “Inferring Recent Demography from Spatial Genetic Structure.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_963. ieee: H. Ringbauer, “Inferring recent demography from spatial genetic structure,” Institute of Science and Technology Austria, 2018. ista: Ringbauer H. 2018. Inferring recent demography from spatial genetic structure. Institute of Science and Technology Austria. mla: Ringbauer, Harald. Inferring Recent Demography from Spatial Genetic Structure. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_963. short: H. Ringbauer, Inferring Recent Demography from Spatial Genetic Structure, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:45:10Z date_published: 2018-02-21T00:00:00Z date_updated: 2023-09-20T12:00:56Z day: '21' ddc: - '576' degree_awarded: PhD department: - _id: NiBa doi: 10.15479/AT:ISTA:th_963 file: - access_level: open_access checksum: 8cc534d2b528ae017acf80874cce48c9 content_type: application/pdf creator: system date_created: 2018-12-12T10:14:55Z date_updated: 2020-07-14T12:45:23Z file_id: '5111' file_name: IST-2018-963-v1+1_thesis.pdf file_size: 5792935 relation: main_file - access_level: closed checksum: 6af18d7e5a7e2728ceda2f41ee24f628 content_type: application/zip creator: dernst date_created: 2019-04-05T09:30:12Z date_updated: 2020-07-14T12:45:23Z file_id: '6224' file_name: 2018_thesis_ringbauer_source.zip file_size: 113365 relation: source_file file_date_updated: 2020-07-14T12:45:23Z has_accepted_license: '1' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: '146' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7713' pubrep_id: '963' related_material: record: - id: '563' relation: part_of_dissertation status: public - id: '1074' relation: part_of_dissertation status: public status: public supervisor: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 title: Inferring recent demography from spatial genetic structure tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '418' abstract: - lang: eng text: "The aim of this thesis was the development of new strategies for optical and optogenetic control of proliferative and pro-survival signaling, and characterizing them from the molecular mechanism up to cellular effects. These new light-based methods have unique features, such as red light as an activator, or the avoidance of gene delivery, which enable to overcome current limitations, such as light delivery to target tissues and feasibility as therapeutic approach. A special focus was placed on implementing these new light-based approaches in pancreatic β-cells, as β-cells are the key players in diabetes and especially their loss in number negatively affects disease progression. Currently no treatment options are available to compensate the lack of functional β-cells in diabetic patients.\r\nIn a first approach, red-light-activated growth factor receptors, in particular receptor tyrosine kinases were engineered and characterized. Receptor activation with light allows spatio-temporal control compared to ligand-based activation, and especially red light exhibits deeper tissue penetration than other wavelengths of the visible spectrum. Red-light-activated receptor tyrosine kinases robustly activated major growth factor related signaling pathways with a high temporal resolution. Moreover, the remote activation of the proliferative MAPK/Erk pathway by red-light-activated receptor tyrosine kinases in a pancreatic β-cell line was also achieved, through one centimeter thick mouse tissue. Although red-light-activated receptor tyrosine kinases are particularly attractive for applications in animal models due to the deep tissue penetration of red light, a drawback, especially with regard to translation into humans, is the requirement of gene therapy.\r\nIn a second approach an endogenous light-sensitive mechanism was identified and its potential to promote proliferative and pro-survival signals was explored, towards light-based tissue regeneration without the need for gene transfer. Blue-green light illumination was found to be sufficient for the activation of proliferation and survival promoting signaling pathways in primary pancreatic murine and human islets. Blue-green light also led to an increase in proliferation of primary islet cells, an effect which was shown to be mostly β-cell specific in human islets. Moreover, it was demonstrated that this approach of pancreatic β-cell expansion did not have any negative effect on the β-cell function, in particular on their insulin secretion capacity. In contrast, a trend for enhanced insulin secretion under high glucose conditions after illumination was detected. In order to unravel the detailed characteristics of this endogenous light-sensitive mechanism, the precise light requirements were determined. In addition, the expression of light sensing proteins, OPN3 and rhodopsin, was detected. The observed effects were found to be independent of handling effects such as temperature differences and cytochrome c oxidase dependent ATP increase, but they were found to be enhanced through the knockout of OPN3. The exact mechanism of how islets cells sense light and the identity of the photoreceptor remains unknown.\r\nSummarized two new light-based systems with unique features were established that enable the activation of proliferative and pro-survival signaling pathways. While red-light-activated receptor tyrosine kinases open a new avenue for optogenetics research, by allowing non-invasive control of signaling in vivo, the identified endogenous light-sensitive mechanism has the potential to be the basis of a gene therapy-free therapeutical approach for light-based β-cell expansion." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Eva full_name: Gschaider-Reichhart, Eva id: 3FEE232A-F248-11E8-B48F-1D18A9856A87 last_name: Gschaider-Reichhart orcid: 0000-0002-7218-7738 citation: ama: Gschaider-Reichhart E. Optical and optogenetic control of proliferation and survival . 2018. doi:10.15479/AT:ISTA:th_913 apa: Gschaider-Reichhart, E. (2018). Optical and optogenetic control of proliferation and survival . Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_913 chicago: Gschaider-Reichhart, Eva. “Optical and Optogenetic Control of Proliferation and Survival .” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_913. ieee: E. Gschaider-Reichhart, “Optical and optogenetic control of proliferation and survival ,” Institute of Science and Technology Austria, 2018. ista: Gschaider-Reichhart E. 2018. Optical and optogenetic control of proliferation and survival . Institute of Science and Technology Austria. mla: Gschaider-Reichhart, Eva. Optical and Optogenetic Control of Proliferation and Survival . Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_913. short: E. Gschaider-Reichhart, Optical and Optogenetic Control of Proliferation and Survival , Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:46:22Z date_published: 2018-01-08T00:00:00Z date_updated: 2023-09-22T09:20:10Z day: '08' ddc: - '571' - '570' degree_awarded: PhD department: - _id: HaJa doi: 10.15479/AT:ISTA:th_913 file: - access_level: closed checksum: 697fa72ca36fb1b8ceabc133d58a73e5 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-05T09:28:03Z date_updated: 2020-07-14T12:46:24Z file_id: '6222' file_name: 2018_THESIS_Gschaider-Reichhart_source.docx file_size: 7012495 relation: source_file - access_level: open_access checksum: 58d7d1e9e58aeb7f061ab686b1d8a48c content_type: application/pdf creator: dernst date_created: 2019-04-05T09:28:03Z date_updated: 2020-07-14T12:46:24Z file_id: '6223' file_name: 2018_THESIS_Gschaider-Reichhart.pdf file_size: 6355280 relation: main_file file_date_updated: 2020-07-14T12:46:24Z has_accepted_license: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: '107' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7405' pubrep_id: '913' related_material: record: - id: '1441' relation: part_of_dissertation status: public - id: '1678' relation: part_of_dissertation status: public - id: '2084' relation: part_of_dissertation status: public - id: '1028' relation: part_of_dissertation status: public status: public supervisor: - first_name: Harald L full_name: Janovjak, Harald L id: 33BA6C30-F248-11E8-B48F-1D18A9856A87 last_name: Janovjak orcid: 0000-0002-8023-9315 title: 'Optical and optogenetic control of proliferation and survival ' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '52' abstract: - lang: eng text: In this thesis we will discuss systems of point interacting fermions, their stability and other spectral properties. Whereas for bosons a point interacting system is always unstable this ques- tion is more subtle for a gas of two species of fermions. In particular the answer depends on the mass ratio between these two species. Most of this work will be focused on the N + M model which consists of two species of fermions with N, M particles respectively which interact via point interactions. We will introduce this model using a formal limit and discuss the N + 1 system in more detail. In particular, we will show that for mass ratios above a critical one, which does not depend on the particle number, the N + 1 system is stable. In the context of this model we will prove rigorous versions of Tan relations which relate various quantities of the point-interacting model. By restricting the N + 1 system to a box we define a finite density model with point in- teractions. In the context of this system we will discuss the energy change when introducing a point-interacting impurity into a system of non-interacting fermions. We will see that this change in energy is bounded independently of the particle number and in particular the bound only depends on the density and the scattering length. As another special case of the N + M model we will show stability of the 2 + 2 model for mass ratios in an interval around one. Further we will investigate a different model of point interactions which was discussed before in the literature and which is, contrary to the N + M model, not given by a limiting procedure but is based on a Dirichlet form. We will show that this system behaves trivially in the thermodynamic limit, i.e. the free energy per particle is the same as the one of the non-interacting system. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Thomas full_name: Moser, Thomas id: 2B5FC9A4-F248-11E8-B48F-1D18A9856A87 last_name: Moser citation: ama: Moser T. Point interactions in systems of fermions. 2018. doi:10.15479/AT:ISTA:th_1043 apa: Moser, T. (2018). Point interactions in systems of fermions. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_1043 chicago: Moser, Thomas. “Point Interactions in Systems of Fermions.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_1043. ieee: T. Moser, “Point interactions in systems of fermions,” Institute of Science and Technology Austria, 2018. ista: Moser T. 2018. Point interactions in systems of fermions. Institute of Science and Technology Austria. mla: Moser, Thomas. Point Interactions in Systems of Fermions. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_1043. short: T. Moser, Point Interactions in Systems of Fermions, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:22Z date_published: 2018-09-04T00:00:00Z date_updated: 2023-09-27T12:34:14Z day: '04' ddc: - '515' - '530' - '519' degree_awarded: PhD department: - _id: RoSe doi: 10.15479/AT:ISTA:th_1043 file: - access_level: open_access checksum: fbd8c747d148b468a21213b7cf175225 content_type: application/pdf creator: dernst date_created: 2019-04-09T07:45:38Z date_updated: 2020-07-14T12:46:37Z file_id: '6256' file_name: 2018_Thesis_Moser.pdf file_size: 851164 relation: main_file - access_level: closed checksum: c28e16ecfc1126d3ce324ec96493c01e content_type: application/zip creator: dernst date_created: 2019-04-09T07:45:38Z date_updated: 2020-07-14T12:46:37Z file_id: '6257' file_name: 2018_Thesis_Moser_Source.zip file_size: 1531516 relation: source_file file_date_updated: 2020-07-14T12:46:37Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '115' project: - _id: 25C878CE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P27533_N27 name: Structure of the Excitation Spectrum for Many-Body Quantum Systems publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '8002' pubrep_id: '1043' related_material: record: - id: '5856' relation: part_of_dissertation status: public - id: '154' relation: part_of_dissertation status: public - id: '1198' relation: part_of_dissertation status: public - id: '741' relation: part_of_dissertation status: public status: public supervisor: - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 title: Point interactions in systems of fermions type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '69' abstract: - lang: eng text: 'A qubit, a unit of quantum information, is essentially any quantum mechanical two-level system which can be coherently controlled. Still, to be used for computation, it has to fulfill criteria. Qubits, regardless of the system in which they are realized, suffer from decoherence. This leads to loss of the information stored in the qubit. The upper bound of the time scale on which decoherence happens is set by the spin relaxation time. In this thesis I studied a two-level system consisting of a Zeeman-split hole spin confined in a quantum dot formed in a Ge hut wire. Such Ge hut wires have emerged as a promising material system for the realization of spin qubits, due to the combination of two significant properties: long spin coherence time as expected for group IV semiconductors due to the low hyperfine interaction and a strong valence band spin-orbit coupling. Here, I present how to fabricate quantum dot devices suitable for electrical transport measurements. Coupled quantum dot devices allowed the realization of a charge sensor, which is electrostatically and tunnel coupled to a quantum dot. By integrating the charge sensor into a radio-frequency reflectometry setup, I performed for the first time single-shot readout measurements of hole spins and extracted the hole spin relaxation times in Ge hut wires.' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Lada full_name: Vukušić, Lada id: 31E9F056-F248-11E8-B48F-1D18A9856A87 last_name: Vukušić orcid: 0000-0003-2424-8636 citation: ama: Vukušić L. Charge sensing and spin relaxation times of holes in Ge hut wires. 2018. doi:10.15479/AT:ISTA:TH_1047 apa: Vukušić, L. (2018). Charge sensing and spin relaxation times of holes in Ge hut wires. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:TH_1047 chicago: Vukušić, Lada. “Charge Sensing and Spin Relaxation Times of Holes in Ge Hut Wires.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:TH_1047. ieee: L. Vukušić, “Charge sensing and spin relaxation times of holes in Ge hut wires,” Institute of Science and Technology Austria, 2018. ista: Vukušić L. 2018. Charge sensing and spin relaxation times of holes in Ge hut wires. Institute of Science and Technology Austria. mla: Vukušić, Lada. Charge Sensing and Spin Relaxation Times of Holes in Ge Hut Wires. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:TH_1047. short: L. Vukušić, Charge Sensing and Spin Relaxation Times of Holes in Ge Hut Wires, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:28Z date_published: 2018-09-01T00:00:00Z date_updated: 2023-09-26T15:50:22Z day: '01' ddc: - '530' - '600' degree_awarded: PhD department: - _id: GeKa - _id: GradSch doi: 10.15479/AT:ISTA:TH_1047 file: - access_level: open_access checksum: c570b656e30749cd65b1c7e13a9ce0a8 content_type: application/pdf creator: dernst date_created: 2019-04-09T07:00:40Z date_updated: 2020-07-14T12:47:44Z file_id: '6247' file_name: 2018_Thesis_Vukusic.pdf file_size: 28452385 relation: main_file - access_level: closed checksum: 7856771d9cd401fe0b311191076db6e1 content_type: application/zip creator: dernst date_created: 2019-04-09T07:00:40Z date_updated: 2020-07-14T12:47:44Z file_id: '6248' file_name: 2018_Thesis_Vukusic_source.zip file_size: 53058704 relation: source_file file_date_updated: 2020-07-14T12:47:44Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '103' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7985' pubrep_id: '1047' related_material: record: - id: '23' relation: part_of_dissertation status: public - id: '840' relation: part_of_dissertation status: public status: public supervisor: - first_name: Georgios full_name: Katsaros, Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros orcid: 0000-0001-8342-202X title: Charge sensing and spin relaxation times of holes in Ge hut wires tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '324' abstract: - lang: eng text: Neuronal networks in the brain consist of two main types of neuron, glutamatergic principal neurons and GABAergic interneurons. Although these interneurons only represent 10–20% of the whole population, they mediate feedback and feedforward inhibition and are involved in the generation of high-frequency network oscillations. A hallmark functional property of GABAergic interneurons, especially of the parvalbumin‑expressing (PV+) subtypes, is the speed of signaling at their output synapse across species and brain regions. Several molecular and subcellular factors may underlie the submillisecond signaling at GABAergic synapses. Such as the selective use of P/Q type Ca2+ channels and the tight coupling between Ca2+ channels and Ca2+ sensors of exocytosis. However, whether the molecular identity of the release sensor contributes to these signaling properties remains unclear. Besides, these interneurons are mainly show depression in response to train of stimuli. How could they keep sufficient release to control the activity of postsynaptic principal neurons during high network activity, is largely elusive. For my Ph.D. work, we firstly examined the Ca2+ sensor of exocytosis at the GABAergic basket cell (BC) to Purkinje cell (PC) synapse in the cerebellum. Immunolabeling suggested that BC terminals selectively expressed synaptotagmin 2 (Syt2), whereas synaptotagmin 1 (Syt1) was enriched in excitatory terminals. Genetic elimination of Syt2 reduced action potential-evoked release to ~10% compared to the wild-type control, identifying Syt2 as the major Ca2+ sensor at BC‑PC synapses. Differential adenovirus-mediated rescue revealed Syt2 triggered release with shorter latency and higher temporal precision, and mediated faster vesicle pool replenishment than Syt1. Furthermore, deletion of Syt2 severely reduced and delayed disynaptic inhibition following parallel fiber stimulation. Thus, the selective use of Syt2 as the release sensor at BC–PC synapse ensures fast feedforward inhibition in cerebellar microcircuits. Additionally, we tested the function of another synaptotagmin member, Syt7, for inhibitory synaptic transmission at the BC–PC synapse. Syt7 is thought to be a Ca2+ sensor that mediates asynchronous transmitter release and facilitation at synapses. However, it is strongly expressed in fast-spiking, PV+ GABAergic interneurons and the output synapses of these neurons produce only minimal asynchronous release and show depression rather than facilitation. How could Syt7, a facilitation sensor, contribute to the depressed inhibitory synaptic transmission needs to be further investigated and understood. Our results indicated that at the BC–PC synapse, Syt7 contributes to asynchronous release, pool replenishment and facilitation. In combination, these three effects ensure efficient transmitter release during high‑frequency activity and guarantee frequency independence of inhibition. Taken together, our results confirmed that Syt2, which has the fastest kinetic properties among all synaptotagmin members, is mainly used by the inhibitory BC‑PC synapse for synaptic transmission, contributing to the speed and temporal precision of transmitter release. Furthermore, we showed that Syt7, another highly expressed synaptotagmin member in the output synapses of cerebellar BCs, is used for ensuring efficient inhibitor synaptic transmission during high activity. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Chong full_name: Chen, Chong id: 3DFD581A-F248-11E8-B48F-1D18A9856A87 last_name: Chen citation: ama: Chen C. Synaptotagmins ensure speed and efficiency of inhibitory neurotransmitter release. 2018. doi:10.15479/AT:ISTA:th_997 apa: Chen, C. (2018). Synaptotagmins ensure speed and efficiency of inhibitory neurotransmitter release. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_997 chicago: Chen, Chong. “Synaptotagmins Ensure Speed and Efficiency of Inhibitory Neurotransmitter Release.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_997. ieee: C. Chen, “Synaptotagmins ensure speed and efficiency of inhibitory neurotransmitter release,” Institute of Science and Technology Austria, 2018. ista: Chen C. 2018. Synaptotagmins ensure speed and efficiency of inhibitory neurotransmitter release. Institute of Science and Technology Austria. mla: Chen, Chong. Synaptotagmins Ensure Speed and Efficiency of Inhibitory Neurotransmitter Release. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_997. short: C. Chen, Synaptotagmins Ensure Speed and Efficiency of Inhibitory Neurotransmitter Release, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:45:49Z date_published: 2018-03-01T00:00:00Z date_updated: 2023-09-27T12:26:03Z day: '01' ddc: - '571' degree_awarded: PhD department: - _id: PeJo doi: 10.15479/AT:ISTA:th_997 file: - access_level: open_access checksum: 8e163ae9e927401b9fa7c1b3e6a3631a content_type: application/pdf creator: system date_created: 2018-12-12T10:13:58Z date_updated: 2020-07-14T12:46:04Z file_id: '5046' file_name: IST-2018-997-v1+1_Thesis_chong_a.pdf file_size: 8719458 relation: main_file - access_level: closed checksum: f7d7260029a5fbb5c982db61328ade52 content_type: application/octet-stream creator: dernst date_created: 2019-04-05T09:25:26Z date_updated: 2020-07-14T12:46:04Z file_id: '6221' file_name: 2018_Thesis_chong_source.pages file_size: 47841940 relation: source_file file_date_updated: 2020-07-14T12:46:04Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: '110' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7541' pubrep_id: '997' related_material: record: - id: '1117' relation: part_of_dissertation status: public - id: '749' relation: part_of_dissertation status: public status: public supervisor: - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 title: Synaptotagmins ensure speed and efficiency of inhibitory neurotransmitter release tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '14306' abstract: - lang: eng text: 'Function and activity of biomolecules often depend on their spatial arrangement. The method introduced here allows genetically encoding the spatial arrangement of proteins and DNA. The approach relies on staple proteins that fold double-stranded DNA into user-defined shapes. This thesis describes the development of staple proteins based on the DNA recognition of TAL effectors and presents experimentally derived rules for designing a variety of self-assembling nanoscale shapes featuring structural motifs such as curvature, vertices, corners, and multilayer helix packing. ' article_processing_charge: No author: - first_name: Florian M full_name: Praetorius, Florian M id: dfec9381-4341-11ee-8fd8-faa02bba7d62 last_name: Praetorius citation: ama: Praetorius FM. Genetically encoding the spatial arrangement of DNA and proteins in self-assembling nanostructures. 2018. apa: Praetorius, F. M. (2018). Genetically encoding the spatial arrangement of DNA and proteins in self-assembling nanostructures. Technische Universität München. chicago: Praetorius, Florian M. “Genetically Encoding the Spatial Arrangement of DNA and Proteins in Self-Assembling Nanostructures.” Technische Universität München, 2018. ieee: F. M. Praetorius, “Genetically encoding the spatial arrangement of DNA and proteins in self-assembling nanostructures,” Technische Universität München, 2018. ista: Praetorius FM. 2018. Genetically encoding the spatial arrangement of DNA and proteins in self-assembling nanostructures. Technische Universität München. mla: Praetorius, Florian M. Genetically Encoding the Spatial Arrangement of DNA and Proteins in Self-Assembling Nanostructures. Technische Universität München, 2018. short: F.M. Praetorius, Genetically Encoding the Spatial Arrangement of DNA and Proteins in Self-Assembling Nanostructures, Technische Universität München, 2018. date_created: 2023-09-06T13:11:22Z date_published: 2018-01-16T00:00:00Z date_updated: 2023-11-07T11:43:38Z day: '16' degree_awarded: PhD extern: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://mediatum.ub.tum.de/1398662 month: '01' oa: 1 oa_version: Published Version publication_status: published publisher: Technische Universität München status: public supervisor: - first_name: Hendrik full_name: Dietz, Hendrik last_name: Dietz title: Genetically encoding the spatial arrangement of DNA and proteins in self-assembling nanostructures type: dissertation user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2018' ... --- _id: '278' abstract: - lang: eng text: 'Consortial subscription contracts regulate the digital access to publications between publishers and scientific libraries. However, since a couple of years the tendency towards a freely accessible publishing (Open Access) intensifies. As a consequence of this trend the contractual relationship between licensor and licensee is gradually changing as well: More and more contracts exercise influence on open access publishing. The present study attempts to compare Austrian examples of consortial licence contracts, which include components of open access. It describes the difference between pure subscription contracts and differing innovative deals including open access components. Thereby it becomes obvious that for the evaluation of this licence contracts new methods are needed. An essential new element of such analyses is the evaluation of the open access publication numbers. So this study tries to carry out such publication analyses for Austrian open access deals focusing on quantitative questions: How does the number of publications evolve? How does the open access share change? Publications reports of the publishers and database queries from Scopus form the data basis. The analysis of the data points out that differing approaches of contracts result in highly divergent results: Particular deals can prioritize a saving in costs or else the increase of the open access rate. It is to be assumed that within the following years further numerous open access deals will be negotiated. The finding of this study shall provide guidance.' author: - first_name: Márton full_name: Villányi, Márton id: 3FFCCD3A-F248-11E8-B48F-1D18A9856A87 last_name: Villányi orcid: 0000-0001-8126-0426 citation: ama: Villányi M. Lizenzverträge mit Open-Access-Komponenten an österreichischen Bibliotheken. 2018. apa: Villányi, M. (2018). Lizenzverträge mit Open-Access-Komponenten an österreichischen Bibliotheken. Universität Wien. chicago: Villányi, Márton. “Lizenzverträge mit Open-Access-Komponenten an österreichischen Bibliotheken.” Universität Wien, 2018. ieee: M. Villányi, “Lizenzverträge mit Open-Access-Komponenten an österreichischen Bibliotheken,” Universität Wien, 2018. ista: Villányi M. 2018. Lizenzverträge mit Open-Access-Komponenten an österreichischen Bibliotheken. Universität Wien. mla: Villányi, Márton. Lizenzverträge mit Open-Access-Komponenten an österreichischen Bibliotheken. Universität Wien, 2018. short: M. Villányi, Lizenzverträge mit Open-Access-Komponenten an österreichischen Bibliotheken, Universität Wien, 2018. date_created: 2018-12-11T11:45:34Z date_published: 2018-04-06T00:00:00Z date_updated: 2024-02-21T13:44:07Z day: '06' department: - _id: E-Lib language: - iso: ger main_file_link: - open_access: '1' url: http://othes.univie.ac.at/51113/ month: '04' oa: 1 oa_version: Published Version page: '94' publication_status: published publisher: Universität Wien publist_id: '7624' related_material: record: - id: '5577' relation: dissertation_contains status: public - id: '5574' relation: dissertation_contains status: public - id: '5578' relation: dissertation_contains status: public - id: '5579' relation: dissertation_contains status: public - id: '5576' relation: dissertation_contains status: public - id: '5575' relation: dissertation_contains status: public - id: '5582' relation: dissertation_contains status: public - id: '5581' relation: dissertation_contains status: public - id: '5580' relation: dissertation_contains status: public status: public supervisor: - first_name: Brigitte full_name: Kromp, Brigitte last_name: Kromp title: Lizenzverträge mit Open-Access-Komponenten an österreichischen Bibliotheken type: dissertation user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2018' ... --- _id: '149' abstract: - lang: eng text: The eigenvalue density of many large random matrices is well approximated by a deterministic measure, the self-consistent density of states. In the present work, we show this behaviour for several classes of random matrices. In fact, we establish that, in each of these classes, the self-consistent density of states approximates the eigenvalue density of the random matrix on all scales slightly above the typical eigenvalue spacing. For large classes of random matrices, the self-consistent density of states exhibits several universal features. We prove that, under suitable assumptions, random Gram matrices and Hermitian random matrices with decaying correlations have a 1/3-Hölder continuous self-consistent density of states ρ on R, which is analytic, where it is positive, and has either a square root edge or a cubic root cusp, where it vanishes. We, thus, extend the validity of the corresponding result for Wigner-type matrices from [4, 5, 7]. We show that ρ is determined as the inverse Stieltjes transform of the normalized trace of the unique solution m(z) to the Dyson equation −m(z) −1 = z − a + S[m(z)] on C N×N with the constraint Im m(z) ≥ 0. Here, z lies in the complex upper half-plane, a is a self-adjoint element of C N×N and S is a positivity-preserving operator on C N×N encoding the first two moments of the random matrix. In order to analyze a possible limit of ρ for N → ∞ and address some applications in free probability theory, we also consider the Dyson equation on infinite dimensional von Neumann algebras. We present two applications to random matrices. We first establish that, under certain assumptions, large random matrices with independent entries have a rotationally symmetric self-consistent density of states which is supported on a centered disk in C. Moreover, it is infinitely often differentiable apart from a jump on the boundary of this disk. Second, we show edge universality at all regular (not necessarily extreme) spectral edges for Hermitian random matrices with decaying correlations. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Johannes full_name: Alt, Johannes id: 36D3D8B6-F248-11E8-B48F-1D18A9856A87 last_name: Alt citation: ama: Alt J. Dyson equation and eigenvalue statistics of random matrices. 2018. doi:10.15479/AT:ISTA:TH_1040 apa: Alt, J. (2018). Dyson equation and eigenvalue statistics of random matrices. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:TH_1040 chicago: Alt, Johannes. “Dyson Equation and Eigenvalue Statistics of Random Matrices.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:TH_1040. ieee: J. Alt, “Dyson equation and eigenvalue statistics of random matrices,” Institute of Science and Technology Austria, 2018. ista: Alt J. 2018. Dyson equation and eigenvalue statistics of random matrices. Institute of Science and Technology Austria. mla: Alt, Johannes. Dyson Equation and Eigenvalue Statistics of Random Matrices. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:TH_1040. short: J. Alt, Dyson Equation and Eigenvalue Statistics of Random Matrices, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:53Z date_published: 2018-07-12T00:00:00Z date_updated: 2024-02-22T14:34:33Z day: '12' ddc: - '515' - '519' degree_awarded: PhD department: - _id: LaEr doi: 10.15479/AT:ISTA:TH_1040 ec_funded: 1 file: - access_level: open_access checksum: d4dad55a7513f345706aaaba90cb1bb8 content_type: application/pdf creator: dernst date_created: 2019-04-08T13:55:20Z date_updated: 2020-07-14T12:44:57Z file_id: '6241' file_name: 2018_thesis_Alt.pdf file_size: 5801709 relation: main_file - access_level: closed checksum: d73fcf46300dce74c403f2b491148ab4 content_type: application/zip creator: dernst date_created: 2019-04-08T13:55:20Z date_updated: 2020-07-14T12:44:57Z file_id: '6242' file_name: 2018_thesis_Alt_source.zip file_size: 3802059 relation: source_file file_date_updated: 2020-07-14T12:44:57Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '456' project: - _id: 258DCDE6-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '338804' name: Random matrices, universality and disordered quantum systems publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7772' pubrep_id: '1040' related_material: record: - id: '1677' relation: part_of_dissertation status: public - id: '550' relation: part_of_dissertation status: public - id: '6183' relation: part_of_dissertation status: public - id: '566' relation: part_of_dissertation status: public - id: '1010' relation: part_of_dissertation status: public - id: '6240' relation: part_of_dissertation status: public - id: '6184' relation: part_of_dissertation status: public status: public supervisor: - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 title: Dyson equation and eigenvalue statistics of random matrices tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '395' abstract: - lang: eng text: 'Autism spectrum disorders (ASD) are a group of genetic disorders often overlapping with other neurological conditions. Despite the remarkable number of scientific breakthroughs of the last 100 years, the treatment of neurodevelopmental disorders (e.g. autism spectrum disorder, intellectual disability, epilepsy) remains a great challenge. Recent advancements in geno mics, like whole-exome or whole-genome sequencing, have enabled scientists to identify numerous mutations underlying neurodevelopmental disorders. Given the few hundred risk genes that were discovered, the etiological variability and the heterogeneous phenotypic outcomes, the need for genotype -along with phenotype- based diagnosis of individual patients becomes a requisite. Driven by this rationale, in a previous study our group described mutations, identified via whole - exome sequencing, in the gene BCKDK – encoding for a key regulator of branched chain amin o acid (BCAA) catabolism - as a cause of ASD. Following up on the role of BCAAs, in the study described here we show that the solute carrier transporter 7a5 (SLC7A5), a large neutral amino acid transporter localized mainly at the blood brain barrier (BBB), has an essential role in maintaining normal levels of brain BCAAs. In mice, deletion of Slc7a5 from the endothelial cells of the BBB leads to atypical brain amino acid profile, abnormal mRNA translation and severe neurolo gical abnormalities. Additionally, deletion of Slc7a5 from the neural progenitor cell population leads to microcephaly. Interestingly, we demonstrate that BCAA intracerebroventricular administration ameliorates abnormal behaviors in adult mutant mice. Furthermore, whole - exome sequencing of patients diagnosed with neurological dis o r ders helped us identify several patients with autistic traits, microcephaly and motor delay carrying deleterious homozygous mutations in the SLC7A5 gene. In conclusion, our data elucidate a neurological syndrome defined by SLC7A5 mutations and support an essential role for t he BCAA s in human bra in function. Together with r ecent studies (described in chapter two) that have successfully made the transition into clinical practice, our findings on the role of B CAAs might have a crucial impact on the development of novel individualized therapeutic strategies for ASD. ' acknowledged_ssus: - _id: PreCl - _id: EM-Fac - _id: Bio alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Dora-Clara full_name: Tarlungeanu, Dora-Clara id: 2ABCE612-F248-11E8-B48F-1D18A9856A87 last_name: Tarlungeanu citation: ama: Tarlungeanu D-C. The branched chain amino acids in autism spectrum disorders . 2018. doi:10.15479/AT:ISTA:th_992 apa: Tarlungeanu, D.-C. (2018). The branched chain amino acids in autism spectrum disorders . Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_992 chicago: Tarlungeanu, Dora-Clara. “The Branched Chain Amino Acids in Autism Spectrum Disorders .” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_992. ieee: D.-C. Tarlungeanu, “The branched chain amino acids in autism spectrum disorders ,” Institute of Science and Technology Austria, 2018. ista: Tarlungeanu D-C. 2018. The branched chain amino acids in autism spectrum disorders . Institute of Science and Technology Austria. mla: Tarlungeanu, Dora-Clara. The Branched Chain Amino Acids in Autism Spectrum Disorders . Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_992. short: D.-C. Tarlungeanu, The Branched Chain Amino Acids in Autism Spectrum Disorders , Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:46:14Z date_published: 2018-03-01T00:00:00Z date_updated: 2023-09-07T12:38:59Z day: '01' ddc: - '570' - '616' degree_awarded: PhD department: - _id: GaNo doi: 10.15479/AT:ISTA:th_992 file: - access_level: closed checksum: 9f5231c96e0ad945040841a8630232da content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-05T09:19:17Z date_updated: 2021-02-11T23:30:15Z embargo_to: open_access file_id: '6217' file_name: 2018_Thesis_Tarlungeanu_source.docx file_size: 43684035 relation: source_file - access_level: open_access checksum: 0c33c370aa2010df5c552db57a6d01e9 content_type: application/pdf creator: dernst date_created: 2019-04-05T09:19:17Z date_updated: 2021-02-11T11:17:16Z embargo: 2018-03-15 file_id: '6218' file_name: 2018_Thesis_Tarlungeanu.pdf file_size: 30511532 relation: main_file file_date_updated: 2021-02-11T23:30:15Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: '88' project: - _id: 25473368-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F03523 name: Transmembrane Transporters in Health and Disease publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7434' pubrep_id: '992' related_material: record: - id: '1183' relation: part_of_dissertation status: public status: public supervisor: - first_name: Gaia full_name: Novarino, Gaia id: 3E57A680-F248-11E8-B48F-1D18A9856A87 last_name: Novarino orcid: 0000-0002-7673-7178 title: 'The branched chain amino acids in autism spectrum disorders ' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '51' abstract: - lang: eng text: Asymmetries have long been known about in the central nervous system. From gross anatomical differences, such as the presence of the parapineal organ in only one hemisphere of the developing zebrafish, to more subtle differences in activity between both hemispheres, as seen in freely roaming animals or human participants under PET and fMRI imaging analysis. The presence of asymmetries has been demonstrated to have huge behavioural implications, with their disruption often leading to the generation of neurological disorders, memory problems, changes in personality, and in an organism's health and well-being. For my Ph.D. work I aimed to tackle two important avenues of research. The first being the process of input-side dependency in the hippocampus, with the goal of finding a key gene responsible for its development (Gene X). The second project was to do with experience-induced laterality formation in the hippocampus. Specifically, how laterality in the synapse density of the CA1 stratum radiatum (s.r.) could be induced purely through environmental enrichment. Through unilateral tracer injections into the CA3, I was able to selectively measure the properties of synapses within the CA1 and investigate how they differed based upon which hemisphere the presynaptic neurone originated. Having found the existence of a previously unreported reversed (left-isomerism) i.v. mutant, through morpholocal examination of labelled terminals in the CA1 s.r., I aimed to elucidate a key gene responsible for the process of left or right determination of inputs to the CA1 s.r.. This work relates to the previous finding of input-side dependent asymmetry in the wild-type rodent, where the origin of the projecting neurone to the CA1 will determine the morphology of a synapse, to a greater degree than the hemisphere in which the projection terminates. Using left- and right-isomerism i.v. mice, in combination with whole genome sequence analysis, I highlight Ena/VASP-like (Evl) as a potential target for Gene X. In relation to this topic, I also highlight my work in the recently published paper of how knockout of PirB can lead to a lack of input-side dependency in the murine hippocampus. For the second question, I show that the environmental enrichment paradigm will lead to an asymmetry in the synapse densities in the hippocampus of mice. I also highlight that the nature of the enrichment is of less consequence than the process of enrichment itself. I demonstrate that the CA3 region will dramatically alter its projection targets, in relation to environmental stimulation, with the asymmetry in synaptic density, caused by enrichment, relying heavily on commissural fibres. I also highlight the vital importance of input-side dependent asymmetry, as a necessary component of experience-dependent laterality formation in the CA1 s.r.. However, my results suggest that it isn't the only cause, as there appears to be a CA1 dependent mechanism also at play. Upon further investigation, I highlight the significant, and highly important, finding that the changes seen in the CA1 s.r. were predominantly caused through projections from the left-CA3, with the right-CA3 having less involvement in this mechanism. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Matthew J full_name: Case, Matthew J id: 44B7CA5A-F248-11E8-B48F-1D18A9856A87 last_name: Case citation: ama: 'Case MJ. From the left to the right: A tale of asymmetries, environments, and hippocampal development. 2018. doi:10.15479/AT:ISTA:th_1032' apa: 'Case, M. J. (2018). From the left to the right: A tale of asymmetries, environments, and hippocampal development. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_1032' chicago: 'Case, Matthew J. “From the Left to the Right: A Tale of Asymmetries, Environments, and Hippocampal Development.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_1032.' ieee: 'M. J. Case, “From the left to the right: A tale of asymmetries, environments, and hippocampal development,” Institute of Science and Technology Austria, 2018.' ista: 'Case MJ. 2018. From the left to the right: A tale of asymmetries, environments, and hippocampal development. Institute of Science and Technology Austria.' mla: 'Case, Matthew J. From the Left to the Right: A Tale of Asymmetries, Environments, and Hippocampal Development. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_1032.' short: 'M.J. Case, From the Left to the Right: A Tale of Asymmetries, Environments, and Hippocampal Development, Institute of Science and Technology Austria, 2018.' date_created: 2018-12-11T11:44:22Z date_published: 2018-06-27T00:00:00Z date_updated: 2023-09-07T12:39:22Z day: '27' ddc: - '571' - '576' degree_awarded: PhD department: - _id: RySh doi: 10.15479/AT:ISTA:th_1032 file: - access_level: closed checksum: dcc7b55619d8509dd62b8e99d6cdee44 content_type: application/msword creator: dernst date_created: 2019-04-09T07:16:26Z date_updated: 2021-02-11T23:30:13Z embargo_to: open_access file_id: '6251' file_name: 2018_Thesis_Case_Source.doc file_size: 141270528 relation: source_file - access_level: open_access checksum: f69fdd5c8709c4e618aa8c1a1221153d content_type: application/pdf creator: dernst date_created: 2019-04-09T07:16:23Z date_updated: 2021-02-11T11:17:14Z embargo: 2019-07-05 file_id: '6252' file_name: 2018_Thesis_Case.pdf file_size: 15193621 relation: main_file file_date_updated: 2021-02-11T23:30:13Z has_accepted_license: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: '186' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '8003' pubrep_id: '1032' related_material: record: - id: '682' relation: part_of_dissertation status: public status: public supervisor: - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 title: 'From the left to the right: A tale of asymmetries, environments, and hippocampal development' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '10' abstract: - lang: eng text: Genomic imprinting is an epigenetic process that leads to parent of origin-specific gene expression in a subset of genes. Imprinted genes are essential for brain development, and deregulation of imprinting is associated with neurodevelopmental diseases and the pathogenesis of psychiatric disorders. However, the cell-type specificity of imprinting at single cell resolution, and how imprinting and thus gene dosage regulates neuronal circuit assembly is still largely unknown. Here, MADM (Mosaic Analysis with Double Markers) technology was employed to assess genomic imprinting at single cell level. By visualizing MADM-induced uniparental disomies (UPDs) in distinct colors at single cell level in genetic mosaic animals, this experimental paradigm provides a unique quantitative platform to systematically assay the UPD-mediated imbalances in imprinted gene expression at unprecedented resolution. An experimental pipeline based on FACS, RNA-seq and bioinformatics analysis was established and applied to systematically map cell-type-specific ‘imprintomes’ in the mouse brain. The results revealed that parental-specific expression of imprinted genes per se is rarely cell-type-specific even at the individual cell level. Conversely, when we extended the comparison to downstream responses resulting from imbalanced imprinted gene expression, we discovered an unexpectedly high degree of cell-type specificity. Furthermore, we determined a novel function of genomic imprinting in cortical astrocyte production and in olfactory bulb (OB) granule cell generation. These results suggest important functional implication of genomic imprinting for generating cell-type diversity in the brain. In addition, MADM provides a powerful tool to study candidate genes by concomitant genetic manipulation and fluorescent labelling of single cells. MADM-based candidate gene approach was utilized to identify potential imprinted genes involved in the generation of cortical astrocytes and OB granule cells. We investigated p57Kip2, a maternally expressed gene and known cell cycle regulator. Although we found that p57Kip2 does not play a role in these processes, we detected an unexpected function of the paternal allele previously thought to be silent. Finally, we took advantage of a key property of MADM which is to allow unambiguous investigation of environmental impact on single cells. The experimental pipeline based on FACS and RNA-seq analysis of MADM-labeled cells was established to probe the functional differences of single cell loss of gene function compared to global loss of function on a transcriptional level. With this method, both common and distinct responses were isolated due to cell-autonomous and non-autonomous effects acting on genotypically identical cells. As a result, transcriptional changes were identified which result solely from the surrounding environment. Using the MADM technology to study genomic imprinting at single cell resolution, we have identified cell-type-specific gene expression, novel gene function and the impact of environment on single cell transcriptomes. Together, these provide important insights to the understanding of mechanisms regulating cell-type specificity and thus diversity in the brain. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Susanne full_name: Laukoter, Susanne id: 2D6B7A9A-F248-11E8-B48F-1D18A9856A87 last_name: Laukoter orcid: 0000-0002-7903-3010 citation: ama: Laukoter S. Role of genomic imprinting in cerebral cortex development. 2018:1-139. doi:10.15479/AT:ISTA:th1057 apa: Laukoter, S. (2018). Role of genomic imprinting in cerebral cortex development. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th1057 chicago: Laukoter, Susanne. “Role of Genomic Imprinting in Cerebral Cortex Development.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th1057. ieee: S. Laukoter, “Role of genomic imprinting in cerebral cortex development,” Institute of Science and Technology Austria, 2018. ista: Laukoter S. 2018. Role of genomic imprinting in cerebral cortex development. Institute of Science and Technology Austria. mla: Laukoter, Susanne. Role of Genomic Imprinting in Cerebral Cortex Development. Institute of Science and Technology Austria, 2018, pp. 1–139, doi:10.15479/AT:ISTA:th1057. short: S. Laukoter, Role of Genomic Imprinting in Cerebral Cortex Development, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:08Z date_published: 2018-11-21T00:00:00Z date_updated: 2023-09-07T12:40:44Z day: '21' ddc: - '570' degree_awarded: PhD department: - _id: SiHi doi: 10.15479/AT:ISTA:th1057 file: - access_level: closed checksum: 41fdbf5fdce312802935d88a8ad9932c content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-05-10T07:47:04Z date_updated: 2019-11-23T23:30:03Z embargo_to: open_access file_id: '6396' file_name: Thesis_LaukoterSusanne_FINAL.docx file_size: 17949175 relation: source_file - access_level: open_access checksum: 53001a9a0c9e570e598d861bb0af28aa content_type: application/pdf creator: dernst date_created: 2019-05-10T07:47:04Z date_updated: 2021-02-11T11:17:16Z embargo: 2019-11-21 file_id: '6397' file_name: Thesis_LaukoterSusanne_FINAL.pdf file_size: 21187245 relation: main_file file_date_updated: 2021-02-11T11:17:16Z has_accepted_license: '1' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 1 - 139 publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '8046' pubrep_id: '1057' status: public supervisor: - first_name: Beatriz full_name: Vicoso, Beatriz id: 49E1C5C6-F248-11E8-B48F-1D18A9856A87 last_name: Vicoso orcid: 0000-0002-4579-8306 title: Role of genomic imprinting in cerebral cortex development type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '323' abstract: - lang: eng text: 'In the here presented thesis, we explore the role of branched actin networks in cell migration and antigen presentation, the two most relevant processes in dendritic cell biology. Branched actin networks construct lamellipodial protrusions at the leading edge of migrating cells. These are typically seen as adhesive structures, which mediate force transduction to the extracellular matrix that leads to forward locomotion. We ablated Arp2/3 nucleation promoting factor WAVE in DCs and found that the resulting cells lack lamellipodial protrusions. Instead, depending on the maturation state, one or multiple filopodia were formed. By challenging these cells in a variety of migration assays we found that lamellipodial protrusions are dispensable for the locomotion of leukocytes and actually dampen the speed of migration. However, lamellipodia are critically required to negotiate complex environments that DCs experience while they travel to the next draining lymph node. Taken together our results suggest that leukocyte lamellipodia have rather a sensory- than a force transducing function. Furthermore, we show for the first time structure and dynamics of dendritic cell F-actin at the immunological synapse with naïve T cells. Dendritic cell F-actin appears as dynamic foci that are nucleated by the Arp2/3 complex. WAVE ablated dendritic cells show increased membrane tension, leading to an altered ultrastructure of the immunological synapse and severe T cell priming defects. These results point towards a previously unappreciated role of the cellular mechanics of dendritic cells in T cell activation. Additionally, we present a novel cell culture based system for the differentiation of dendritic cells from conditionally immortalized hematopoietic precursors. These precursor cells are genetically tractable via the CRISPR/Cas9 system while they retain their ability to differentiate into highly migratory dendritic cells and other immune cells. This will foster the study of all aspects of dendritic cell biology and beyond. ' acknowledged_ssus: - _id: NanoFab - _id: Bio - _id: PreCl - _id: EM-Fac acknowledgement: "First of all I would like to thank Michael Sixt for giving me the opportunity to work in \r\nhis group and for his support throughout the years. He is a truly inspiring person and \r\nthe best boss one can imagine. I would \ also like to thank all current and past \r\nmembers of the Sixt group for their help and the great working atmosphere in the lab. \r\nIt is a true privilege to work with such a bright, funny and friendly group of people and \r\nI’m proud \ that I could be part of it. Furthermore, I would like to say ‘thank \ you’ to Daria Siekhaus for all the meetings and discussion we had throughout the years \r\nand to Federica Benvenuti for being part of my committee. \ I am also grateful to Jack \r\nMerrin in the nanofabrication facility \ and all the people working in the bioimaging-\r\n, the electron microscopy- and the preclinical facilities." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Alexander F full_name: Leithner, Alexander F id: 3B1B77E4-F248-11E8-B48F-1D18A9856A87 last_name: Leithner orcid: 0000-0002-1073-744X citation: ama: Leithner AF. Branched actin networks in dendritic cell biology. 2018. doi:10.15479/AT:ISTA:th_998 apa: Leithner, A. F. (2018). Branched actin networks in dendritic cell biology. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_998 chicago: Leithner, Alexander F. “Branched Actin Networks in Dendritic Cell Biology.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_998. ieee: A. F. Leithner, “Branched actin networks in dendritic cell biology,” Institute of Science and Technology Austria, 2018. ista: Leithner AF. 2018. Branched actin networks in dendritic cell biology. Institute of Science and Technology Austria. mla: Leithner, Alexander F. Branched Actin Networks in Dendritic Cell Biology. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_998. short: A.F. Leithner, Branched Actin Networks in Dendritic Cell Biology, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:45:49Z date_published: 2018-04-12T00:00:00Z date_updated: 2023-09-07T12:39:44Z day: '12' ddc: - '571' - '599' - '610' degree_awarded: PhD department: - _id: MiSi doi: 10.15479/AT:ISTA:th_998 file: - access_level: closed checksum: d5e3edbac548c26c1fa43a4b37a54a4c content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-05T09:23:11Z date_updated: 2021-02-11T23:30:17Z embargo_to: open_access file_id: '6219' file_name: PhD_thesis_AlexLeithner_final_version.docx file_size: 29027671 relation: source_file - access_level: open_access checksum: 071f7476db29e41146824ebd0697cb10 content_type: application/pdf creator: dernst date_created: 2019-04-05T09:23:11Z date_updated: 2021-02-11T11:17:16Z embargo: 2019-04-15 file_id: '6220' file_name: PhD_thesis_AlexLeithner.pdf file_size: 66045341 relation: main_file file_date_updated: 2021-02-11T23:30:17Z has_accepted_license: '1' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: '99' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7542' pubrep_id: '998' related_material: record: - id: '1321' relation: part_of_dissertation status: public status: public supervisor: - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 title: Branched actin networks in dendritic cell biology tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '539' abstract: - lang: eng text: The whole life cycle of plants as well as their responses to environmental stimuli is governed by a complex network of hormonal regulations. A number of studies have demonstrated an essential role of both auxin and cytokinin in the regulation of many aspects of plant growth and development including embryogenesis, postembryonic organogenic processes such as root, and shoot branching, root and shoot apical meristem activity and phyllotaxis. Over the last decades essential knowledge on the key molecular factors and pathways that spatio-temporally define auxin and cytokinin activities in the plant body has accumulated. However, how both hormonal pathways are interconnected by a complex network of interactions and feedback circuits that determines the final outcome of the individual hormone actions is still largely unknown. Root system architecture establishment and in particular formation of lateral organs is prime example of developmental process at whose regulation both auxin and cytokinin pathways converge. To dissect convergence points and pathways that tightly balance auxin - cytokinin antagonistic activities that determine the root branching pattern transcriptome profiling was applied. Genome wide expression analyses of the xylem pole pericycle, a tissue giving rise to lateral roots, led to identification of genes that are highly responsive to combinatorial auxin and cytokinin treatments and play an essential function in the auxin-cytokinin regulated root branching. SYNERGISTIC AUXIN CYTOKININ 1 (SYAC1) gene, which encodes for a protein of unknown function, was detected among the top candidate genes of which expression was synergistically up-regulated by simultaneous hormonal treatment. Plants with modulated SYAC1 activity exhibit severe defects in the root system establishment and attenuate developmental responses to both auxin and cytokinin. To explore the biological function of the SYAC1, we employed different strategies including expression pattern analysis, subcellular localization and phenotypic analyses of the syac1 loss-of-function and gain-of-function transgenic lines along with the identification of the SYAC1 interaction partners. Detailed functional characterization revealed that SYAC1 acts as a developmentally specific regulator of the secretory pathway to control deposition of cell wall components and thereby rapidly fine tune elongation growth. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Andrej full_name: Hurny, Andrej id: 4DC4AF46-F248-11E8-B48F-1D18A9856A87 last_name: Hurny orcid: 0000-0003-3638-1426 citation: ama: Hurny A. Identification and characterization of novel auxin-cytokinin cross-talk components. 2018. doi:10.15479/AT:ISTA:th_930 apa: Hurny, A. (2018). Identification and characterization of novel auxin-cytokinin cross-talk components. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_930 chicago: Hurny, Andrej. “Identification and Characterization of Novel Auxin-Cytokinin Cross-Talk Components.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_930. ieee: A. Hurny, “Identification and characterization of novel auxin-cytokinin cross-talk components,” Institute of Science and Technology Austria, 2018. ista: Hurny A. 2018. Identification and characterization of novel auxin-cytokinin cross-talk components. Institute of Science and Technology Austria. mla: Hurny, Andrej. Identification and Characterization of Novel Auxin-Cytokinin Cross-Talk Components. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_930. short: A. Hurny, Identification and Characterization of Novel Auxin-Cytokinin Cross-Talk Components, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:47:03Z date_published: 2018-01-01T00:00:00Z date_updated: 2023-09-07T12:41:06Z day: '01' ddc: - '570' degree_awarded: PhD department: - _id: EvBe doi: 10.15479/AT:ISTA:th_930 file: - access_level: closed checksum: 0c9d6d1c80d9857e6e545213467bbcb2 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-05T09:37:56Z date_updated: 2020-12-02T23:30:08Z embargo_to: open_access file_id: '6226' file_name: 2018_Hurny_thesis_source.docx file_size: 28112114 relation: source_file - access_level: open_access checksum: ecbe481a1413d270bd501b872c7ed54f content_type: application/pdf creator: dernst date_created: 2019-04-05T09:37:55Z date_updated: 2020-12-02T09:52:16Z embargo: 2019-07-10 file_id: '6227' file_name: 2018_Hurny_thesis.pdf file_size: 12524427 relation: main_file file_date_updated: 2020-12-02T23:30:08Z has_accepted_license: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: '147' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7277' pubrep_id: '930' related_material: record: - id: '1024' relation: part_of_dissertation status: public status: public supervisor: - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 title: Identification and characterization of novel auxin-cytokinin cross-talk components tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '48' abstract: - lang: eng text: 'The hippocampus is a key brain region for spatial memory and navigation and is needed at all stages of memory, including encoding, consolidation, and recall. Hippocampal place cells selectively discharge at specific locations of the environment to form a cognitive map of the space. During the rest period and sleep following spatial navigation and/or learning, the waking activity of the place cells is reactivated within high synchrony events. This reactivation is thought to be important for memory consolidation and stabilization of the spatial representations. The aim of my thesis was to directly test whether the reactivation content encoded in firing patterns of place cells is important for consolidation of spatial memories. In particular, I aimed to test whether, in cases when multiple spatial memory traces are acquired during learning, the specific disruption of the reactivation of a subset of these memories leads to the selective disruption of the corresponding memory traces or through memory interference the other learned memories are disrupted as well. In this thesis, using a modified cheeseboard paradigm and a closed-loop recording setup with feedback optogenetic stimulation, I examined how the disruption of the reactivation of specific spiking patterns affects consolidation of the corresponding memory traces. To obtain multiple distinctive memories, animals had to perform a spatial task in two distinct cheeseboard environments and the reactivation of spiking patterns associated with one of the environments (target) was disrupted after learning during four hours rest period using a real-time decoding method. This real-time decoding method was capable of selectively affecting the firing rates and cofiring correlations of the target environment-encoding cells. The selective disruption led to behavioural impairment in the memory tests after the rest periods in the target environment but not in the other undisrupted control environment. In addition, the map of the target environment was less stable in the impaired memory tests compared to the learning session before than the map of the control environment. However, when the animal relearned the task, the same map recurred in the target environment that was present during learning before the disruption. Altogether my work demonstrated that the reactivation content is important: assembly-related disruption of reactivation can lead to a selective memory impairment and deficiency in map stability. These findings indeed suggest that reactivated assembly patterns reflect processes associated with the consolidation of memory traces. ' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Igor full_name: Gridchyn, Igor id: 4B60654C-F248-11E8-B48F-1D18A9856A87 last_name: Gridchyn orcid: 0000-0002-1807-1929 citation: ama: Gridchyn I. Reactivation content is important for consolidation of spatial memory. 2018. doi:10.15479/AT:ISTA:th_1042 apa: Gridchyn, I. (2018). Reactivation content is important for consolidation of spatial memory. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_1042 chicago: Gridchyn, Igor. “Reactivation Content Is Important for Consolidation of Spatial Memory.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_1042. ieee: I. Gridchyn, “Reactivation content is important for consolidation of spatial memory,” Institute of Science and Technology Austria, 2018. ista: Gridchyn I. 2018. Reactivation content is important for consolidation of spatial memory. Institute of Science and Technology Austria. mla: Gridchyn, Igor. Reactivation Content Is Important for Consolidation of Spatial Memory. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_1042. short: I. Gridchyn, Reactivation Content Is Important for Consolidation of Spatial Memory, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:21Z date_published: 2018-08-27T00:00:00Z date_updated: 2023-09-07T12:42:44Z day: '27' ddc: - '573' degree_awarded: PhD department: - _id: JoCs doi: 10.15479/AT:ISTA:th_1042 file: - access_level: closed checksum: 7db4415e435590fa33542c7b0a0321d7 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-08T13:36:01Z date_updated: 2021-02-11T23:30:22Z embargo_to: open_access file_id: '6236' file_name: 2018_Thesis_Gridchyn_source.docx file_size: 7666687 relation: source_file - access_level: open_access checksum: f96f3fe8979f7b1e6db6acaca962b10c content_type: application/pdf creator: dernst date_created: 2019-04-08T13:36:01Z date_updated: 2021-02-11T11:17:18Z embargo: 2019-08-29 file_id: '6237' file_name: 2018_Thesis_Gridchyn.pdf file_size: 6034153 relation: main_file file_date_updated: 2021-02-11T23:30:22Z has_accepted_license: '1' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: '104' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '8006' pubrep_id: '1042' status: public supervisor: - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 title: Reactivation content is important for consolidation of spatial memory tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '9' abstract: - lang: eng text: 'Immune cells migrating to the sites of infection navigate through diverse tissue architectures and switch their migratory mechanisms upon demand. However, little is known about systemic regulators that could allow the acquisition of these mechanisms. We performed a genetic screen in Drosophila melanogaster to identify regulators of germband invasion by embryonic macrophages into the confined space between the ectoderm and mesoderm. We have found that bZIP circadian transcription factors (TFs) Kayak (dFos) and Vrille (dNFIL3) have opposite effects on macrophage germband infiltration: Kayak facilitated and Vrille inhibited it. These TFs are enriched in the macrophages during migration and genetically interact to control it. Kayak sets a less coordinated mode of migration of the macrophage group and increases the probability and length of Levy walks. Intriguingly, the motility of kayak mutant macrophages was also strongly affected during initial germband invasion but not along another less confined route. Inhibiting Rho1 signaling within the tail ectoderm partially rescued the Kayak mutant phenotype, strongly suggesting that migrating macrophages have to overcome a barrier imposed by the stiffness of the ectoderm. Also, Kayak appeared to be important for the maintenance of the round cell shape and the rear edge translocation of the macrophages invading the germband. Complementary to this, the cortical actin cytoskeleton of Kayak- deficient macrophages was strongly affected. RNA sequencing revealed the filamin Cheerio and tetraspanin TM4SF to be downstream of Kayak. Chromatin immunoprecipitation and immunostaining revealed that the formin Diaphanous is another downstream target of Kayak. Immunostaining revealed that the formin Diaphanous is another downstream target of Kayak. Indeed, Cheerio, TM4SF and Diaphanous are required within macrophages for germband invasion, and expression of constitutively active Diaphanous in macrophages was able to rescue the kayak mutant phenotype. Moreover, Cher and Diaphanous are also reduced in the macrophages overexpressing Vrille. We hypothesize that Kayak, through its targets, increases actin polymerization and cortical tension in macrophages and thus allows extra force generation necessary for macrophage dissemination and migration through confined stiff tissues, while Vrille counterbalances it.' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Vera full_name: Belyaeva, Vera id: 47F080FE-F248-11E8-B48F-1D18A9856A87 last_name: Belyaeva citation: ama: Belyaeva V. Transcriptional regulation of macrophage migration in the Drosophila melanogaster embryo . 2018. doi:10.15479/AT:ISTA:th1064 apa: Belyaeva, V. (2018). Transcriptional regulation of macrophage migration in the Drosophila melanogaster embryo . Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th1064 chicago: Belyaeva, Vera. “Transcriptional Regulation of Macrophage Migration in the Drosophila Melanogaster Embryo .” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th1064. ieee: V. Belyaeva, “Transcriptional regulation of macrophage migration in the Drosophila melanogaster embryo ,” Institute of Science and Technology Austria, 2018. ista: Belyaeva V. 2018. Transcriptional regulation of macrophage migration in the Drosophila melanogaster embryo . Institute of Science and Technology Austria. mla: Belyaeva, Vera. Transcriptional Regulation of Macrophage Migration in the Drosophila Melanogaster Embryo . Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th1064. short: V. Belyaeva, Transcriptional Regulation of Macrophage Migration in the Drosophila Melanogaster Embryo , Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:08Z date_published: 2018-07-01T00:00:00Z date_updated: 2023-09-07T12:43:10Z day: '01' ddc: - '570' degree_awarded: PhD department: - _id: DaSi doi: 10.15479/AT:ISTA:th1064 file: - access_level: closed checksum: d27b2465cb70d0c9678a0381b9b6ced1 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-08T14:13:12Z date_updated: 2020-07-14T12:48:14Z embargo_to: open_access file_id: '6243' file_name: 2018_Thesis_Belyaeva_source.docx file_size: 102737483 relation: source_file - access_level: open_access checksum: a2939b61bde2de7b8ced77bbae0eaaed content_type: application/pdf creator: dernst date_created: 2019-04-08T14:14:08Z date_updated: 2021-02-11T11:17:16Z embargo: 2019-11-19 file_id: '6244' file_name: 2018_Thesis_Belyaeva.pdf file_size: 88077843 relation: main_file file_date_updated: 2021-02-11T11:17:16Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '96' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '8047' pubrep_id: '1064' status: public supervisor: - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 title: 'Transcriptional regulation of macrophage migration in the Drosophila melanogaster embryo ' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '6266' abstract: - lang: eng text: 'A major challenge in neuroscience research is to dissect the circuits that orchestrate behavior in health and disease. Proteins from a wide range of non-mammalian species, such as microbial opsins, have been successfully transplanted to specific neuronal targets to override their natural communication patterns. The goal of our work is to manipulate synaptic communication in a manner that closely incorporates the functional intricacies of synapses by preserving temporal encoding (i.e. the firing pattern of the presynaptic neuron) and connectivity (i.e. target specific synapses rather than specific neurons). Our strategy to achieve this goal builds on the use of non-mammalian transplants to create a synthetic synapse. The mode of modulation comes from pre-synaptic uptake of a synthetic neurotransmitter (SN) into synaptic vesicles by means of a genetically targeted transporter selective for the SN. Upon natural vesicular release, exposure of the SN to the synaptic cleft will modify the post-synaptic potential through an orthogonal ligand gated ion channel. To achieve this goal we have functionally characterized a mixed cationic methionine-gated ion channel from Arabidopsis thaliana, designed a method to functionally characterize a synthetic transporter in isolated synaptic vesicles without the need for transgenic animals, identified and extracted multiple prokaryotic uptake systems that are substrate specific for methionine (Met), and established a primary/cell line co-culture system that would allow future combinatorial testing of this orthogonal transmitter-transporter-channel trifecta. Synthetic synapses will provide a unique opportunity to manipulate synaptic communication while maintaining the electrophysiological integrity of the pre-synaptic cell. In this way, information may be preserved that was generated in upstream circuits and that could be essential for concerted function and information processing. ' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Catherine full_name: Mckenzie, Catherine id: 3EEDE19A-F248-11E8-B48F-1D18A9856A87 last_name: Mckenzie citation: ama: Mckenzie C. Design and characterization of methods and biological components to realize synthetic neurotransmission . 2018. doi:10.15479/at:ista:th_1055 apa: Mckenzie, C. (2018). Design and characterization of methods and biological components to realize synthetic neurotransmission . Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:th_1055 chicago: Mckenzie, Catherine. “Design and Characterization of Methods and Biological Components to Realize Synthetic Neurotransmission .” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/at:ista:th_1055. ieee: C. Mckenzie, “Design and characterization of methods and biological components to realize synthetic neurotransmission ,” Institute of Science and Technology Austria, 2018. ista: Mckenzie C. 2018. Design and characterization of methods and biological components to realize synthetic neurotransmission . Institute of Science and Technology Austria. mla: Mckenzie, Catherine. Design and Characterization of Methods and Biological Components to Realize Synthetic Neurotransmission . Institute of Science and Technology Austria, 2018, doi:10.15479/at:ista:th_1055. short: C. Mckenzie, Design and Characterization of Methods and Biological Components to Realize Synthetic Neurotransmission , Institute of Science and Technology Austria, 2018. date_created: 2019-04-09T14:13:39Z date_published: 2018-10-31T00:00:00Z date_updated: 2023-09-07T13:02:37Z day: '31' ddc: - '571' - '573' degree_awarded: PhD department: - _id: HaJa doi: 10.15479/at:ista:th_1055 file: - access_level: open_access checksum: 9d2c2dca04b00e485470c28b262af59a content_type: application/pdf creator: dernst date_created: 2019-04-09T14:12:40Z date_updated: 2021-02-11T11:17:16Z embargo: 2019-11-24 file_id: '6267' file_name: 2018_Thesis_McKenzie.pdf file_size: 4906420 relation: main_file - access_level: closed checksum: 50b58c272899601bc6fd9642c4dc97f1 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-09T14:12:40Z date_updated: 2020-07-14T12:47:25Z embargo_to: open_access file_id: '6268' file_name: 2018_Thesis_McKenzie_source.docx file_size: 5053545 relation: source_file file_date_updated: 2021-02-11T11:17:16Z has_accepted_license: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: '95' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria pubrep_id: '1055' related_material: record: - id: '7132' relation: new_edition status: public status: public supervisor: - first_name: Harald L full_name: Janovjak, Harald L id: 33BA6C30-F248-11E8-B48F-1D18A9856A87 last_name: Janovjak orcid: 0000-0002-8023-9315 title: 'Design and characterization of methods and biological components to realize synthetic neurotransmission ' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '50' abstract: - lang: eng text: The Wnt/planar cell polarity (Wnt/PCP) pathway determines planar polarity of epithelial cells in both vertebrates and invertebrates. The role that Wnt/PCP signaling plays in mesenchymal contexts, however, is only poorly understood. While previous studies have demonstrated the capacity of Wnt/PCP signaling to polarize and guide directed migration of mesenchymal cells, it remains unclear whether endogenous Wnt/PCP signaling performs these functions instructively, as it does in epithelial cells. Here we developed a light-switchable version of the Wnt/PCP receptor Frizzled 7 (Fz7) to unambiguously distinguish between an instructive and a permissive role of Wnt/PCP signaling for the directional collective migration of mesendoderm progenitor cells during zebrafish gastrulation. We show that prechordal plate (ppl) cell migration is defective in maternal-zygotic fz7a and fz7b (MZ fz7a,b) double mutant embryos, and that Fz7 functions cell-autonomously in this process by promoting ppl cell protrusion formation and directed migration. We further show that local activation of Fz7 can direct ppl cell migration both in vitro and in vivo. Surprisingly, however, uniform Fz7 activation is sufficient to fully rescue the ppl cell migration defect in MZ fz7a,b mutant embryos, indicating that Wnt/PCP signaling functions permissively rather than instructively in directed mesendoderm cell migration during zebrafish gastrulation. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Daniel full_name: Capek, Daniel id: 31C42484-F248-11E8-B48F-1D18A9856A87 last_name: Capek orcid: 0000-0001-5199-9940 citation: ama: Capek D. Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration. 2018. doi:10.15479/AT:ISTA:TH_1031 apa: Capek, D. (2018). Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:TH_1031 chicago: Capek, Daniel. “Optogenetic Frizzled 7 Reveals a Permissive Function of Wnt/PCP Signaling in Directed Mesenchymal Cell Migration.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:TH_1031. ieee: D. Capek, “Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration,” Institute of Science and Technology Austria, 2018. ista: Capek D. 2018. Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration. Institute of Science and Technology Austria. mla: Capek, Daniel. Optogenetic Frizzled 7 Reveals a Permissive Function of Wnt/PCP Signaling in Directed Mesenchymal Cell Migration. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:TH_1031. short: D. Capek, Optogenetic Frizzled 7 Reveals a Permissive Function of Wnt/PCP Signaling in Directed Mesenchymal Cell Migration, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:21Z date_published: 2018-06-22T00:00:00Z date_updated: 2023-09-07T12:48:16Z day: '22' ddc: - '570' - '591' - '596' degree_awarded: PhD department: - _id: CaHe doi: 10.15479/AT:ISTA:TH_1031 file: - access_level: open_access checksum: d3eca3dcacb67bffdde6e6609c31cdd0 content_type: application/pdf creator: dernst date_created: 2019-04-08T13:42:26Z date_updated: 2021-02-11T11:17:17Z embargo: 2019-06-25 file_id: '6238' file_name: 2018_Thesis_Capek.pdf file_size: 31576521 relation: main_file - access_level: closed checksum: 876deb14067e638aba65d209668bd821 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-08T13:42:27Z date_updated: 2021-02-11T23:30:21Z embargo_to: open_access file_id: '6239' file_name: 2018_Thesis_Capek_source.docx file_size: 38992956 relation: source_file file_date_updated: 2021-02-11T23:30:21Z has_accepted_license: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: '95' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '8004' pubrep_id: '1031' related_material: record: - id: '1100' relation: part_of_dissertation status: public - id: '661' relation: part_of_dissertation status: public - id: '676' relation: part_of_dissertation status: public status: public supervisor: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 title: Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '26' abstract: - lang: eng text: Expression of genes is a fundamental molecular phenotype that is subject to evolution by different types of mutations. Both the rate and the effect of mutations may depend on the DNA sequence context of a particular gene or a particular promoter sequence. In this thesis I investigate the nature of this dependence using simple genetic systems in Escherichia coli. With these systems I explore the evolution of constitutive gene expression from random starting sequences at different loci on the chromosome and at different locations in sequence space. First, I dissect chromosomal neighborhood effects that underlie locus-dependent differences in the potential of a gene under selection to become more highly expressed. Next, I find that the effects of point mutations in promoter sequences are dependent on sequence context, and that an existing energy matrix model performs poorly in predicting relative expression of unrelated sequences. Finally, I show that a substantial fraction of random sequences contain functional promoters and I present an extended thermodynamic model that predicts promoter strength in full sequence space. Taken together, these results provide new insights and guides on how to integrate information on sequence context to improve our qualitative and quantitative understanding of bacterial gene expression, with implications for rapid evolution of drug resistance, de novo evolution of genes, and horizontal gene transfer. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Magdalena full_name: Steinrück, Magdalena id: 2C023F40-F248-11E8-B48F-1D18A9856A87 last_name: Steinrück orcid: 0000-0003-1229-9719 citation: ama: Steinrück M. The influence of sequence context on the evolution of bacterial gene expression. 2018. doi:10.15479/AT:ISTA:th1059 apa: Steinrück, M. (2018). The influence of sequence context on the evolution of bacterial gene expression. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th1059 chicago: Steinrück, Magdalena. “The Influence of Sequence Context on the Evolution of Bacterial Gene Expression.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th1059. ieee: M. Steinrück, “The influence of sequence context on the evolution of bacterial gene expression,” Institute of Science and Technology Austria, 2018. ista: Steinrück M. 2018. The influence of sequence context on the evolution of bacterial gene expression. Institute of Science and Technology Austria. mla: Steinrück, Magdalena. The Influence of Sequence Context on the Evolution of Bacterial Gene Expression. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th1059. short: M. Steinrück, The Influence of Sequence Context on the Evolution of Bacterial Gene Expression, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:14Z date_published: 2018-10-30T00:00:00Z date_updated: 2023-09-07T12:48:43Z day: '30' ddc: - '576' - '579' degree_awarded: PhD department: - _id: CaGu doi: 10.15479/AT:ISTA:th1059 file: - access_level: closed checksum: 413cbce1cd1debeae3abe2a25dbc70d1 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-02-08T10:51:22Z date_updated: 2020-07-14T12:45:43Z embargo_to: open_access file_id: '5941' file_name: Thesis_Steinrueck_final.docx file_size: 9190845 relation: source_file - access_level: open_access checksum: 3def8b7854c8b42d643597ce0215efac content_type: application/pdf creator: dernst date_created: 2019-02-08T10:51:22Z date_updated: 2021-02-11T11:17:14Z embargo: 2019-11-02 file_id: '5942' file_name: Thesis_Steinrueck_final.pdf file_size: 7521973 relation: main_file file_date_updated: 2021-02-11T11:17:14Z has_accepted_license: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: '109' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '8029' pubrep_id: '1059' related_material: record: - id: '704' relation: part_of_dissertation status: public status: public supervisor: - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 title: The influence of sequence context on the evolution of bacterial gene expression type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '6263' abstract: - lang: eng text: 'Antibiotic resistance can emerge spontaneously through genomic mutation and render treatment ineffective. To counteract this process, in addition to the discovery and description of resistance mechanisms,a deeper understanding of resistanceevolvabilityand its determinantsis needed. To address this challenge, this thesisuncoversnew genetic determinants of resistance evolvability using a customized robotic setup, exploressystematic ways in which resistance evolution is perturbed due to dose-responsecharacteristics of drugs and mutation rate differences,and mathematically investigates the evolutionary fate of one specific type of evolvability modifier -a stress-induced mutagenesis allele.We find severalgenes which strongly inhibit or potentiate resistance evolution. In order to identify them, we first developedan automated high-throughput feedback-controlled protocol whichkeeps the population size and selection pressure approximately constant for hundreds of cultures by dynamically re-diluting the cultures and adjusting the antibiotic concentration. We implementedthis protocol on a customized liquid handling robot and propagated 100 different gene deletion strains of Escherichia coliin triplicate for over 100 generations in tetracycline and in chloramphenicol, and comparedtheir adaptation rates.We find a diminishing returns pattern, where initially sensitive strains adapted more compared to less sensitive ones. Our data uncover that deletions of certain genes which do not affect mutation rate,including efflux pump components, a chaperone and severalstructural and regulatory genes can strongly and reproducibly alterresistance evolution. Sequencing analysis of evolved populations indicates that epistasis with resistance mutations is the most likelyexplanation. This work could inspire treatment strategies in which targeted inhibitors of evolvability mechanisms will be given alongside antibiotics to slow down resistance evolution and extend theefficacy of antibiotics.We implemented astochasticpopulation genetics model, toverifyways in which general properties, namely, dose-response characteristics of drugs and mutation rates, influence evolutionary dynamics. In particular, under the exposure to antibiotics with shallow dose-response curves,bacteria have narrower distributions of fitness effects of new mutations. We show that in silicothis also leads to slower resistance evolution. We see and confirm with experiments that increased mutation rates, apart from speeding up evolution, also leadto high reproducibility of phenotypic adaptation in a context of continually strong selection pressure.Knowledge of these patterns can aid in predicting the dynamics of antibiotic resistance evolutionand adapting treatment schemes accordingly.Focusing on a previously described type of evolvability modifier –a stress-induced mutagenesis allele –we find conditions under which it can persist in a population under periodic selectionakin to clinical treatment. We set up a deterministic infinite populationcontinuous time model tracking the frequencies of a mutator and resistance allele and evaluate various treatment schemes in how well they maintain a stress-induced mutator allele. In particular,a high diversity of stresses is crucial for the persistence of the mutator allele. This leads to a general trade-off where exactly those diversifying treatment schemes which are likely to decrease levels of resistance could lead to stronger selection of highly evolvable genotypes.In the long run, this work will lead to a deeper understanding of the genetic and cellular mechanisms involved in antibiotic resistance evolution and could inspire new strategies for slowing down its rate. ' acknowledged_ssus: - _id: M-Shop - _id: LifeSc alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Marta full_name: Lukacisinova, Marta id: 4342E402-F248-11E8-B48F-1D18A9856A87 last_name: Lukacisinova orcid: 0000-0002-2519-8004 citation: ama: Lukacisinova M. Genetic determinants of antibiotic resistance evolution. 2018. doi:10.15479/AT:ISTA:th1072 apa: Lukacisinova, M. (2018). Genetic determinants of antibiotic resistance evolution. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th1072 chicago: Lukacisinova, Marta. “Genetic Determinants of Antibiotic Resistance Evolution.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th1072. ieee: M. Lukacisinova, “Genetic determinants of antibiotic resistance evolution,” Institute of Science and Technology Austria, 2018. ista: Lukacisinova M. 2018. Genetic determinants of antibiotic resistance evolution. Institute of Science and Technology Austria. mla: Lukacisinova, Marta. Genetic Determinants of Antibiotic Resistance Evolution. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th1072. short: M. Lukacisinova, Genetic Determinants of Antibiotic Resistance Evolution, Institute of Science and Technology Austria, 2018. date_created: 2019-04-09T13:57:15Z date_published: 2018-12-28T00:00:00Z date_updated: 2023-09-22T09:20:37Z day: '28' ddc: - '570' - '576' - '579' degree_awarded: PhD department: - _id: ToBo doi: 10.15479/AT:ISTA:th1072 file: - access_level: open_access checksum: fc60585c9eaad868ac007004ef130908 content_type: application/pdf creator: dernst date_created: 2019-04-09T13:49:24Z date_updated: 2021-02-11T11:17:17Z embargo: 2020-01-25 file_id: '6264' file_name: 2018_Thesis_Lukacisinova.pdf file_size: 5656866 relation: main_file - access_level: closed checksum: 264057ec0a92ab348cc83b41f021ba92 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-09T13:49:23Z date_updated: 2020-07-14T12:47:25Z embargo_to: open_access file_id: '6265' file_name: 2018_Thesis_Lukacisinova_source.docx file_size: 5168054 relation: source_file file_date_updated: 2021-02-11T11:17:17Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: '91' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '1619' relation: part_of_dissertation status: public - id: '696' relation: part_of_dissertation status: public - id: '1027' relation: part_of_dissertation status: public status: public supervisor: - first_name: Tobias full_name: Bollenbach, Tobias id: 3E6DB97A-F248-11E8-B48F-1D18A9856A87 last_name: Bollenbach orcid: 0000-0003-4398-476X title: Genetic determinants of antibiotic resistance evolution type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '10663' abstract: - lang: eng text: 'The superconducting state of matter enables one to observe quantum effects on the macroscopic scale and hosts many fascinating phenomena. Topological defects of the superconducting order parameter, such as vortices and fluxoid states in multiply connected structures, are often the key ingredients of these phenomena. This dissertation describes a new mode of magnetic force microscopy (Φ0-MFM) for investigating vortex and fluxoid sates in mesoscopic superconducting (SC) structures. The technique relies on the magneto-mechanical coupling of a MFM cantilever to the motion of fluxons. The novelty of the technique is that a magnetic particle attached to the cantilever is used not only to sense the state of a SC structure, but also as a primary source of the inhomogeneous magnetic field which induces that state. Φ0-MFM enables us to map the transitions between tip-induced states during a scan: at the positions of the tip, where the two lowest energy states become degenerate, small oscillations of the tip drive the transitions between these states, which causes a significant shift in the resonant frequency and dissipation of the cantilever. For narrow-wall aluminum rings, the mapped fluxoid transitions form concentric contours on a scan. We show that the changes in the cantilever resonant frequency and dissipation are well-described by a stochastic resonance (SR) of cantilever-driven thermally activated phase slips (TAPS). The SR model allows us to experimentally determine the rate of TAPS and compare it to the Langer-Ambegaokar-McCumber-Halperin (LAMH) theory for TAPS in 1D superconducting structures. Further, we use the SR model to qualitatively study the effects of a locally applied magnetic field on the phase slip rate in rings containing constrictions. The states with multiple vortices or winding numbers could be useful for the development of novel superconducting devices, or the study of vortex interactions and interference effects. Using Φ0-MFM allows us to induce, probe and control fluxoid states in thin wall structures comprised of multiple loops. We show that Φ0-MFM images of the fluxoid transitions allow us to identify the underlying states and to investigate their energetics and dynamics even in complicated structures.' alternative_title: - Graduate Dissertations and Theses at Illinois article_processing_charge: No author: - first_name: Hryhoriy full_name: Polshyn, Hryhoriy id: edfc7cb1-526e-11ec-b05a-e6ecc27e4e48 last_name: Polshyn orcid: 0000-0001-8223-8896 citation: ama: Polshyn H. Magnetic force microscopy studies of mesoscopic superconducting structures. 2017. apa: Polshyn, H. (2017). Magnetic force microscopy studies of mesoscopic superconducting structures. University of Illinois at Urbana-Champaign. chicago: Polshyn, Hryhoriy. “Magnetic Force Microscopy Studies of Mesoscopic Superconducting Structures.” University of Illinois at Urbana-Champaign, 2017. ieee: H. Polshyn, “Magnetic force microscopy studies of mesoscopic superconducting structures,” University of Illinois at Urbana-Champaign, 2017. ista: Polshyn H. 2017. Magnetic force microscopy studies of mesoscopic superconducting structures. University of Illinois at Urbana-Champaign. mla: Polshyn, Hryhoriy. Magnetic Force Microscopy Studies of Mesoscopic Superconducting Structures. University of Illinois at Urbana-Champaign, 2017. short: H. Polshyn, Magnetic Force Microscopy Studies of Mesoscopic Superconducting Structures, University of Illinois at Urbana-Champaign, 2017. date_created: 2022-01-25T14:54:14Z date_published: 2017-09-18T00:00:00Z date_updated: 2022-01-25T15:00:26Z day: '18' degree_awarded: PhD extern: '1' keyword: - physics - superconductivity - magnetic force microscopy - phase slips language: - iso: eng main_file_link: - open_access: '1' url: http://hdl.handle.net/2142/99178 month: '09' oa: 1 oa_version: Published Version page: '103' publication_status: published publisher: University of Illinois at Urbana-Champaign status: public supervisor: - first_name: Raffi full_name: Budakian, Raffi last_name: Budakian title: Magnetic force microscopy studies of mesoscopic superconducting structures type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2017' ... --- _id: '1155' abstract: - lang: eng text: This dissertation concerns the automatic verification of probabilistic systems and programs with arrays by statistical and logical methods. Although statistical and logical methods are different in nature, we show that they can be successfully combined for system analysis. In the first part of the dissertation we present a new statistical algorithm for the verification of probabilistic systems with respect to unbounded properties, including linear temporal logic. Our algorithm often performs faster than the previous approaches, and at the same time requires less information about the system. In addition, our method can be generalized to unbounded quantitative properties such as mean-payoff bounds. In the second part, we introduce two techniques for comparing probabilistic systems. Probabilistic systems are typically compared using the notion of equivalence, which requires the systems to have the equal probability of all behaviors. However, this notion is often too strict, since probabilities are typically only empirically estimated, and any imprecision may break the relation between processes. On the one hand, we propose to replace the Boolean notion of equivalence by a quantitative distance of similarity. For this purpose, we introduce a statistical framework for estimating distances between Markov chains based on their simulation runs, and we investigate which distances can be approximated in our framework. On the other hand, we propose to compare systems with respect to a new qualitative logic, which expresses that behaviors occur with probability one or a positive probability. This qualitative analysis is robust with respect to modeling errors and applicable to many domains. In the last part, we present a new quantifier-free logic for integer arrays, which allows us to express counting. Counting properties are prevalent in array-manipulating programs, however they cannot be expressed in the quantified fragments of the theory of arrays. We present a decision procedure for our logic, and provide several complexity results. acknowledgement: ' First of all, I want to thank my advisor, prof. Thomas A. Henzinger, for his guidance during my PhD program. I am grateful for the freedom I was given to pursue my research interests, and his continuous support. Working with prof. Henzinger was a truly inspiring experience and taught me what it means to be a scientist. I want to express my gratitude to my collaborators: Nikola Beneš, Krishnendu Chatterjee, Martin Chmelík, Ashutosh Gupta, Willibald Krenn, Jan Kˇretínský, Dejan Nickovic, Andrey Kupriyanov, and Tatjana Petrov. I have learned a great deal from my collaborators, and without their help this thesis would not be possible. In addition, I want to thank the members of my thesis committee: Dirk Beyer, Dejan Nickovic, and Georg Weissenbacher for their advice and reviewing this dissertation. I would especially like to acknowledge the late Helmut Veith, who was a member of my committee. I will remember Helmut for his kindness, enthusiasm, and wit, as well as for being an inspiring scientist. Finally, I would like to thank my colleagues for making my stay at IST such a pleasant experience: Guy Avni, Sergiy Bogomolov, Ventsislav Chonev, Rasmus Ibsen-Jensen, Mirco Giacobbe, Bernhard Kragl, Hui Kong, Petr Novotný, Jan Otop, Andreas Pavlogiannis, Tantjana Petrov, Arjun Radhakrishna, Jakob Ruess, Thorsten Tarrach, as well as other members of groups Henzinger and Chatterjee. ' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Przemyslaw full_name: Daca, Przemyslaw id: 49351290-F248-11E8-B48F-1D18A9856A87 last_name: Daca citation: ama: Daca P. Statistical and logical methods for property checking. 2017. doi:10.15479/AT:ISTA:TH_730 apa: Daca, P. (2017). Statistical and logical methods for property checking. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:TH_730 chicago: Daca, Przemyslaw. “Statistical and Logical Methods for Property Checking.” Institute of Science and Technology Austria, 2017. https://doi.org/10.15479/AT:ISTA:TH_730. ieee: P. Daca, “Statistical and logical methods for property checking,” Institute of Science and Technology Austria, 2017. ista: Daca P. 2017. Statistical and logical methods for property checking. Institute of Science and Technology Austria. mla: Daca, Przemyslaw. Statistical and Logical Methods for Property Checking. Institute of Science and Technology Austria, 2017, doi:10.15479/AT:ISTA:TH_730. short: P. Daca, Statistical and Logical Methods for Property Checking, Institute of Science and Technology Austria, 2017. date_created: 2018-12-11T11:50:27Z date_published: 2017-01-02T00:00:00Z date_updated: 2023-09-07T11:58:34Z day: '02' ddc: - '004' - '005' degree_awarded: PhD department: - _id: ToHe doi: 10.15479/AT:ISTA:TH_730 ec_funded: 1 file: - access_level: open_access checksum: 1406a681cb737508234fde34766be2c2 content_type: application/pdf creator: system date_created: 2018-12-12T10:11:26Z date_updated: 2020-07-14T12:44:34Z file_id: '4880' file_name: IST-2017-730-v1+1_Statistical_and_Logical_Methods_for_Property_Checking.pdf file_size: 1028586 relation: main_file file_date_updated: 2020-07-14T12:44:34Z has_accepted_license: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: '163' project: - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6203' pubrep_id: '730' related_material: record: - id: '1093' relation: part_of_dissertation status: public - id: '1230' relation: part_of_dissertation status: public - id: '1234' relation: part_of_dissertation status: public - id: '1391' relation: part_of_dissertation status: public - id: '1501' relation: part_of_dissertation status: public - id: '1502' relation: part_of_dissertation status: public - id: '2063' relation: part_of_dissertation status: public - id: '2167' relation: part_of_dissertation status: public status: public supervisor: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 title: Statistical and logical methods for property checking type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '6291' abstract: - lang: eng text: Bacteria and their pathogens – phages – are the most abundant living entities on Earth. Throughout their coevolution, bacteria have evolved multiple immune systems to overcome the ubiquitous threat from the phages. Although the molecu- lar details of these immune systems’ functions are relatively well understood, their epidemiological consequences for the phage-bacterial communities have been largely neglected. In this thesis we employed both experimental and theoretical methods to explore whether herd and social immunity may arise in bacterial popu- lations. Using our experimental system consisting of Escherichia coli strains with a CRISPR based immunity to the T7 phage we show that herd immunity arises in phage-bacterial communities and that it is accentuated when the populations are spatially structured. By fitting a mathematical model, we inferred expressions for the herd immunity threshold and the velocity of spread of a phage epidemic in partially resistant bacterial populations, which both depend on the bacterial growth rate, phage burst size and phage latent period. We also investigated the poten- tial for social immunity in Streptococcus thermophilus and its phage 2972 using a bioinformatic analysis of potentially coding short open reading frames with a signalling signature, encoded within the CRISPR associated genes. Subsequently, we tested one identified potentially signalling peptide and found that its addition to a phage-challenged culture increases probability of survival of bacteria two fold, although the results were only marginally significant. Together, these results demonstrate that the ubiquitous arms races between bacteria and phages have further consequences at the level of the population. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Pavel full_name: Payne, Pavel id: 35F78294-F248-11E8-B48F-1D18A9856A87 last_name: Payne orcid: 0000-0002-2711-9453 citation: ama: Payne P. Bacterial herd and social immunity to phages. 2017. apa: Payne, P. (2017). Bacterial herd and social immunity to phages. Institute of Science and Technology Austria. chicago: Payne, Pavel. “Bacterial Herd and Social Immunity to Phages.” Institute of Science and Technology Austria, 2017. ieee: P. Payne, “Bacterial herd and social immunity to phages,” Institute of Science and Technology Austria, 2017. ista: Payne P. 2017. Bacterial herd and social immunity to phages. Institute of Science and Technology Austria. mla: Payne, Pavel. Bacterial Herd and Social Immunity to Phages. Institute of Science and Technology Austria, 2017. short: P. Payne, Bacterial Herd and Social Immunity to Phages, Institute of Science and Technology Austria, 2017. date_created: 2019-04-09T15:16:45Z date_published: 2017-02-01T00:00:00Z date_updated: 2023-09-07T12:00:00Z day: '01' ddc: - '570' degree_awarded: PhD department: - _id: NiBa - _id: JoBo file: - access_level: closed checksum: a0fc5c26a89c0ea759947ffba87d0d8f content_type: application/pdf creator: dernst date_created: 2019-04-09T15:15:32Z date_updated: 2020-07-14T12:47:27Z file_id: '6292' file_name: thesis_pavel_payne_final_w_signature_page.pdf file_size: 3025175 relation: main_file - access_level: open_access checksum: af531e921a7f64a9e0af4cd8783b2226 content_type: application/pdf creator: dernst date_created: 2021-02-22T13:45:59Z date_updated: 2021-02-22T13:45:59Z file_id: '9187' file_name: 2017_Payne_Thesis.pdf file_size: 3111536 relation: main_file success: 1 file_date_updated: 2021-02-22T13:45:59Z has_accepted_license: '1' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: '83' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Jonathan P full_name: Bollback, Jonathan P id: 2C6FA9CC-F248-11E8-B48F-1D18A9856A87 last_name: Bollback orcid: 0000-0002-4624-4612 - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 title: Bacterial herd and social immunity to phages type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '818' abstract: - lang: eng text: 'Antibiotics have diverse effects on bacteria, including massive changes in bacterial gene expression. Whereas the gene expression changes under many antibiotics have been measured, the temporal organization of these responses and their dependence on the bacterial growth rate are unclear. As described in Chapter 1, we quantified the temporal gene expression changes in the bacterium Escherichia coli in response to the sudden exposure to antibiotics using a fluorescent reporter library and a robotic system. Our data show temporally structured gene expression responses, with response times for individual genes ranging from tens of minutes to several hours. We observed that many stress response genes were activated in response to antibiotics. As certain stress responses cross-protect bacteria from other stressors, we then asked whether cellular responses to antibiotics have a similar protective role in Chapter 2. Indeed, we found that the trimethoprim-induced acid stress response protects bacteria from subsequent acid stress. We combined microfluidics with time-lapse imaging to monitor survival, intracellular pH, and acid stress response in single cells. This approach revealed that the variable expression of the acid resistance operon gadBC strongly correlates with single-cell survival time. Cells with higher gadBC expression following trimethoprim maintain higher intracellular pH and survive the acid stress longer. Overall, we provide a way to identify single-cell cross-protection between antibiotics and environmental stressors from temporal gene expression data, and show how antibiotics can increase bacterial fitness in changing environments. While gene expression changes to antibiotics show a clear temporal structure at the population-level, it is unclear whether this clear temporal order is followed by every single cell. Using dual-reporter strains described in Chapter 3, we measured gene expression dynamics of promoter pairs in the same cells using microfluidics and microscopy. Chapter 4 shows that the oxidative stress response and the DNA stress response showed little timing variability and a clear temporal order under the antibiotic nitrofurantoin. In contrast, the acid stress response under trimethoprim ran independently from all other activated response programs including the DNA stress response, which showed particularly high timing variability in this stress condition. In summary, this approach provides insight into the temporal organization of gene expression programs at the single-cell level and suggests dependencies between response programs and the underlying variability-introducing mechanisms. Altogether, this work advances our understanding of the diverse effects that antibiotics have on bacteria. These results were obtained by taking into account gene expression dynamics, which allowed us to identify general principles, molecular mechanisms, and dependencies between genes. Our findings may have implications for infectious disease treatments, and microbial communities in the human body and in nature. ' acknowledgement: 'First of all, I would like to express great gratitude to my PhD supervisor Tobias Bollenbach. Through his open and trusting attitude I had the freedom to explore different scientific directions during this project, and follow the research lines of my interest. I am thankful for constructive and often extensive discussions and his support and commitment during the different stages of my PhD. I want to thank my committee members, Călin Guet, Terry Hwa and Nassos Typas for their interest and their valuable input to this project. Special thanks to Nassos for career guidance, and for accepting me in his lab. A big thank you goes to the past, present and affiliated members of the Bollenbach group: Guillaume Chevereau, Marjon de Vos, Marta Lukačišinová, Veronika Bierbaum, Qi Qin, Marcin Zagórski, Martin Lukačišin, Andreas Angermayr, Bor Kavčič, Julia Tischler, Dilay Ayhan, Jaroslav Ferenc, and Georg Rieckh. I enjoyed working and discussing with you very much and I will miss our lengthy group meetings, our inspiring journal clubs, and our common lunches. Special thanks to Bor for great mental and professional support during the hard months of thesis writing, and to Marta for very creative times during the beginning of our PhDs. May the ‘Bacterial Survival Guide’ decorate the walls of IST forever! A great thanks to my friend and collaborator Georg Rieckh for his enthusiasm and for getting so involved in these projects, for his endurance and for his company throughout the years. Thanks to the FriSBi crowd at IST Austria for interesting meetings and discussions. In particular I want to thank Magdalena Steinrück, and Anna Andersson for inspiring exchange, and enjoyable time together. Thanks to everybody who contributed to the cover for Cell Systems: The constructive input from Tobias Bollenbach, Bor Kavčič, Georg Rieckh, Marta Lukačišinová, and Sebastian Nozzi, and the professional implementation by the graphic designer Martina Markus from the University of Cologne. Thanks to all my office mates in the first floor Bertalanffy building throughout the years: for ensuring a pleasant working atmosphere, and for your company! In general, I want to thank all the people that make IST such a great environment, with the many possibilities to shape our own social and research environment. I want to thank my family for all kind of practical support during the years, and my second family in Argentina for their enthusiasm. Thanks to my brother Bernhard and my sister Martina for being great siblings, and to Helena and Valentin for the joy you brought to my life. My deep gratitude goes to Sebastian Nozzi, for constant support, patience, love and for believing in me. ' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Karin full_name: Mitosch, Karin id: 39B66846-F248-11E8-B48F-1D18A9856A87 last_name: Mitosch citation: ama: Mitosch K. Timing, variability and cross-protection in bacteria – insights from dynamic gene expression responses to antibiotics. 2017. doi:10.15479/AT:ISTA:th_862 apa: Mitosch, K. (2017). Timing, variability and cross-protection in bacteria – insights from dynamic gene expression responses to antibiotics. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_862 chicago: Mitosch, Karin. “Timing, Variability and Cross-Protection in Bacteria – Insights from Dynamic Gene Expression Responses to Antibiotics.” Institute of Science and Technology Austria, 2017. https://doi.org/10.15479/AT:ISTA:th_862. ieee: K. Mitosch, “Timing, variability and cross-protection in bacteria – insights from dynamic gene expression responses to antibiotics,” Institute of Science and Technology Austria, 2017. ista: Mitosch K. 2017. Timing, variability and cross-protection in bacteria – insights from dynamic gene expression responses to antibiotics. Institute of Science and Technology Austria. mla: Mitosch, Karin. Timing, Variability and Cross-Protection in Bacteria – Insights from Dynamic Gene Expression Responses to Antibiotics. Institute of Science and Technology Austria, 2017, doi:10.15479/AT:ISTA:th_862. short: K. Mitosch, Timing, Variability and Cross-Protection in Bacteria – Insights from Dynamic Gene Expression Responses to Antibiotics, Institute of Science and Technology Austria, 2017. date_created: 2018-12-11T11:48:40Z date_published: 2017-09-27T00:00:00Z date_updated: 2023-09-07T12:00:26Z day: '27' ddc: - '571' - '579' degree_awarded: PhD department: - _id: ToBo doi: 10.15479/AT:ISTA:th_862 file: - access_level: closed checksum: da3993c5f90f59a8e8623cc31ad501dd content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-05T08:48:51Z date_updated: 2020-07-14T12:48:09Z file_id: '6210' file_name: Thesis_KarinMitosch.docx file_size: 6331071 relation: source_file - access_level: open_access checksum: 24c3d9e51992f1b721f3df55aa13fcb8 content_type: application/pdf creator: dernst date_created: 2019-04-05T08:48:51Z date_updated: 2020-07-14T12:48:09Z file_id: '6211' file_name: Thesis_KarinMitosch.pdf file_size: 9289852 relation: main_file file_date_updated: 2020-07-14T12:48:09Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '113' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6831' pubrep_id: '862' related_material: record: - id: '2001' relation: part_of_dissertation status: public - id: '666' relation: part_of_dissertation status: public status: public supervisor: - first_name: Mark Tobias full_name: Bollenbach, Mark Tobias id: 3E6DB97A-F248-11E8-B48F-1D18A9856A87 last_name: Bollenbach orcid: 0000-0003-4398-476X title: Timing, variability and cross-protection in bacteria – insights from dynamic gene expression responses to antibiotics tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '821' abstract: - lang: eng text: "This dissertation focuses on algorithmic aspects of program verification, and presents modeling and complexity advances on several problems related to the\r\nstatic analysis of programs, the stateless model checking of concurrent programs, and the competitive analysis of real-time scheduling algorithms.\r\nOur contributions can be broadly grouped into five categories.\r\n\r\nOur first contribution is a set of new algorithms and data structures for the quantitative and data-flow analysis of programs, based on the graph-theoretic notion of treewidth.\r\nIt has been observed that the control-flow graphs of typical programs have special structure, and are characterized as graphs of small treewidth.\r\nWe utilize this structural property to provide faster algorithms for the quantitative and data-flow analysis of recursive and concurrent programs.\r\nIn most cases we make an algebraic treatment of the considered problem,\r\nwhere several interesting analyses, such as the reachability, shortest path, and certain kind of data-flow analysis problems follow as special cases. \r\nWe exploit the constant-treewidth property to obtain algorithmic improvements for on-demand versions of the problems, \r\nand provide data structures with various tradeoffs between the resources spent in the preprocessing and querying phase.\r\nWe also improve on the algorithmic complexity of quantitative problems outside the algebraic path framework,\r\nnamely of the minimum mean-payoff, minimum ratio, and minimum initial credit for energy problems.\r\n\r\n\r\nOur second contribution is a set of algorithms for Dyck reachability with applications to data-dependence analysis and alias analysis.\r\nIn particular, we develop an optimal algorithm for Dyck reachability on bidirected graphs, which are ubiquitous in context-insensitive, field-sensitive points-to analysis.\r\nAdditionally, we develop an efficient algorithm for context-sensitive data-dependence analysis via Dyck reachability,\r\nwhere the task is to obtain analysis summaries of library code in the presence of callbacks.\r\nOur algorithm preprocesses libraries in almost linear time, after which the contribution of the library in the complexity of the client analysis is (i)~linear in the number of call sites and (ii)~only logarithmic in the size of the whole library, as opposed to linear in the size of the whole library.\r\nFinally, we prove that Dyck reachability is Boolean Matrix Multiplication-hard in general, and the hardness also holds for graphs of constant treewidth.\r\nThis hardness result strongly indicates that there exist no combinatorial algorithms for Dyck reachability with truly subcubic complexity.\r\n\r\n\r\nOur third contribution is the formalization and algorithmic treatment of the Quantitative Interprocedural Analysis framework.\r\nIn this framework, the transitions of a recursive program are annotated as good, bad or neutral, and receive a weight which measures\r\nthe magnitude of their respective effect.\r\nThe Quantitative Interprocedural Analysis problem asks to determine whether there exists an infinite run of the program where the long-run ratio of the bad weights over the good weights is above a given threshold.\r\nWe illustrate how several quantitative problems related to static analysis of recursive programs can be instantiated in this framework,\r\nand present some case studies to this direction.\r\n\r\n\r\nOur fourth contribution is a new dynamic partial-order reduction for the stateless model checking of concurrent programs. Traditional approaches rely on the standard Mazurkiewicz equivalence between traces, by means of partitioning the trace space into equivalence classes, and attempting to explore a few representatives from each class.\r\nWe present a new dynamic partial-order reduction method called the Data-centric Partial Order Reduction (DC-DPOR).\r\nOur algorithm is based on a new equivalence between traces, called the observation equivalence.\r\nDC-DPOR explores a coarser partitioning of the trace space than any exploration method based on the standard Mazurkiewicz equivalence.\r\nDepending on the program, the new partitioning can be even exponentially coarser.\r\nAdditionally, DC-DPOR spends only polynomial time in each explored class.\r\n\r\n\r\nOur fifth contribution is the use of automata and game-theoretic verification techniques in the competitive analysis and synthesis of real-time scheduling algorithms for firm-deadline tasks.\r\nOn the analysis side, we leverage automata on infinite words to compute the competitive ratio of real-time schedulers subject to various environmental constraints.\r\nOn the synthesis side, we introduce a new instance of two-player mean-payoff partial-information games, and show\r\nhow the synthesis of an optimal real-time scheduler can be reduced to computing winning strategies in this new type of games." acknowledgement: "First, I am thankful to my advisor, Krishnendu Chatterjee, for offering me the opportunity to\r\nmaterialize my scientific curiosity in a remarkably wide range of interesting topics, as well as for his constant availability and continuous support throughout my doctoral studies. I have had the privilege of collaborating with, discussing and getting inspired by all members of my committee: Thomas A. Henzinger, Ulrich Schmid and Martin A. Nowak. The role of the above four people has been very instrumental both to the research carried out for this dissertation, and to the researcher I evolved to in the process.\r\nI have greatly enjoyed my numerous brainstorming sessions with Rasmus Ibsen-Jensen, many\r\nof which led to results on low-treewidth graphs presented here. I thank Alex Kößler for our\r\ndiscussions on modeling and analyzing real-time scheduling algorithms, Yaron Velner for our\r\ncollaboration on the Quantitative Interprocedural Analysis framework, and Nishant Sinha for our initial discussions on partial order reduction techniques in stateless model checking. I also thank Jan Otop, Ben Adlam, Bernhard Kragl and Josef Tkadlec for our fruitful collaborations on\r\ntopics outside the scope of this dissertation, as well as the interns Prateesh Goyal, Amir Kafshdar Goharshady, Samarth Mishra, Bhavya Choudhary and Marek Chalupa, with whom I have shared my excitement on various research topics. Together with my collaborators, I thank officemates and members of the Chatterjee and Henzinger groups throughout the years, Thorsten Tarrach, Ventsi Chonev, Roopsha Samanta, Przemek Daca, Mirco Giacobbe, Tanja Petrov, Ashutosh\r\nGupta, Arjun Radhakrishna, \ Petr Novontý, Christian Hilbe, Jakob Ruess, Martin Chmelik,\r\nCezara Dragoi, Johannes Reiter, Andrey Kupriyanov, Guy Avni, Sasha Rubin, Jessica Davies, Hongfei Fu, Thomas Ferrère, Pavol Cerný, Ali Sezgin, Jan Kretínský, Sergiy Bogomolov, Hui\r\nKong, Benjamin Aminof, Duc-Hiep Chu, and Damien Zufferey. Besides collaborations and office spaces, with many of the above people I have been fortunate to share numerous whiteboard\r\ndiscussions, as well as memorable long walks and amicable meals accompanied by stimulating\r\nconversations. I am highly indebted to Elisabeth Hacker for her continuous assistance in matters\r\nthat often exceeded her official duties, and who made my integration in Austria a smooth process." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 citation: ama: Pavlogiannis A. Algorithmic advances in program analysis and their applications. 2017. doi:10.15479/AT:ISTA:th_854 apa: Pavlogiannis, A. (2017). Algorithmic advances in program analysis and their applications. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_854 chicago: Pavlogiannis, Andreas. “Algorithmic Advances in Program Analysis and Their Applications.” Institute of Science and Technology Austria, 2017. https://doi.org/10.15479/AT:ISTA:th_854. ieee: A. Pavlogiannis, “Algorithmic advances in program analysis and their applications,” Institute of Science and Technology Austria, 2017. ista: Pavlogiannis A. 2017. Algorithmic advances in program analysis and their applications. Institute of Science and Technology Austria. mla: Pavlogiannis, Andreas. Algorithmic Advances in Program Analysis and Their Applications. Institute of Science and Technology Austria, 2017, doi:10.15479/AT:ISTA:th_854. short: A. Pavlogiannis, Algorithmic Advances in Program Analysis and Their Applications, Institute of Science and Technology Austria, 2017. date_created: 2018-12-11T11:48:41Z date_published: 2017-08-09T00:00:00Z date_updated: 2023-09-07T12:01:59Z day: '09' ddc: - '000' degree_awarded: PhD department: - _id: KrCh doi: 10.15479/AT:ISTA:th_854 ec_funded: 1 file: - access_level: open_access checksum: 3a3ec003f6ee73f41f82a544d63dfc77 content_type: application/pdf creator: system date_created: 2018-12-12T10:11:44Z date_updated: 2020-07-14T12:48:10Z file_id: '4900' file_name: IST-2017-854-v1+1_Pavlogiannis_Thesis_PubRep.pdf file_size: 4103115 relation: main_file - access_level: closed checksum: bd2facc45ff8a2e20c5ed313c2ccaa83 content_type: application/zip creator: dernst date_created: 2019-04-05T07:59:31Z date_updated: 2020-07-14T12:48:10Z file_id: '6201' file_name: 2017_thesis_Pavlogiannis.zip file_size: 14744374 relation: source_file file_date_updated: 2020-07-14T12:48:10Z has_accepted_license: '1' language: - iso: eng license: https://creativecommons.org/licenses/by-nd/4.0/ month: '08' oa: 1 oa_version: Published Version page: '418' project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6828' pubrep_id: '854' related_material: record: - id: '1071' relation: part_of_dissertation status: public - id: '1437' relation: part_of_dissertation status: public - id: '1602' relation: part_of_dissertation status: public - id: '1604' relation: part_of_dissertation status: public - id: '1607' relation: part_of_dissertation status: public - id: '1714' relation: part_of_dissertation status: public status: public supervisor: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X title: Algorithmic advances in program analysis and their applications tmp: image: /image/cc_by_nd.png legal_code_url: https://creativecommons.org/licenses/by-nd/4.0/legalcode name: Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) short: CC BY-ND (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '820' abstract: - lang: eng text: "The lac operon is a classic model system for bacterial gene regulation, and has been studied extensively in E. coli, a classic model organism. However, not much is known about E. coli’s ecology and life outside the laboratory, in particular in soil and water environments. The natural diversity of the lac operon outside the laboratory, its role in the ecology of E. coli and the selection pressures it is exposed to, are similarly unknown.\r\nIn Chapter Two of this thesis, I explore the genetic diversity, phylogenetic history and signatures of selection of the lac operon across 20 natural isolates of E. coli and divergent clades of Escherichia. I found that complete lac operons were present in all isolates examined, which in all but one case were functional. The lac operon phylogeny conformed to the whole-genome phylogeny of the divergent Escherichia clades, which excludes horizontal gene transfer as an explanation for the presence of functional lac operons in these clades. All lac operon genes showed a signature of purifying selection; this signature was strongest for the lacY gene. Lac operon genes of human and environmental isolates showed similar signatures of selection, except the lacZ gene, which showed a stronger signature of selection in environmental isolates.\r\nIn Chapter Three, I try to identify the natural genetic variation relevant for phenotype and fitness in the lac operon, comparing growth rate on lactose and LacZ activity of the lac operons of these wild isolates in a common genetic background. Sequence variation in the lac promoter region, upstream of the -10 and -35 RNA polymerase binding motif, predicted variation in LacZ activity at full induction, using a thermodynamic model of polymerase binding (Tugrul, 2016). However, neither variation in LacZ activity, nor RNA polymerase binding predicted by the model correlated with variation in growth rate. Lac operons of human and environmental isolates did not differ systematically in either growth rate on lactose or LacZ protein activity, suggesting that these lac operons have been exposed to similar selection pressures. We thus have no evidence that the phenotypic variation we measured is relevant for fitness.\r\nTo start assessing the effect of genomic background on the growth phenotype conferred by the lac operon, I compared growth on minimal medium with lactose between lac operon constructs and the corresponding original isolates, I found that maximal growth rate was determined by genomic background, with almost all backgrounds conferring higher growth rates than lab strain K12 MG1655. However, I found no evidence that the lactose concentration at which growth was half maximal depended on genomic background." acknowledgement: "ERC H2020 programme (grant agreement no. 648440)\r\nThanks to Jon Bollback for giving me the chance to do this work, for sharing the ideas that lay at the basis of this work, for his honesty and openness, showing himself to me as a person and not just as a boss. Thanks to Nick Barton for his guidance at the last stage, reading and commenting extensively on several versions of this manuscript, and for his encouragement; thanks to both Jon and Nick for their kindness and patience. Thanks to Erik van Nimwegen and Calin Guet for their time and willingness to be in my thesis committee, and to Erik van Nimwegen especially for agreeing to enter my thesis committee at the last moment, and for his very sharp, helpful and relevant comments during and after the defense. Thanks to my collaborators and discussion partners: Anne Kupczok, for her guidance, ideas and discussions during the construction of the manuscript of Chapter Two, and her comments on the manuscript; Georg Rieckh for making me aware of the issue of parameter identifiability, suggesting how to solve it, and for his unfortunate idea to start the plasmid enterprise in the first place; Murat Tugrul for sharing his model, for his enthusiasm, and his comments on Chapter Three; Srdjan Sarikas for his collaboration on the Monod model fitting, fast forwarding the analysis to turbo speed and making beautiful figures, and making the discussion fun on top of it all; Vanessa Barone for her last minute comments, especially on Chapter Three, providing a sharp and very helpful experimentalist perspective at the last moment; Maros Pleska and Marjon de Vos for their comments on the manuscript of Chapter Two; Gasper Tkacik for his crucial input on the relation between growth rate and lactose concentration; Bor Kavcic for his input on growth rate modeling and error propagation. Thanks to the Bollback, Bollenbach, Barton, Guet and Tkacik group members for both pro- viding an inspiring and supportive scientific environment to work in, as well as a lot of warmth and colour to everyday life. And thanks to the friends I found here, to the people who were there for me and to the people who changed my life, making it stranger and more beautiful than I could have imagined, Maros, Vanessa, Tade, Suzi, Andrej, Peter, Tiago, Kristof, Karin, Irene, Misha, Mato, Guillaume and Zanin. " alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Fabienne full_name: Jesse, Fabienne id: 4C8C26A4-F248-11E8-B48F-1D18A9856A87 last_name: Jesse citation: ama: Jesse F. The lac operon in the wild. 2017. doi:10.15479/AT:ISTA:th_857 apa: Jesse, F. (2017). The lac operon in the wild. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_857 chicago: Jesse, Fabienne. “The Lac Operon in the Wild.” Institute of Science and Technology Austria, 2017. https://doi.org/10.15479/AT:ISTA:th_857. ieee: F. Jesse, “The lac operon in the wild,” Institute of Science and Technology Austria, 2017. ista: Jesse F. 2017. The lac operon in the wild. Institute of Science and Technology Austria. mla: Jesse, Fabienne. The Lac Operon in the Wild. Institute of Science and Technology Austria, 2017, doi:10.15479/AT:ISTA:th_857. short: F. Jesse, The Lac Operon in the Wild, Institute of Science and Technology Austria, 2017. date_created: 2018-12-11T11:48:41Z date_published: 2017-08-25T00:00:00Z date_updated: 2023-09-07T12:01:21Z day: '25' ddc: - '576' - '577' - '579' degree_awarded: PhD department: - _id: JoBo doi: 10.15479/AT:ISTA:th_857 ec_funded: 1 file: - access_level: open_access checksum: c62257a7bff0c5f39e1abffc6bfcca5c content_type: application/pdf creator: system date_created: 2018-12-12T10:17:00Z date_updated: 2020-07-14T12:48:10Z file_id: '5252' file_name: IST-2017-857-v1+1_thesis_fabienne.pdf file_size: 3417773 relation: main_file - access_level: closed checksum: fc87d7d72fce52824a3ae7dcad0413a8 content_type: application/x-tex creator: dernst date_created: 2019-04-05T08:51:59Z date_updated: 2020-07-14T12:48:10Z file_id: '6212' file_name: 2017_thesis_Jesse_source.tex file_size: 215899 relation: source_file file_date_updated: 2020-07-14T12:48:10Z has_accepted_license: '1' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: '87' project: - _id: 2578D616-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '648440' name: Selective Barriers to Horizontal Gene Transfer publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6829' pubrep_id: '857' status: public supervisor: - first_name: Jonathan P full_name: Bollback, Jonathan P id: 2C6FA9CC-F248-11E8-B48F-1D18A9856A87 last_name: Bollback orcid: 0000-0002-4624-4612 title: The lac operon in the wild tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '838' abstract: - lang: eng text: 'In this thesis we discuss the exact security of message authentications codes HMAC , NMAC , and PMAC . NMAC is a mode of operation which turns a fixed input-length keyed hash function f into a variable input-length function. A practical single-key variant of NMAC called HMAC is a very popular and widely deployed message authentication code (MAC). PMAC is a block-cipher based mode of operation, which also happens to be the most famous fully parallel MAC. NMAC was introduced by Bellare, Canetti and Krawczyk Crypto’96, who proved it to be a secure pseudorandom function (PRF), and thus also a MAC, under two assumptions. Unfortunately, for many instantiations of HMAC one of them has been found to be wrong. To restore the provable guarantees for NMAC , Bellare [Crypto’06] showed its security without this assumption. PMAC was introduced by Black and Rogaway at Eurocrypt 2002. If instantiated with a pseudorandom permutation over n -bit strings, PMAC constitutes a provably secure variable input-length PRF. For adversaries making q queries, each of length at most ` (in n -bit blocks), and of total length σ ≤ q` , the original paper proves an upper bound on the distinguishing advantage of O ( σ 2 / 2 n ), while the currently best bound is O ( qσ/ 2 n ). In this work we show that this bound is tight by giving an attack with advantage Ω( q 2 `/ 2 n ). In the PMAC construction one initially XORs a mask to every message block, where the mask for the i th block is computed as τ i := γ i · L , where L is a (secret) random value, and γ i is the i -th codeword of the Gray code. Our attack applies more generally to any sequence of γ i ’s which contains a large coset of a subgroup of GF (2 n ). As for NMAC , our first contribution is a simpler and uniform proof: If f is an ε -secure PRF (against q queries) and a δ - non-adaptively secure PRF (against q queries), then NMAC f is an ( ε + `qδ )-secure PRF against q queries of length at most ` blocks each. We also show that this ε + `qδ bound is basically tight by constructing an f for which an attack with advantage `qδ exists. Moreover, we analyze the PRF-security of a modification of NMAC called NI by An and Bellare that avoids the constant rekeying on multi-block messages in NMAC and allows for an information-theoretic analysis. We carry out such an analysis, obtaining a tight `q 2 / 2 c bound for this step, improving over the trivial bound of ` 2 q 2 / 2 c . Finally, we investigate, if the security of PMAC can be further improved by using τ i ’s that are k -wise independent, for k > 1 (the original has k = 1). We observe that the security of PMAC will not increase in general if k = 2, and then prove that the security increases to O ( q 2 / 2 n ), if the k = 4. Due to simple extension attacks, this is the best bound one can hope for, using any distribution on the masks. Whether k = 3 is already sufficient to get this level of security is left as an open problem. Keywords: Message authentication codes, Pseudorandom functions, HMAC, PMAC. ' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Michal full_name: Rybar, Michal id: 2B3E3DE8-F248-11E8-B48F-1D18A9856A87 last_name: Rybar citation: ama: Rybar M. (The exact security of) Message authentication codes. 2017. doi:10.15479/AT:ISTA:th_828 apa: Rybar, M. (2017). (The exact security of) Message authentication codes. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_828 chicago: Rybar, Michal. “(The Exact Security of) Message Authentication Codes.” Institute of Science and Technology Austria, 2017. https://doi.org/10.15479/AT:ISTA:th_828. ieee: M. Rybar, “(The exact security of) Message authentication codes,” Institute of Science and Technology Austria, 2017. ista: Rybar M. 2017. (The exact security of) Message authentication codes. Institute of Science and Technology Austria. mla: Rybar, Michal. (The Exact Security of) Message Authentication Codes. Institute of Science and Technology Austria, 2017, doi:10.15479/AT:ISTA:th_828. short: M. Rybar, (The Exact Security of) Message Authentication Codes, Institute of Science and Technology Austria, 2017. date_created: 2018-12-11T11:48:46Z date_published: 2017-06-26T00:00:00Z date_updated: 2023-09-07T12:02:28Z day: '26' ddc: - '000' degree_awarded: PhD department: - _id: KrPi doi: 10.15479/AT:ISTA:th_828 file: - access_level: open_access checksum: ff8639ec4bded6186f44c7bd3ee26804 content_type: application/pdf creator: system date_created: 2018-12-12T10:10:13Z date_updated: 2020-07-14T12:48:12Z file_id: '4799' file_name: IST-2017-828-v1+3_2017_Rybar_thesis.pdf file_size: 847400 relation: main_file - access_level: closed checksum: 3462101745ce8ad199c2d0f75dae4a7e content_type: application/zip creator: dernst date_created: 2019-04-05T08:24:11Z date_updated: 2020-07-14T12:48:12Z file_id: '6202' file_name: 2017_Thesis_Rybar_source.zip file_size: 26054879 relation: source_file file_date_updated: 2020-07-14T12:48:12Z has_accepted_license: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: '86' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6810' pubrep_id: '828' related_material: record: - id: '2082' relation: part_of_dissertation status: public - id: '6196' relation: part_of_dissertation status: public status: public title: (The exact security of) Message authentication codes type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '837' abstract: - lang: eng text: 'The hippocampus is a key brain region for memory and notably for spatial memory, and is needed for both spatial working and reference memories. Hippocampal place cells selectively discharge in specific locations of the environment to form mnemonic represen tations of space. Several behavioral protocols have been designed to test spatial memory which requires the experimental subject to utilize working memory and reference memory. However, less is known about how these memory traces are presented in the hippo campus, especially considering tasks that require both spatial working and long -term reference memory demand. The aim of my thesis was to elucidate how spatial working memory, reference memory, and the combination of both are represented in the hippocampus. In this thesis, using a radial eight -arm maze, I examined how the combined demand on these memories influenced place cell assemblies while reference memories were partially updated by changing some of the reward- arms. This was contrasted with task varian ts requiring working or reference memories only. Reference memory update led to gradual place field shifts towards the rewards on the switched arms. Cells developed enhanced firing in passes between newly -rewarded arms as compared to those containing an unchanged reward. The working memory task did not show such gradual changes. Place assemblies on occasions replayed trajectories of the maze; at decision points the next arm choice was preferentially replayed in tasks needing reference memory while in the pure working memory task the previously visited arm was replayed. Hence trajectory replay only reflected the decision of the animal in tasks needing reference memory update. At the reward locations, in all three tasks outbound trajectories of the current arm were preferentially replayed, showing the animals’ next path to the center. At reward locations trajectories were replayed preferentially in reverse temporal order. Moreover, in the center reverse replay was seen in the working memory task but in the other tasks forward replay was seen. Hence, the direction of reactivation was determined by the goal locations so that part of the trajectory which was closer to the goal was reactivated later in an HSE while places further away from the goal were reactivated earlier. Altogether my work demonstrated that reference memory update triggers several levels of reorganization of the hippocampal cognitive map which are not seen in simpler working memory demand s. Moreover, hippocampus is likely to be involved in spatial decisions through reactivating planned trajectories when reference memory recall is required for such a decision. ' acknowledgement: 'I am very grateful for the opportunity I have had as a graduate student to explore and incredibly interesting branch of neuroscience, and for the people who made it possible. Firstly, I would like to offer my thanks to my supervisor Professor Jozsef Csicsvari for his great support, guidance and patience offered over the years. The door to his office was always open whenever I had questions. I have learned a lot from him about carefully designing experiments, asking interesting questions and how to integrate results into a broader picture. I also express my gratitude to the remarkable post- doc , Dr. Joseph O’Neill. He is a gre at scientific role model who is always willing to teach , and advice and talk through problems with his full attention. Many thanks to my wonderful “office mates” over the years and their support and encouragement, Alice Avernhe, Philipp Schönenberger, Desiree Dickerson, Karel Blahna, Charlotte Boccara, Igor Gridchyn, Peter Baracskay, Krisztián Kovács, Dámaris Rangel, Karola Käfer and Federico Stella. They were the ones in the lab for the many useful discussions about science and for making the laboratory such a nice and friendly place to work in. A special thank goes to Michael LoBianco and Jago Wallenschus for wonderful technical support. I would also like to thank Professor Peter Jonas and Professor David M Bannerman for being my qualifying exam and thesi s committee members despite their busy schedule. I am also very thankful to IST Austria for their support all throughout my PhD. ' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Haibing full_name: Xu, Haibing id: 310349D0-F248-11E8-B48F-1D18A9856A87 last_name: Xu citation: ama: Xu H. Reactivation of the hippocampal cognitive map in goal-directed spatial tasks. 2017. doi:10.15479/AT:ISTA:th_858 apa: Xu, H. (2017). Reactivation of the hippocampal cognitive map in goal-directed spatial tasks. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_858 chicago: Xu, Haibing. “Reactivation of the Hippocampal Cognitive Map in Goal-Directed Spatial Tasks.” Institute of Science and Technology Austria, 2017. https://doi.org/10.15479/AT:ISTA:th_858. ieee: H. Xu, “Reactivation of the hippocampal cognitive map in goal-directed spatial tasks,” Institute of Science and Technology Austria, 2017. ista: Xu H. 2017. Reactivation of the hippocampal cognitive map in goal-directed spatial tasks. Institute of Science and Technology Austria. mla: Xu, Haibing. Reactivation of the Hippocampal Cognitive Map in Goal-Directed Spatial Tasks. Institute of Science and Technology Austria, 2017, doi:10.15479/AT:ISTA:th_858. short: H. Xu, Reactivation of the Hippocampal Cognitive Map in Goal-Directed Spatial Tasks, Institute of Science and Technology Austria, 2017. date_created: 2018-12-11T11:48:46Z date_published: 2017-08-23T00:00:00Z date_updated: 2023-09-07T12:06:38Z day: '23' ddc: - '571' degree_awarded: PhD department: - _id: JoCs doi: 10.15479/AT:ISTA:th_858 file: - access_level: closed checksum: f11925fbbce31e495124b6bc4f10573c content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-05T08:59:51Z date_updated: 2020-07-14T12:48:12Z file_id: '6213' file_name: 2017_Xu_Haibing_Thesis_Source.docx file_size: 3589490 relation: source_file - access_level: open_access checksum: ffb10749a537d615fab1ef0937ccb157 content_type: application/pdf creator: dernst date_created: 2019-04-05T08:59:51Z date_updated: 2020-07-14T12:48:12Z file_id: '6214' file_name: 2017_Xu_Thesis_IST.pdf file_size: 11668613 relation: main_file file_date_updated: 2020-07-14T12:48:12Z has_accepted_license: '1' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: '93' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6811' pubrep_id: '858' related_material: record: - id: '5828' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 title: Reactivation of the hippocampal cognitive map in goal-directed spatial tasks tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '938' abstract: - lang: eng text: The thesis encompasses several topics of plant cell biology which were studied in the model plant Arabidopsis thaliana. Chapter 1 concerns the plant hormone auxin and its polar transport through cells and tissues. The highly controlled, directional transport of auxin is facilitated by plasma membrane-localized transporters. Transporters from the PIN family direct auxin transport due to their polarized localizations at cell membranes. Substantial effort has been put into research on cellular trafficking of PIN proteins, which is thought to underlie their polar distribution. I participated in a forward genetic screen aimed at identifying novel regulators of PIN polarity. The screen yielded several genes which may be involved in PIN polarity regulation or participate in polar auxin transport by other means. Chapter 2 focuses on the endomembrane system, with particular attention to clathrin-mediated endocytosis. The project started with identification of several proteins that interact with clathrin light chains. Among them, I focused on two putative homologues of auxilin, which in non-plant systems is an endocytotic factor known for uncoating clathrin-coated vesicles in the final step of endocytosis. The body of my work consisted of an in-depth characterization of transgenic A. thaliana lines overexpressing these putative auxilins in an inducible manner. Overexpression of these proteins leads to an inhibition of endocytosis, as documented by imaging of cargoes and clathrin-related endocytic machinery. An extension of this work is an investigation into a concept of homeostatic regulation acting between distinct transport processes in the endomembrane system. With auxilin overexpressing lines, where endocytosis is blocked specifically, I made observations on the mutual relationship between two opposite trafficking processes of secretion and endocytosis. In Chapter 3, I analyze cortical microtubule arrays and their relationship to auxin signaling and polarized growth in elongating cells. In plants, microtubules are organized into arrays just below the plasma membrane, and it is thought that their function is to guide membrane-docked cellulose synthase complexes. These, in turn, influence cell wall structure and cell shape by directed deposition of cellulose fibres. In elongating cells, cortical microtubule arrays are able to reorient in relation to long cell axis, and these reorientations have been linked to cell growth and to signaling of growth-regulating factors such as auxin or light. In this chapter, I am addressing the causal relationship between microtubule array reorientation, growth, and auxin signaling. I arrive at a model where array reorientation is not guided by auxin directly, but instead is only controlled by growth, which, in turn, is regulated by auxin. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Maciek full_name: Adamowski, Maciek id: 45F536D2-F248-11E8-B48F-1D18A9856A87 last_name: Adamowski orcid: 0000-0001-6463-5257 citation: ama: Adamowski M. Investigations into cell polarity and trafficking in the plant model Arabidopsis thaliana . 2017. doi:10.15479/AT:ISTA:th_842 apa: Adamowski, M. (2017). Investigations into cell polarity and trafficking in the plant model Arabidopsis thaliana . Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_842 chicago: Adamowski, Maciek. “Investigations into Cell Polarity and Trafficking in the Plant Model Arabidopsis Thaliana .” Institute of Science and Technology Austria, 2017. https://doi.org/10.15479/AT:ISTA:th_842. ieee: M. Adamowski, “Investigations into cell polarity and trafficking in the plant model Arabidopsis thaliana ,” Institute of Science and Technology Austria, 2017. ista: Adamowski M. 2017. Investigations into cell polarity and trafficking in the plant model Arabidopsis thaliana . Institute of Science and Technology Austria. mla: Adamowski, Maciek. Investigations into Cell Polarity and Trafficking in the Plant Model Arabidopsis Thaliana . Institute of Science and Technology Austria, 2017, doi:10.15479/AT:ISTA:th_842. short: M. Adamowski, Investigations into Cell Polarity and Trafficking in the Plant Model Arabidopsis Thaliana , Institute of Science and Technology Austria, 2017. date_created: 2018-12-11T11:49:18Z date_published: 2017-06-02T00:00:00Z date_updated: 2023-09-07T12:06:09Z day: '02' ddc: - '581' - '583' - '580' degree_awarded: PhD department: - _id: JiFr doi: 10.15479/AT:ISTA:th_842 file: - access_level: closed checksum: 193425764d9aaaed3ac57062a867b315 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-05T09:03:20Z date_updated: 2020-07-14T12:48:15Z file_id: '6215' file_name: 2017_Adamowski-Thesis_Source.docx file_size: 46903863 relation: source_file - access_level: open_access checksum: df5ab01be81f821e1b958596a1ec8d21 content_type: application/pdf creator: dernst date_created: 2019-04-05T09:03:19Z date_updated: 2020-07-14T12:48:15Z file_id: '6216' file_name: 2017_Adamowski-Thesis.pdf file_size: 8698888 relation: main_file file_date_updated: 2020-07-14T12:48:15Z has_accepted_license: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: '117' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6483' pubrep_id: '842' related_material: record: - id: '1591' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 title: 'Investigations into cell polarity and trafficking in the plant model Arabidopsis thaliana ' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '992' abstract: - lang: eng text: "An instance of the Constraint Satisfaction Problem (CSP) is given by a finite set of\r\nvariables, a finite domain of labels, and a set of constraints, each constraint acting on\r\na subset of the variables. The goal is to find an assignment of labels to its variables\r\nthat satisfies all constraints (or decide whether one exists). If we allow more general\r\n“soft” constraints, which come with (possibly infinite) costs of particular assignments,\r\nwe obtain instances from a richer class called Valued Constraint Satisfaction Problem\r\n(VCSP). There the goal is to find an assignment with minimum total cost.\r\nIn this thesis, we focus (assuming that P\r\n6\r\n=\r\nNP) on classifying computational com-\r\nplexity of CSPs and VCSPs under certain restricting conditions. Two results are the core\r\ncontent of the work. In one of them, we consider VCSPs parametrized by a constraint\r\nlanguage, that is the set of “soft” constraints allowed to form the instances, and finish\r\nthe complexity classification modulo (missing pieces of) complexity classification for\r\nanalogously parametrized CSP. The other result is a generalization of Edmonds’ perfect\r\nmatching algorithm. This generalization contributes to complexity classfications in two\r\nways. First, it gives a new (largest known) polynomial-time solvable class of Boolean\r\nCSPs in which every variable may appear in at most two constraints and second, it\r\nsettles full classification of Boolean CSPs with planar drawing (again parametrized by a\r\nconstraint language)." acknowledgement: FP7/2007-2013/ERC grant agreement no 616160 alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Michal full_name: Rolinek, Michal id: 3CB3BC06-F248-11E8-B48F-1D18A9856A87 last_name: Rolinek citation: ama: Rolinek M. Complexity of constraint satisfaction. 2017. doi:10.15479/AT:ISTA:th_815 apa: Rolinek, M. (2017). Complexity of constraint satisfaction. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_815 chicago: Rolinek, Michal. “Complexity of Constraint Satisfaction.” Institute of Science and Technology Austria, 2017. https://doi.org/10.15479/AT:ISTA:th_815. ieee: M. Rolinek, “Complexity of constraint satisfaction,” Institute of Science and Technology Austria, 2017. ista: Rolinek M. 2017. Complexity of constraint satisfaction. Institute of Science and Technology Austria. mla: Rolinek, Michal. Complexity of Constraint Satisfaction. Institute of Science and Technology Austria, 2017, doi:10.15479/AT:ISTA:th_815. short: M. Rolinek, Complexity of Constraint Satisfaction, Institute of Science and Technology Austria, 2017. date_created: 2018-12-11T11:49:35Z date_published: 2017-05-01T00:00:00Z date_updated: 2023-09-07T12:05:41Z day: '01' ddc: - '004' degree_awarded: PhD department: - _id: VlKo doi: 10.15479/AT:ISTA:th_815 ec_funded: 1 file: - access_level: open_access checksum: 81761fb939acb7585c36629f765b4373 content_type: application/pdf creator: system date_created: 2018-12-12T10:07:55Z date_updated: 2020-07-14T12:48:18Z file_id: '4654' file_name: IST-2017-815-v1+3_final_blank_signature_maybe_pdfa.pdf file_size: 786145 relation: main_file - access_level: closed checksum: 2b2d7e1d6c1c79a9795a7aa0f860baf3 content_type: application/zip creator: dernst date_created: 2019-04-05T08:43:24Z date_updated: 2020-07-14T12:48:18Z file_id: '6208' file_name: 2017_Thesis_Rolinek_source.zip file_size: 5936337 relation: source_file file_date_updated: 2020-07-14T12:48:18Z has_accepted_license: '1' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: '97' project: - _id: 25FBA906-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '616160' name: 'Discrete Optimization in Computer Vision: Theory and Practice' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6407' pubrep_id: '815' status: public supervisor: - first_name: Vladimir full_name: Kolmogorov, Vladimir id: 3D50B0BA-F248-11E8-B48F-1D18A9856A87 last_name: Kolmogorov title: Complexity of constraint satisfaction type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '202' abstract: - lang: eng text: 'Restriction-modification (RM) represents the simplest and possibly the most widespread mechanism of self/non-self discrimination in nature. In order to provide bacteria with immunity against bacteriophages and other parasitic genetic elements, RM systems rely on a balance between two enzymes: the restriction enzyme, which cleaves non-self DNA at specific restriction sites, and the modification enzyme, which tags the host’s DNA as self and thus protects it from cleavage. In this thesis, I use population and single-cell level experiments in combination with mathematical modeling to study different aspects of the interplay between RM systems, bacteria and bacteriophages. First, I analyze how mutations in phage restriction sites affect the probability of phage escape – an inherently stochastic process, during which phages accidently get modified instead of restricted. Next, I use single-cell experiments to show that RM systems can, with a low probability, attack the genome of their bacterial host and that this primitive form of autoimmunity leads to a tradeoff between the evolutionary cost and benefit of RM systems. Finally, I investigate the nature of interactions between bacteria, RM systems and temperate bacteriophages to find that, as a consequence of phage escape and its impact on population dynamics, RM systems can promote acquisition of symbiotic bacteriophages, rather than limit it. The results presented here uncover new fundamental biological properties of RM systems and highlight their importance in the ecology and evolution of bacteria, bacteriophages and their interactions.' acknowledgement: "During my PhD studies, I received help from many people, all of which unfortunately cannot be listed here. I thank them deeply and hope that I never made them regret their kindness.\r\nI would like to express my deepest gratitude to Călin Guet, who went far beyond his responsibilities as an advisor and was to me also a great mentor and a friend. Călin never questioned my potential or lacked compassion and I cannot thank him enough for cultivating in me an independent scientist. I was amazed by his ability to recognize the most fascinating scientific problems in objects of study that others would find mundane. I hope I adopted at least a fraction of this ability.\r\nI will be forever grateful to Bruce Levin for all his support and especially for giving me the best possible example of how one can practice excellent science with humor and style. Working with Bruce was a true privilege.\r\nI thank Jonathan Bollback and Gašper Tkačik for serving in my PhD committee and the Austrian Academy of Science for funding my PhD research via the DOC fellowship.\r\nI thank all our lab members: Tobias Bergmiller for his guidance, especially in the first years of my research, and for being a good friend throughout; Remy Chait for staying in the lab at unreasonable hours and for the good laughs at bad jokes we shared; Anna Staron for supportively listening to my whines whenever I had to run a gel; Magdalena Steinrück for her pioneering work in the lab; Kathrin Tomasek for keeping the entropic forces in check and for her FACS virtuosity; Isabella Tomanek for always being nice to me, no matter how much bench space I took from her.\r\nI thank all my collaborators: Reiko Okura and Yuichi Wakamoto for performing and analyzing the microfluidic experiments; Long Qian and Edo Kussell for their bioinformatics analysis; Dominik Refardt for the λ kan phage; Moritz for his help with the mathematical modeling. I thank Fabienne Jesse for her tireless editorial work on all our manuscripts.\r\nFinally, I would like to thank my family and especially my wife Edita, who sacrificed a lot so that I can pursue my goals and dreams.\r\n" alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Maros full_name: Pleska, Maros id: 4569785E-F248-11E8-B48F-1D18A9856A87 last_name: Pleska orcid: 0000-0001-7460-7479 citation: ama: Pleska M. Biology of restriction-modification systems at the single-cell and population level. 2017. doi:10.15479/AT:ISTA:th_916 apa: Pleska, M. (2017). Biology of restriction-modification systems at the single-cell and population level. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_916 chicago: Pleska, Maros. “Biology of Restriction-Modification Systems at the Single-Cell and Population Level.” Institute of Science and Technology Austria, 2017. https://doi.org/10.15479/AT:ISTA:th_916. ieee: M. Pleska, “Biology of restriction-modification systems at the single-cell and population level,” Institute of Science and Technology Austria, 2017. ista: Pleska M. 2017. Biology of restriction-modification systems at the single-cell and population level. Institute of Science and Technology Austria. mla: Pleska, Maros. Biology of Restriction-Modification Systems at the Single-Cell and Population Level. Institute of Science and Technology Austria, 2017, doi:10.15479/AT:ISTA:th_916. short: M. Pleska, Biology of Restriction-Modification Systems at the Single-Cell and Population Level, Institute of Science and Technology Austria, 2017. date_created: 2018-12-11T11:45:10Z date_published: 2017-10-01T00:00:00Z date_updated: 2023-09-15T12:04:56Z day: '01' ddc: - '576' - '579' degree_awarded: PhD department: - _id: CaGu doi: 10.15479/AT:ISTA:th_916 file: - access_level: open_access checksum: 33cfb59674e91f82e3738396d3fb3776 content_type: application/pdf creator: system date_created: 2018-12-12T10:08:48Z date_updated: 2020-07-14T12:45:24Z file_id: '4710' file_name: IST-2018-916-v1+3_2017_Pleska_Maros_Thesis.pdf file_size: 18569590 relation: main_file - access_level: closed checksum: dcc239968decb233e7f98cf1083d8c26 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-05T08:33:14Z date_updated: 2020-07-14T12:45:24Z file_id: '6204' file_name: 2017_Pleska_Maros_Thesis.docx file_size: 2801649 relation: source_file file_date_updated: 2020-07-14T12:45:24Z has_accepted_license: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: '126' project: - _id: 251D65D8-B435-11E9-9278-68D0E5697425 grant_number: '24210' name: Effects of Stochasticity on the Function of Restriction-Modi cation Systems at the Single-Cell Level (DOC Fellowship) publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7711' pubrep_id: '916' related_material: record: - id: '1243' relation: part_of_dissertation status: public - id: '561' relation: part_of_dissertation status: public - id: '457' relation: part_of_dissertation status: public status: public supervisor: - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 title: Biology of restriction-modification systems at the single-cell and population level tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '6287' abstract: - lang: eng text: The main objects considered in the present work are simplicial and CW-complexes with vertices forming a random point cloud. In particular, we consider a Poisson point process in R^n and study Delaunay and Voronoi complexes of the first and higher orders and weighted Delaunay complexes obtained as sections of Delaunay complexes, as well as the Čech complex. Further, we examine theDelaunay complex of a Poisson point process on the sphere S^n, as well as of a uniform point cloud, which is equivalent to the convex hull, providing a connection to the theory of random polytopes. Each of the complexes in question can be endowed with a radius function, which maps its cells to the radii of appropriately chosen circumspheres, called the radius of the cell. Applying and developing discrete Morse theory for these functions, joining it together with probabilistic and sometimes analytic machinery, and developing several integral geometric tools, we aim at getting the distributions of circumradii of typical cells. For all considered complexes, we are able to generalize and obtain up to constants the distribution of radii of typical intervals of all types. In low dimensions the constants can be computed explicitly, thus providing the explicit expressions for the expected numbers of cells. In particular, it allows to find the expected density of simplices of every dimension for a Poisson point process in R^4, whereas the result for R^3 was known already in 1970's. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Anton full_name: Nikitenko, Anton id: 3E4FF1BA-F248-11E8-B48F-1D18A9856A87 last_name: Nikitenko orcid: 0000-0002-0659-3201 citation: ama: Nikitenko A. Discrete Morse theory for random complexes . 2017. doi:10.15479/AT:ISTA:th_873 apa: Nikitenko, A. (2017). Discrete Morse theory for random complexes . Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_873 chicago: Nikitenko, Anton. “Discrete Morse Theory for Random Complexes .” Institute of Science and Technology Austria, 2017. https://doi.org/10.15479/AT:ISTA:th_873. ieee: A. Nikitenko, “Discrete Morse theory for random complexes ,” Institute of Science and Technology Austria, 2017. ista: Nikitenko A. 2017. Discrete Morse theory for random complexes . Institute of Science and Technology Austria. mla: Nikitenko, Anton. Discrete Morse Theory for Random Complexes . Institute of Science and Technology Austria, 2017, doi:10.15479/AT:ISTA:th_873. short: A. Nikitenko, Discrete Morse Theory for Random Complexes , Institute of Science and Technology Austria, 2017. date_created: 2019-04-09T15:04:32Z date_published: 2017-10-27T00:00:00Z date_updated: 2023-09-15T12:10:34Z day: '27' ddc: - '514' - '516' - '519' degree_awarded: PhD department: - _id: HeEd doi: 10.15479/AT:ISTA:th_873 file: - access_level: open_access checksum: ece7e598a2f060b263c2febf7f3fe7f9 content_type: application/pdf creator: dernst date_created: 2019-04-09T14:54:51Z date_updated: 2020-07-14T12:47:26Z file_id: '6289' file_name: 2017_Thesis_Nikitenko.pdf file_size: 2324870 relation: main_file - access_level: closed checksum: 99b7ad76e317efd447af60f91e29b49b content_type: application/zip creator: dernst date_created: 2019-04-09T14:54:51Z date_updated: 2020-07-14T12:47:26Z file_id: '6290' file_name: 2017_Thesis_Nikitenko_source.zip file_size: 2863219 relation: source_file file_date_updated: 2020-07-14T12:47:26Z has_accepted_license: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: '86' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria pubrep_id: '873' related_material: record: - id: '718' relation: part_of_dissertation status: public - id: '5678' relation: part_of_dissertation status: public - id: '87' relation: part_of_dissertation status: public status: public supervisor: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 title: 'Discrete Morse theory for random complexes ' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '1127' abstract: - lang: eng text: "Plant hormone auxin and its transport between cells belong to the most important\r\nmechanisms controlling plant development. Auxin itself could change localization of PINs and\r\nthereby control direction of its own flow. We performed an expression profiling experiment\r\nin Arabidopsis roots to identify potential regulators of PIN polarity which are transcriptionally\r\nregulated by auxin signalling. We identified several novel regulators and performed a detailed\r\ncharacterization of the transcription factor WRKY23 (At2g47260) and its role in auxin\r\nfeedback on PIN polarity. Gain-of-function and dominant-negative mutants revealed that\r\nWRKY23 plays a crucial role in mediating the auxin effect on PIN polarity. In concordance,\r\ntypical polar auxin transport processes such as gravitropism and leaf vascular pattern\r\nformation were disturbed by interfering with WRKY23 function.\r\nIn order to identify direct targets of WRKY23, we performed consequential expression\r\nprofiling experiments using a WRKY23 inducible gain-of-function line and dominant-negative\r\nWRKY23 line that is defunct in PIN re-arrangement. Among several genes mostly related to\r\nthe groups of cell wall and defense process regulators, we identified LYSINE-HISTIDINE\r\nTRANSPORTER 1 (LHT1; At5g40780), a small amino acid permease gene from the amino\r\nacid/auxin permease family (AAAP), we present its detailed characterisation in auxin feedback\r\non PIN repolarization, identified its transcriptional regulation, we propose a potential\r\nmechanism of its action. Moreover, we identified also a member of receptor-like protein\r\nkinase LRR-RLK (LEUCINE-RICH REPEAT TRANSMEMBRANE PROTEIN KINASE PROTEIN 1;\r\nLRRK1; At1g05700), which also affects auxin-dependent PIN re-arrangement. We described\r\nits transcriptional behaviour, subcellular localization. Based on global expression data, we\r\ntried to identify ligand responsible for mechanism of signalling and suggest signalling partner\r\nand interactors. Additionally, we described role of novel phytohormone group, strigolactone,\r\nin auxin-dependent PIN re-arrangement, that could be a fundament for future studies in this\r\nfield.\r\nOur results provide first insights into an auxin transcriptional network targeting PIN\r\nlocalization and thus regulating plant development. We highlighted WRKY23 transcriptional\r\nnetwork and characterised its mediatory role in plant development. We identified direct\r\neffectors of this network, LHT1 and LRRK1, and describe their roles in PIN re-arrangement and\r\nPIN-dependent auxin transport processes." acknowledgement: I would like to first acknowledge my supervisor Jiří Friml for support, kind advice and patience. It was a pleasure to be a part of your lab, Jiří. I will remember the atmosphere present in auxin lab at VIB in Ghent and at IST in Klosterneuburg forever. I would like to thank all past and present lab members for the friendship and friendly and scientific environment in the groups. It was so nice to cooperate with you, guys. There was always someone who helped me with experiments, troubleshoot issues coming from our work etc. At this place, I would like to thank especially to Gergo Molnár. I’m happy (and lucky) that I have met him; he naturally became my tutor and guide through my PhD. From no one else during my entire professional career, I’ve learned that much. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Tomas full_name: Prat, Tomas id: 3DA3BFEE-F248-11E8-B48F-1D18A9856A87 last_name: Prat citation: ama: Prat T. Identification of novel regulators of PIN polarity and development of novel auxin sensor. 2017. apa: Prat, T. (2017). Identification of novel regulators of PIN polarity and development of novel auxin sensor. Institute of Science and Technology Austria. chicago: Prat, Tomas. “Identification of Novel Regulators of PIN Polarity and Development of Novel Auxin Sensor.” Institute of Science and Technology Austria, 2017. ieee: T. Prat, “Identification of novel regulators of PIN polarity and development of novel auxin sensor,” Institute of Science and Technology Austria, 2017. ista: Prat T. 2017. Identification of novel regulators of PIN polarity and development of novel auxin sensor. Institute of Science and Technology Austria. mla: Prat, Tomas. Identification of Novel Regulators of PIN Polarity and Development of Novel Auxin Sensor. Institute of Science and Technology Austria, 2017. short: T. Prat, Identification of Novel Regulators of PIN Polarity and Development of Novel Auxin Sensor, Institute of Science and Technology Austria, 2017. date_created: 2018-12-11T11:50:17Z date_published: 2017-01-12T00:00:00Z date_updated: 2023-09-19T10:39:33Z day: '12' ddc: - '580' degree_awarded: PhD department: - _id: JiFr file: - access_level: closed checksum: d192c7c6c5ea32c8432437286dc4909e content_type: application/pdf creator: dernst date_created: 2019-04-05T08:45:14Z date_updated: 2019-04-05T08:45:14Z file_id: '6209' file_name: IST_Austria_Thesis_Tomáš_Prát.pdf file_size: 10285946 relation: main_file - access_level: open_access checksum: bab18b52cf98145926042d8ed99fdb3b content_type: application/pdf creator: dernst date_created: 2021-02-22T11:52:56Z date_updated: 2021-02-22T11:52:56Z file_id: '9185' file_name: 2017_Thesis_Prat.pdf file_size: 9802991 relation: main_file success: 1 file_date_updated: 2021-02-22T11:52:56Z has_accepted_license: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: '131' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6233' related_material: record: - id: '449' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 title: Identification of novel regulators of PIN polarity and development of novel auxin sensor type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '961' abstract: - lang: eng text: Cell-cell contact formation constitutes the first step in the emergence of multicellularity in evolution, thereby allowing the differentiation of specialized cell types. In metazoan development, cell-cell contact formation is thought to influence cell fate specification, and cell fate specification has been implicated in cell-cell contact formation. However, remarkably little is yet known about whether and how the interaction and feedback between cell-cell contact formation and cell fate specification affect development. Here we identify a positive feedback loop between cell-cell contact duration, morphogen signaling and mesendoderm cell fate specification during zebrafish gastrulation. We show that long lasting cell-cell contacts enhance the competence of prechordal plate (ppl) progenitor cells to respond to Nodal signaling, required for proper ppl cell fate specification. We further show that Nodal signalling romotes ppl cell-cell contact duration, thereby generating an effective positive feedback loop between ppl cell-cell contact duration and cell fate specification. Finally, by using a combination of theoretical modeling and experimentation, we show that this feedback loop determines whether anterior axial mesendoderm cells become ppl progenitors or, instead, turn into endoderm progenitors. Our findings reveal that the gene regulatory networks leading to cell fate diversification within the developing embryo are controlled by the interdependent activities of cell-cell signaling and contact formation. acknowledgement: "Many people accompanied me during this trip: I would not have reached my destination nor \r\nenjoyed the travelling without them. First of all, thanks to CP. Thanks for making me part of \r\nyour team, always full of diverse, interesting and incredibly competent people and thanks for \r\nall the good science I witnessed \ and participated in. It has been a \r\nblast, an incredibly \r\nexciting \ one! Thanks to JLo, for teaching me how to master my pipettes and \ showing me \r\nthat science is a lot of fun. Many, many thanks to Gabby for teaching me basically everything \r\nabout zebrafish and being always there to advice, \ sugge\r\nst, support...and play fussball! \r\nThank you to Julien, for the critical eye on things, Pedro, for all the invaluable feedback and \r\nthe amazing kicker matches, and Keisuke, for showing me the light, and to the three of them \r\ntogether for all the good laughs we\r\nhad. My start in Vienna would \ have been a lot more \r\ndifficult without you guys. Also it would not \ have been possible without Elena and Inês: \r\nthanks for helping setting \ up this lab and for the dinners in Gugging. Thanks to Martin, for \r\nhelping me understand \r\nthe physics behind biology. Thanks to Philipp, \ for the interest and \r\nadvice, and to Michael, for the Viennise take on things. Thanks to Julia, for putting up with \r\nbeing our technician and becoming a friend in the process. And now to the newest members \r\nof th\r\ne lab. Thanks to Daniel for the enthusiasm and the neverending energy and for all your \r\nhelp over the years: thank you! To Jana, for showing me that one doesn’t give up, no matter \r\nwhat. \ To Shayan, for being such a motivated student. To Matt, for helping \ out\r\nwith coding \r\nand for finding punk solutions to data analysis problems. Thanks to all the members of the \r\nlab, Verena, Hitoshi, Silvia, Conny, Karla, Nicoletta, Zoltan, Peng, Benoit, Roland, Yuuta and \r\nFeyza, for the wonderful \ atmosphere in the lab. Many than\r\nks to Koni and Deborah: doing \r\nexperiments would have been much more difficult without your help. Special thanks to Katjia \r\nfor setting up an amazing imaging facility and for building the best \ team, Robert, Nasser, \r\nAnna and Doreen: thank you for putting up w\r\nith all the late sortings and for helping with all \r\nthe technical problems. Thanks to Eva, Verena and Matthias for keeping the fish happy. Big \r\nthanks to Harald Janovjak for being a present and helpful committee member over the years \r\nand \ to Patrick Lemaire f\r\nor the helpful insight and extremely interesting \ discussion we had \r\nabout the project. Also, this journey would not \ have been the same without all the friends \r\nthat I met in Dresden and then in Vienna: Daniele, Claire, Kuba, Steffi, Harold, Dejan, Irene, \r\nFab\r\nienne, Hande, Tiago, Marianne, Jon, Srdjan, Branca, Uli, Murat, Alex, Conny, Christoph, \r\nCaro, Simone, Barbara, Felipe, Dama, Jose, Hubert and many others that filled my days with \r\nfun and support. A special thank to my family, always close even if they are \r\nkilometers away. \r\nGrazie ai miei fratelli, Nunzio e William, \ e alla mia mamma, per essermi sempre vicini pur \r\nvivendo a chilometri di distanza. And, last but not least, thanks to Moritz, for putting up with \r\nthe crazy life of a scientist, the living apart for\r\nso long, never knowing when things are going \r\nto happen. Thanks for being a great partner and my number one fan!" alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Vanessa full_name: Barone, Vanessa id: 419EECCC-F248-11E8-B48F-1D18A9856A87 last_name: Barone orcid: 0000-0003-2676-3367 citation: ama: 'Barone V. Cell adhesion and cell fate: An effective feedback loop during zebrafish gastrulation. 2017. doi:10.15479/AT:ISTA:th_825' apa: 'Barone, V. (2017). Cell adhesion and cell fate: An effective feedback loop during zebrafish gastrulation. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_825' chicago: 'Barone, Vanessa. “Cell Adhesion and Cell Fate: An Effective Feedback Loop during Zebrafish Gastrulation.” Institute of Science and Technology Austria, 2017. https://doi.org/10.15479/AT:ISTA:th_825.' ieee: 'V. Barone, “Cell adhesion and cell fate: An effective feedback loop during zebrafish gastrulation,” Institute of Science and Technology Austria, 2017.' ista: 'Barone V. 2017. Cell adhesion and cell fate: An effective feedback loop during zebrafish gastrulation. Institute of Science and Technology Austria.' mla: 'Barone, Vanessa. Cell Adhesion and Cell Fate: An Effective Feedback Loop during Zebrafish Gastrulation. Institute of Science and Technology Austria, 2017, doi:10.15479/AT:ISTA:th_825.' short: 'V. Barone, Cell Adhesion and Cell Fate: An Effective Feedback Loop during Zebrafish Gastrulation, Institute of Science and Technology Austria, 2017.' date_created: 2018-12-11T11:49:25Z date_published: 2017-03-01T00:00:00Z date_updated: 2023-09-27T14:16:45Z day: '01' ddc: - '570' - '590' degree_awarded: PhD department: - _id: CaHe doi: 10.15479/AT:ISTA:th_825 file: - access_level: closed checksum: 242f88c87f2cf267bf05049fa26a687b content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-05T08:36:52Z date_updated: 2020-07-14T12:48:16Z file_id: '6205' file_name: 2017_Barone_thesis_final.docx file_size: 14497822 relation: source_file - access_level: open_access checksum: ba5b0613ed8bade73a409acdd880fb8a content_type: application/pdf creator: dernst date_created: 2019-04-05T08:36:52Z date_updated: 2020-07-14T12:48:16Z file_id: '6206' file_name: 2017_Barone_thesis_.pdf file_size: 14995941 relation: main_file file_date_updated: 2020-07-14T12:48:16Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: '109' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6444' pubrep_id: '825' related_material: record: - id: '1100' relation: part_of_dissertation status: public - id: '1537' relation: part_of_dissertation status: public - id: '1912' relation: part_of_dissertation status: public - id: '2926' relation: part_of_dissertation status: public - id: '3246' relation: part_of_dissertation status: public - id: '676' relation: part_of_dissertation status: public - id: '735' relation: part_of_dissertation status: public status: public supervisor: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 title: 'Cell adhesion and cell fate: An effective feedback loop during zebrafish gastrulation' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '819' abstract: - lang: eng text: 'Contagious diseases must transmit from infectious to susceptible hosts in order to reproduce. Whilst vectored pathogens can rely on intermediaries to find new hosts for them, many infectious pathogens require close contact or direct interaction between hosts for transmission. Hence, this means that conspecifics are often the main source of infection for most animals and so, in theory, animals should avoid conspecifics to reduce their risk of infection. Of course, in reality animals must interact with one another, as a bare minimum, to mate. However, being social provides many additional benefits and group living has become a taxonomically diverse and widespread trait. How then do social animals overcome the issue of increased disease? Over the last few decades, the social insects (ants, termites and some bees and wasps) have become a model system for studying disease in social animals. On paper, a social insect colony should be particularly susceptible to disease, given that they often contain thousands of potential hosts that are closely related and frequently interact, as well as exhibiting stable environmental conditions that encourage microbial growth. Yet, disease outbreaks appear to be rare and attempts to eradicate pest species using pathogens have failed time and again. Evolutionary biologists investigating this observation have discovered that the reduced disease susceptibility in social insects is, in part, due to collectively performed disease defences of the workers. These defences act like a “social immune system” for the colony, resulting in a per capita decrease in disease, termed social immunity. Our understanding of social immunity, and its importance in relation to the immunological defences of each insect, continues to grow, but there remain many open questions. In this thesis I have studied disease defence in garden ants. In the first data chapter, I use the invasive garden ant, Lasius neglectus, to investigate how colonies mitigate lethal infections and prevent them from spreading systemically. I find that ants have evolved ‘destructive disinfection’ – a behaviour that uses endogenously produced acidic poison to kill diseased brood and to prevent the pathogen from replicating. In the second experimental chapter, I continue to study the use of poison in invasive garden ant colonies, finding that it is sprayed prophylactically within the nest. However, this spraying has negative effects on developing pupae when they have had their cocoons artificially removed. Hence, I suggest that acidic nest sanitation may be maintaining larval cocoon spinning in this species. In the next experimental chapter, I investigated how colony founding black garden ant queens (Lasius niger) prevent disease when a co-foundress dies. I show that ant queens prophylactically perform undertaking behaviours, similar to those performed by the workers in mature nests. When a co-foundress was infected, these undertaking behaviours improved the survival of the healthy queen. In the final data chapter, I explored how immunocompetence (measured as antifungal activity) changes as incipient black garden ant colonies grow and mature, from the solitary queen phase to colonies with several hundred workers. Queen and worker antifungal activity varied throughout this time period, but despite social immunity, did not decrease as colonies matured. In addition to the above data chapters, this thesis includes two co-authored reviews. In the first, we examine the state of the art in the field of social immunity and how it might develop in the future. In the second, we identify several challenges and open questions in the study of disease defence in animals. We highlight how social insects offer a unique model to tackle some of these problems, as disease defence can be studied from the cell to the society. ' acknowledgement: "ERC FP7 programme (grant agreement no. 240371)\r\nI have been supremely spoilt to work in a lab with such good resources and I must thank the wonderful Cremer group technicians, Anna, Barbara, Eva and Florian, for all of their help and keeping the lab up and running. You guys will probably be the most missed once I realise just how much work you have been saving me! For the same reason, I must say a big Dzi ę kuj ę Ci to Wonder Woman Wanda, for her tireless efforts feeding my colonies and cranking out thousands of petri dishes and sugar tubes. Again, you will be sorely missed now that I will have to take this task on myself. Of course, I will be eternally indebted to Prof. Sylvia Cremer for taking me under her wing and being a constant source of guidance and inspiration. You have given me the perfect balance of independence and supervision. I cannot thank you enough for creating such a great working environment and allowing me the freedom to follow my own research questions. I have had so many exceptional opportunities – attending and presenting at conferences all over the world, inviting me to write the ARE with you, going to workshops in Panama and Switzerland, and even organising our own PhD course – that I often think I must have had the best PhD in the world. You have taught me so much and made me a scientist. I sincerely hope we get the chance to work together again in the future. Thank you for everything. I must also thank my PhD Committee, Daria Siekhaus and Jacobus “Koos” Boomsma, for being very supportive throughout the duration of my PhD. " alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Christopher full_name: Pull, Christopher id: 3C7F4840-F248-11E8-B48F-1D18A9856A87 last_name: Pull orcid: 0000-0003-1122-3982 citation: ama: Pull C. Disease defence in garden ants. 2017. doi:10.15479/AT:ISTA:th_861 apa: Pull, C. (2017). Disease defence in garden ants. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_861 chicago: Pull, Christopher. “Disease Defence in Garden Ants.” Institute of Science and Technology Austria, 2017. https://doi.org/10.15479/AT:ISTA:th_861. ieee: C. Pull, “Disease defence in garden ants,” Institute of Science and Technology Austria, 2017. ista: Pull C. 2017. Disease defence in garden ants. Institute of Science and Technology Austria. mla: Pull, Christopher. Disease Defence in Garden Ants. Institute of Science and Technology Austria, 2017, doi:10.15479/AT:ISTA:th_861. short: C. Pull, Disease Defence in Garden Ants, Institute of Science and Technology Austria, 2017. date_created: 2018-12-11T11:48:40Z date_published: 2017-09-26T00:00:00Z date_updated: 2023-09-28T11:31:32Z day: '26' ddc: - '576' - '577' - '578' - '579' - '590' - '592' degree_awarded: PhD department: - _id: SyCr doi: 10.15479/AT:ISTA:th_861 file: - access_level: closed checksum: 4993cdd5382295758ecc3ecbd2a9aaff content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-05T07:53:04Z date_updated: 2020-07-14T12:48:09Z file_id: '6199' file_name: 2017_Thesis_Pull.docx file_size: 18580400 relation: source_file - access_level: open_access checksum: ee2e3ebb5b53c154c866f5b052b25153 content_type: application/pdf creator: dernst date_created: 2019-04-05T07:53:04Z date_updated: 2020-07-14T12:48:09Z file_id: '6200' file_name: 2017_Thesis_Pull.pdf file_size: 14400681 relation: main_file file_date_updated: 2020-07-14T12:48:09Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '122' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6830' pubrep_id: '861' related_material: record: - id: '616' relation: part_of_dissertation status: public - id: '806' relation: part_of_dissertation status: public - id: '734' relation: part_of_dissertation status: public - id: '732' relation: part_of_dissertation status: public status: public supervisor: - first_name: Sylvia M full_name: Cremer, Sylvia M id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 title: Disease defence in garden ants tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '839' abstract: - lang: eng text: 'This thesis describes a brittle fracture simulation method for visual effects applications. Building upon a symmetric Galerkin boundary element method, we first compute stress intensity factors following the theory of linear elastic fracture mechanics. We then use these stress intensities to simulate the motion of a propagating crack front at a significantly higher resolution than the overall deformation of the breaking object. Allowing for spatial variations of the material''s toughness during crack propagation produces visually realistic, highly-detailed fracture surfaces. Furthermore, we introduce approximations for stress intensities and crack opening displacements, resulting in both practical speed-up and theoretically superior runtime complexity compared to previous methods. While we choose a quasi-static approach to fracture mechanics, ignoring dynamic deformations, we also couple our fracture simulation framework to a standard rigid-body dynamics solver, enabling visual effects artists to simulate both large scale motion, as well as fracturing due to collision forces in a combined system. As fractures inside of an object grow, their geometry must be represented both in the coarse boundary element mesh, as well as at the desired fine output resolution. Using a boundary element method, we avoid complicated volumetric meshing operations. Instead we describe a simple set of surface meshing operations that allow us to progressively add cracks to the mesh of an object and still re-use all previously computed entries of the linear boundary element system matrix. On the high resolution level, we opt for an implicit surface representation. We then describe how to capture fracture surfaces during crack propagation, as well as separate the individual fragments resulting from the fracture process, based on this implicit representation. We show results obtained with our method, either solving the full boundary element system in every time step, or alternatively using our fast approximations. These results demonstrate that both of these methods perform well in basic test cases and produce realistic fracture surfaces. Furthermore we show that our fast approximations substantially out-perform the standard approach in more demanding scenarios. Finally, these two methods naturally combine, using the full solution while the problem size is manageably small and switching to the fast approximations later on. The resulting hybrid method gives the user a direct way to choose between speed and accuracy of the simulation. ' acknowledgement: "ERC H2020 programme (grant agreement no. 638176)\r\nFirst of all, let me thank my committee members, especially my supervisor, Chris\r\nWojtan, for supporting me throughout my PhD. Obviously, none of this work would\r\nhave been possible without you.\r\nFurthermore, Thank You to all the people who have contributed to this work in various\r\nways, in particular Martin Schanz and his group for providing and supporting the\r\nHyENA boundary element library, as well as Eder Miguel and Morten Bojsen-Hansen\r\nfor (repeatedly) proof reading and providing valuable suggestions during the writing\r\nof this thesis.\r\nI would also like to thank Bernd Bickel, and all the members – past and present – of his\r\nand Chris’ research groups at IST Austria for always providing honest and insightful\r\nfeedback throughout many joint group meetings, as well as Christopher Batty, Eitan\r\nGrinspun, and Fang Da for many insights into boundary element methods during our\r\ncollaboration.\r\nAs only virtual objects have been harmed in the process of creating this work, I would\r\nlike to acknowledge the Stanford scanning repository for providing the “Bunny” and\r\n“Armadillo” models, the AIM@SHAPE repository for “Pierre’s hand, watertight”, and\r\nS. Gainsbourg for the “Column” via Archive3D.net. Sorry for breaking these models\r\nin many different ways.\r\n" alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: David full_name: Hahn, David id: 357A6A66-F248-11E8-B48F-1D18A9856A87 last_name: Hahn citation: ama: Hahn D. Brittle fracture simulation with boundary elements for computer graphics. 2017. doi:10.15479/AT:ISTA:th_855 apa: Hahn, D. (2017). Brittle fracture simulation with boundary elements for computer graphics. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_855 chicago: Hahn, David. “Brittle Fracture Simulation with Boundary Elements for Computer Graphics.” Institute of Science and Technology Austria, 2017. https://doi.org/10.15479/AT:ISTA:th_855. ieee: D. Hahn, “Brittle fracture simulation with boundary elements for computer graphics,” Institute of Science and Technology Austria, 2017. ista: Hahn D. 2017. Brittle fracture simulation with boundary elements for computer graphics. Institute of Science and Technology Austria. mla: Hahn, David. Brittle Fracture Simulation with Boundary Elements for Computer Graphics. Institute of Science and Technology Austria, 2017, doi:10.15479/AT:ISTA:th_855. short: D. Hahn, Brittle Fracture Simulation with Boundary Elements for Computer Graphics, Institute of Science and Technology Austria, 2017. date_created: 2018-12-11T11:48:47Z date_published: 2017-08-14T00:00:00Z date_updated: 2024-02-21T13:48:02Z day: '14' ddc: - '004' - '005' - '006' - '531' - '621' degree_awarded: PhD department: - _id: ChWo doi: 10.15479/AT:ISTA:th_855 ec_funded: 1 file: - access_level: open_access checksum: 6c1ae8c90bfaba5e089417fefbc4a272 content_type: application/pdf creator: system date_created: 2018-12-12T10:14:46Z date_updated: 2020-07-14T12:48:13Z file_id: '5100' file_name: IST-2017-855-v1+1_thesis_online_pdfA.pdf file_size: 14596191 relation: main_file - access_level: closed checksum: 421672f68d563b029869c5cf1713f919 content_type: application/zip creator: dernst date_created: 2019-04-05T08:40:30Z date_updated: 2020-07-14T12:48:13Z file_id: '6207' file_name: 2017_thesis_Hahn_source.zip file_size: 15060566 relation: source_file file_date_updated: 2020-07-14T12:48:13Z has_accepted_license: '1' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: '124' project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6809' pubrep_id: '855' related_material: record: - id: '1362' relation: part_of_dissertation status: public - id: '1633' relation: part_of_dissertation status: public - id: '5568' relation: popular_science status: public status: public supervisor: - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 title: Brittle fracture simulation with boundary elements for computer graphics tmp: image: /images/cc_by_sa.png legal_code_url: https://creativecommons.org/licenses/by-sa/4.0/legalcode name: Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) short: CC BY-SA (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '1189' abstract: - lang: eng text: "Within the scope of this thesis, we show that a driven-dissipative system with\r\nfew ultracold atoms can exhibit dissipatively bound states, even if the atom-atom\r\ninteraction is purely repulsive. This bond arises due to the dipole-dipole inter-\r\naction, which is restricted to one of the lower electronic energy states, resulting\r\nin the distance-dependent coherent population trapping. The quality of this al-\r\nready established method of dissipative binding is improved and the application\r\nis extended to higher dimensions and a larger number of atoms. \ Here, we simu-\r\nlate two- and three-atom systems using an adapted approach to the Monte Carlo\r\nwave-function method and analyse the results. Finally, \ we examine the possi-\r\nbility of finding a setting allowing trimer \ states but prohibiting dimer states.\r\nIn the context of open quantum systems, such a three-body bound states corre-\r\nsponds to the driven-dissipative analogue of a Borromean state. These states can\r\nbe detected in modern experiments with dipolar and Rydberg-dressed ultracold\r\natomic gases.\r\n" article_processing_charge: No author: - first_name: Clemens full_name: Jochum, Clemens last_name: Jochum citation: ama: Jochum C. Dissipative Few-Body Quantum Systems. 2016. apa: Jochum, C. (2016). Dissipative Few-Body Quantum Systems. Technical University Vienna. chicago: Jochum, Clemens. “Dissipative Few-Body Quantum Systems.” Technical University Vienna, 2016. ieee: C. Jochum, “Dissipative Few-Body Quantum Systems,” Technical University Vienna, 2016. ista: Jochum C. 2016. Dissipative Few-Body Quantum Systems. Technical University Vienna. mla: Jochum, Clemens. Dissipative Few-Body Quantum Systems. Technical University Vienna, 2016. short: C. Jochum, Dissipative Few-Body Quantum Systems, Technical University Vienna, 2016. date_created: 2018-12-11T11:50:37Z date_published: 2016-11-28T00:00:00Z date_updated: 2021-01-12T06:48:57Z day: '28' extern: '1' language: - iso: eng main_file_link: - open_access: '1' url: http://repositum.tuwien.ac.at/obvutwhs/content/titleinfo/1517088 month: '11' oa: 1 oa_version: Published Version page: '94' publication_status: published publisher: Technical University Vienna publist_id: '6164' status: public supervisor: - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Peter full_name: Rabl, Peter last_name: Rabl title: Dissipative Few-Body Quantum Systems type: dissertation user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2016' ... --- _id: '1121' abstract: - lang: eng text: "Horizontal gene transfer (HGT), the lateral acquisition of genes across existing species\r\nboundaries, is a major evolutionary force shaping microbial genomes that facilitates\r\nadaptation to new environments as well as resistance to antimicrobial drugs. As such,\r\nunderstanding the mechanisms and constraints that determine the outcomes of HGT\r\nevents is crucial to understand the dynamics of HGT and to design better strategies to\r\novercome the challenges that originate from it.\r\nFollowing the insertion and expression of a newly transferred gene, the success of an\r\nHGT event will depend on the fitness effect it has on the recipient (host) cell. Therefore,\r\npredicting the impact of HGT on the genetic composition of a population critically\r\ndepends on the distribution of fitness effects (DFE) of horizontally transferred genes.\r\nHowever, to date, we have little knowledge of the DFE of newly transferred genes, and\r\nhence little is known about the shape and scale of this distribution.\r\nIt is particularly important to better understand the selective barriers that determine\r\nthe fitness effects of newly transferred genes. In spite of substantial bioinformatics\r\nefforts to identify horizontally transferred genes and selective barriers, a systematic\r\nexperimental approach to elucidate the roles of different selective barriers in defining\r\nthe fate of a transfer event has largely been absent. Similarly, although the fact that\r\nenvironment might alter the fitness effect of a horizontally transferred gene may seem\r\nobvious, little attention has been given to it in a systematic experimental manner.\r\nIn this study, we developed a systematic experimental approach that consists of\r\ntransferring 44 arbitrarily selected Salmonella typhimurium orthologous genes into an\r\nEscherichia coli host, and estimating the fitness effects of these transferred genes at a\r\nconstant expression level by performing competition assays against the wild type.\r\nIn chapter 2, we performed one-to-one competition assays between a mutant strain\r\ncarrying a transferred gene and the wild type strain. By using flow cytometry we\r\nestimated selection coefficients for the transferred genes with a precision level of 10-3,and obtained the DFE of horizontally transferred genes. We then investigated if these\r\nfitness effects could be predicted by any of the intrinsic properties of the genes, namely,\r\nfunctional category, degree of complexity (protein-protein interactions), GC content,\r\ncodon usage and length. Our analyses revealed that the functional category and length\r\nof the genes act as potential selective barriers. Finally, using the same procedure with\r\nthe endogenous E. coli orthologs of these 44 genes, we demonstrated that gene dosage is\r\nthe most prominent selective barrier to HGT.\r\nIn chapter 3, using the same set of genes we investigated the role of environment on the\r\nsuccess of HGT events. Under six different environments with different levels of stress\r\nwe performed more complex competition assays, where we mixed all 44 mutant strains\r\ncarrying transferred genes with the wild type strain. To estimate the fitness effects of\r\ngenes relative to wild type we used next generation sequencing. We found that the DFEs\r\nof horizontally transferred genes are highly dependent on the environment, with\r\nabundant gene–by-environment interactions. Furthermore, we demonstrated a\r\nrelationship between average fitness effect of a gene across all environments and its\r\nenvironmental variance, and thus its predictability. Finally, in spite of the fitness effects\r\nof genes being highly environment-dependent, we still observed a common shape of\r\nDFEs across all tested environments." acknowledgement: "This study was supported by European Research Council ERC CoG 2014 – EVOLHGT,\r\nunder the grant number 648440.\r\n\r\nIt is a pleasure to thank the many people who made this thesis possible.\r\nI would like to first thank my advisor, Jonathan Paul Bollback for providing guidance in\r\nall aspects of my life, encouragement, sound advice, and good teaching over the last six\r\nyears.\r\nI would also like to thank the members of my dissertation committee – Călin C. Guet\r\nand John F. Baines – not only for their time and guidance, but for their intellectual\r\ncontributions to my development as a scientist.\r\nI would like to thank Flavia Gama and Rodrigo Redondo who have taught me all the\r\nskills in the laboratory with their graciousness and friendship. Also special thanks to\r\nBollback group for their support and for providing a stimulating and fun environment:\r\nIsabella Tomanek, Fabienne Jesse, Claudia Igler, and Pavel Payne.\r\nJerneja Beslagic is not only an amazing assistant, she also has a smile brighter and\r\nwarmer than the sunshine, bringing happiness to every moment. Always keep your light\r\nNeja, I will miss our invaluable chatters a lot." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Hande full_name: Acar, Hande id: 2DDF136A-F248-11E8-B48F-1D18A9856A87 last_name: Acar orcid: 0000-0003-1986-9753 citation: ama: Acar H. Selective barriers to horizontal gene transfer. 2016. apa: Acar, H. (2016). Selective barriers to horizontal gene transfer. Institute of Science and Technology Austria. chicago: Acar, Hande. “Selective Barriers to Horizontal Gene Transfer.” Institute of Science and Technology Austria, 2016. ieee: H. Acar, “Selective barriers to horizontal gene transfer,” Institute of Science and Technology Austria, 2016. ista: Acar H. 2016. Selective barriers to horizontal gene transfer. Institute of Science and Technology Austria. mla: Acar, Hande. Selective Barriers to Horizontal Gene Transfer. Institute of Science and Technology Austria, 2016. short: H. Acar, Selective Barriers to Horizontal Gene Transfer, Institute of Science and Technology Austria, 2016. date_created: 2018-12-11T11:50:16Z date_published: 2016-12-01T00:00:00Z date_updated: 2023-09-07T11:42:26Z day: '01' ddc: - '570' degree_awarded: PhD department: - _id: JoBo ec_funded: 1 file: - access_level: closed checksum: 94bbbc754c36115bf37f8fc11fad43c4 content_type: application/pdf creator: dernst date_created: 2019-08-13T11:17:50Z date_updated: 2019-08-13T11:17:50Z file_id: '6814' file_name: PhDThesis_HandeAcar_1230.pdf file_size: 3682711 relation: main_file - access_level: open_access checksum: 94bbbc754c36115bf37f8fc11fad43c4 content_type: application/pdf creator: dernst date_created: 2021-02-22T11:51:13Z date_updated: 2021-02-22T11:51:13Z file_id: '9184' file_name: 2016_Thesis_HandeAcar.pdf file_size: 3682711 relation: main_file success: 1 file_date_updated: 2021-02-22T11:51:13Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: '75' project: - _id: 2578D616-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '648440' name: Selective Barriers to Horizontal Gene Transfer publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6239' status: public supervisor: - first_name: Jonathan P full_name: Bollback, Jonathan P id: 2C6FA9CC-F248-11E8-B48F-1D18A9856A87 last_name: Bollback orcid: 0000-0002-4624-4612 title: Selective barriers to horizontal gene transfer type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2016' ... --- _id: '1128' abstract: - lang: eng text: "The process of gene expression is central to the modern understanding of how cellular systems\r\nfunction. In this process, a special kind of regulatory proteins, called transcription factors,\r\nare important to determine how much protein is produced from a given gene. As biological\r\ninformation is transmitted from transcription factor concentration to mRNA levels to amounts of\r\nprotein, various sources of noise arise and pose limits to the fidelity of intracellular signaling.\r\nThis thesis concerns itself with several aspects of stochastic gene expression: (i) the mathematical\r\ndescription of complex promoters responsible for the stochastic production of biomolecules,\r\n(ii) fundamental limits to information processing the cell faces due to the interference from multiple\r\nfluctuating signals, (iii) how the presence of gene expression noise influences the evolution\r\nof regulatory sequences, (iv) and tools for the experimental study of origins and consequences\r\nof cell-cell heterogeneity, including an application to bacterial stress response systems." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Georg full_name: Rieckh, Georg id: 34DA8BD6-F248-11E8-B48F-1D18A9856A87 last_name: Rieckh citation: ama: Rieckh G. Studying the complexities of transcriptional regulation. 2016. apa: Rieckh, G. (2016). Studying the complexities of transcriptional regulation. Institute of Science and Technology Austria. chicago: Rieckh, Georg. “Studying the Complexities of Transcriptional Regulation.” Institute of Science and Technology Austria, 2016. ieee: G. Rieckh, “Studying the complexities of transcriptional regulation,” Institute of Science and Technology Austria, 2016. ista: Rieckh G. 2016. Studying the complexities of transcriptional regulation. Institute of Science and Technology Austria. mla: Rieckh, Georg. Studying the Complexities of Transcriptional Regulation. Institute of Science and Technology Austria, 2016. short: G. Rieckh, Studying the Complexities of Transcriptional Regulation, Institute of Science and Technology Austria, 2016. date_created: 2018-12-11T11:50:18Z date_published: 2016-08-01T00:00:00Z date_updated: 2023-09-07T11:44:34Z day: '01' ddc: - '570' degree_awarded: PhD department: - _id: GaTk file: - access_level: closed checksum: ec453918c3bf8e6f460fd1156ef7b493 content_type: application/pdf creator: dernst date_created: 2019-08-13T11:46:25Z date_updated: 2019-08-13T11:46:25Z file_id: '6815' file_name: Thesis_Georg_Rieckh_w_signature_page.pdf file_size: 2614660 relation: main_file - access_level: open_access checksum: 51ae398166370d18fd22478b6365c4da content_type: application/pdf creator: dernst date_created: 2020-09-21T11:30:40Z date_updated: 2020-09-21T11:30:40Z file_id: '8542' file_name: Thesis_Georg_Rieckh.pdf file_size: 6096178 relation: main_file success: 1 file_date_updated: 2020-09-21T11:30:40Z has_accepted_license: '1' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: '114' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6232' status: public supervisor: - first_name: Gasper full_name: Tkacik, Gasper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkacik orcid: 0000-0002-6699-1455 title: Studying the complexities of transcriptional regulation type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2016' ... --- _id: '1124' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Maurizio full_name: Morri, Maurizio id: 4863116E-F248-11E8-B48F-1D18A9856A87 last_name: Morri citation: ama: Morri M. Optical functionalization of human class A orphan G-protein coupled receptors. 2016. apa: Morri, M. (2016). Optical functionalization of human class A orphan G-protein coupled receptors. Institute of Science and Technology Austria. chicago: Morri, Maurizio. “Optical Functionalization of Human Class A Orphan G-Protein Coupled Receptors.” Institute of Science and Technology Austria, 2016. ieee: M. Morri, “Optical functionalization of human class A orphan G-protein coupled receptors,” Institute of Science and Technology Austria, 2016. ista: Morri M. 2016. Optical functionalization of human class A orphan G-protein coupled receptors. Institute of Science and Technology Austria. mla: Morri, Maurizio. Optical Functionalization of Human Class A Orphan G-Protein Coupled Receptors. Institute of Science and Technology Austria, 2016. short: M. Morri, Optical Functionalization of Human Class A Orphan G-Protein Coupled Receptors, Institute of Science and Technology Austria, 2016. date_created: 2018-12-11T11:50:17Z date_published: 2016-03-01T00:00:00Z date_updated: 2023-09-07T11:43:03Z day: '01' ddc: - '570' degree_awarded: PhD department: - _id: HaJa file: - access_level: closed checksum: b439803ac0827cdddd56562a54e3b53b content_type: application/pdf creator: dernst date_created: 2019-08-13T10:50:00Z date_updated: 2019-08-13T10:50:00Z file_id: '6812' file_name: MORRI_PhD_thesis_FINALPLUSSIGNATURES (2).pdf file_size: 4785167 relation: main_file - access_level: open_access checksum: dd4136247fe472e7d47880ec68ac8de0 content_type: application/pdf creator: dernst date_created: 2021-02-22T11:42:06Z date_updated: 2021-02-22T11:42:06Z file_id: '9180' file_name: 2016_MORRI_Thesis.pdf file_size: 4495669 relation: main_file success: 1 file_date_updated: 2021-02-22T11:42:06Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: '129' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6236' status: public supervisor: - first_name: Harald L full_name: Janovjak, Harald L id: 33BA6C30-F248-11E8-B48F-1D18A9856A87 last_name: Janovjak orcid: 0000-0002-8023-9315 title: Optical functionalization of human class A orphan G-protein coupled receptors type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2016' ... --- _id: '1129' abstract: - lang: eng text: "Directed cell migration is a hallmark feature, present in almost all multi-cellular\r\norganisms. Despite its importance, basic questions regarding force transduction\r\nor directional sensing are still heavily investigated. Directed migration of cells\r\nguided by immobilized guidance cues - haptotaxis - occurs in key-processes,\r\nsuch as embryonic development and immunity (Middleton et al., 1997; Nguyen\r\net al., 2000; Thiery, 1984; Weber et al., 2013). Immobilized guidance cues\r\ncomprise adhesive ligands, such as collagen and fibronectin (Barczyk et al.,\r\n2009), or chemokines - the main guidance cues for migratory leukocytes\r\n(Middleton et al., 1997; Weber et al., 2013). While adhesive ligands serve as\r\nattachment sites guiding cell migration (Carter, 1965), chemokines instruct\r\nhaptotactic migration by inducing adhesion to adhesive ligands and directional\r\nguidance (Rot and Andrian, 2004; Schumann et al., 2010). Quantitative analysis\r\nof the cellular response to immobilized guidance cues requires in vitro assays\r\nthat foster cell migration, offer accurate control of the immobilized cues on a\r\nsubcellular scale and in the ideal case closely reproduce in vivo conditions. The\r\nexploration of haptotactic cell migration through design and employment of such\r\nassays represents the main focus of this work.\r\nDendritic cells (DCs) are leukocytes, which after encountering danger\r\nsignals such as pathogens in peripheral organs instruct naïve T-cells and\r\nconsequently the adaptive immune response in the lymph node (Mellman and\r\nSteinman, 2001). To reach the lymph node from the periphery, DCs follow\r\nhaptotactic gradients of the chemokine CCL21 towards lymphatic vessels\r\n(Weber et al., 2013). Questions about how DCs interpret haptotactic CCL21\r\ngradients have not yet been addressed. The main reason for this is the lack of\r\nan assay that offers diverse haptotactic environments, hence allowing the study\r\nof DC migration as a response to different signals of immobilized guidance cue.\r\nIn this work, we developed an in vitro assay that enables us to\r\nquantitatively assess DC haptotaxis, by combining precisely controllable\r\nchemokine photo-patterning with physically confining migration conditions. With this tool at hand, we studied the influence of CCL21 gradient properties and\r\nconcentration on DC haptotaxis. We found that haptotactic gradient sensing\r\ndepends on the absolute CCL21 concentration in combination with the local\r\nsteepness of the gradient. Our analysis suggests that the directionality of\r\nmigrating DCs is governed by the signal-to-noise ratio of CCL21 binding to its\r\nreceptor CCR7. Moreover, the haptotactic CCL21 gradient formed in vivo\r\nprovides an optimal shape for DCs to recognize haptotactic guidance cue.\r\nBy reconstitution of the CCL21 gradient in vitro we were also able to\r\nstudy the influence of CCR7 signal termination on DC haptotaxis. To this end,\r\nwe used DCs lacking the G-protein coupled receptor kinase GRK6, which is\r\nresponsible for CCL21 induced CCR7 receptor phosphorylation and\r\ndesensitization (Zidar et al., 2009). We found that CCR7 desensitization by\r\nGRK6 is crucial for maintenance of haptotactic CCL21 gradient sensing in vitro\r\nand confirm those observations in vivo.\r\nIn the context of the organism, immobilized haptotactic guidance cues\r\noften coincide and compete with soluble chemotactic guidance cues. During\r\nwound healing, fibroblasts are exposed and influenced by adhesive cues and\r\nsoluble factors at the same time (Wu et al., 2012; Wynn, 2008). Similarly,\r\nmigrating DCs are exposed to both, soluble chemokines (CCL19 and truncated\r\nCCL21) inducing chemotactic behavior as well as the immobilized CCL21. To\r\nquantitatively assess these complex coinciding immobilized and soluble\r\nguidance cues, we implemented our chemokine photo-patterning technique in a\r\nmicrofluidic system allowing for chemotactic gradient generation. To validate\r\nthe assay, we observed DC migration in competing CCL19/CCL21\r\nenvironments.\r\nAdhesiveness guided haptotaxis has been studied intensively over the\r\nlast century. However, quantitative studies leading to conceptual models are\r\nlargely missing, again due to the lack of a precisely controllable in vitro assay. A\r\nrequirement for such an in vitro assay is that it must prevent any uncontrolled\r\ncell adhesion. This can be accomplished by stable passivation of the surface. In\r\naddition, controlled adhesion must be sustainable, quantifiable and dose\r\ndependent in order to create homogenous gradients. Therefore, we developed a novel covalent photo-patterning technique satisfying all these needs. In\r\ncombination with a sustainable poly-vinyl alcohol (PVA) surface coating we\r\nwere able to generate gradients of adhesive cue to direct cell migration. This\r\napproach allowed us to characterize the haptotactic migratory behavior of\r\nzebrafish keratocytes in vitro. Furthermore, defined patterns of adhesive cue\r\nallowed us to control for cell shape and growth on a subcellular scale." acknowledged_ssus: - _id: Bio - _id: PreCl - _id: LifeSc acknowledgement: "First, I would like to thank Michael Sixt for being a great supervisor, mentor and\r\nscientist. I highly appreciate his guidance and continued support. Furthermore, I\r\nam very grateful that he gave me the exceptional opportunity to pursue many\r\nideas of which some managed to be included in this thesis.\r\nI owe sincere thanks to the members of my PhD thesis committee, Daria\r\nSiekhaus, Daniel Legler and Harald Janovjak. Especially I would like to thank\r\nDaria for her advice and encouragement during our regular progress meetings.\r\nI also want to thank the team and fellows of the Boehringer Ingelheim Fond\r\n(BIF) PhD Fellowship for amazing and inspiring meetings and the BIF for\r\nfinancial support.\r\nImportant factors for the success of this thesis were the warm, creative\r\nand helpful atmosphere as well as the team spirit of the whole Sixt Lab.\r\nTherefore I would like to thank my current and former colleagues Frank Assen,\r\nMarkus Brown, Ingrid de Vries, Michelle Duggan, Alexander Eichner, Miroslav\r\nHons, Eva Kiermaier, Aglaja Kopf, Alexander Leithner, Christine Moussion, Jan\r\nMüller, Maria Nemethova, Jörg Renkawitz, Anne Reversat, Kari Vaahtomeri,\r\nMichele Weber and Stefan Wieser. We had an amazing time with many\r\nlegendary evenings and events. Along these lines I want to thank the in vitro\r\ncrew of the lab, Jörg, Anne and Alex, for lots of ideas and productive\r\ndiscussions. I am sure, some day we will reveal the secret of the ‘splodge’.\r\nI want to thank the members of the Heisenberg Lab for a great time and\r\nthrilling kicker matches. In this regard I especially want to thank Maurizio\r\n‘Gnocci’ Monti, Gabriel Krens, Alex Eichner, Martin Behrndt, Vanessa Barone,Philipp Schmalhorst, Michael Smutny, Daniel Capek, Anne Reversat, Eva\r\nKiermaier, Frank Assen and Jan Müller for wonderful after-lunch matches.\r\nI would not have been able to analyze the thousands of cell trajectories\r\nand probably hundreds of thousands of mouse clicks without the productive\r\ncollaboration with Veronika Bierbaum and Tobias Bollenbach. Thanks Vroni for\r\ncountless meetings, discussions and graphs and of course for proofreading and\r\nadvice for this thesis. For proofreading I also want to thank Evi, Jörg, Jack and\r\nAnne.\r\nI would like to acknowledge Matthias Mehling for a very productive\r\ncollaboration and for introducing me into the wild world of microfluidics. Jack\r\nMerrin, for countless wafers, PDMS coated coverslips and help with anything\r\nmicro-fabrication related. And Maria Nemethova for establishing the ‘click’\r\npatterning approach with me. Without her it still would be just one of the ideas…\r\nMany thanks to Ekaterina Papusheva, Robert Hauschild, Doreen Milius\r\nand Nasser Darwish from the Bioimaging Facility as well as the Preclinical and\r\nthe Life Science facilities of IST Austria for excellent technical support. At this\r\npoint I especially want to thank Robert for countless image analyses and\r\ntechnical ideas. Always interested and creative he played an essential role in all\r\nof my projects.\r\nAdditionally I want to thank Ingrid and Gabby for welcoming me warmly\r\nwhen I first started at IST, for scientific and especially mental support in all\r\nthose years, countless coffee sessions and Heurigen evenings. #BioimagingFacility #LifeScienceFacility #PreClinicalFacility" alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Jan full_name: Schwarz, Jan id: 346C1EC6-F248-11E8-B48F-1D18A9856A87 last_name: Schwarz citation: ama: Schwarz J. Quantitative analysis of haptotactic cell migration. 2016. apa: Schwarz, J. (2016). Quantitative analysis of haptotactic cell migration. Institute of Science and Technology Austria. chicago: Schwarz, Jan. “Quantitative Analysis of Haptotactic Cell Migration.” Institute of Science and Technology Austria, 2016. ieee: J. Schwarz, “Quantitative analysis of haptotactic cell migration,” Institute of Science and Technology Austria, 2016. ista: Schwarz J. 2016. Quantitative analysis of haptotactic cell migration. Institute of Science and Technology Austria. mla: Schwarz, Jan. Quantitative Analysis of Haptotactic Cell Migration. Institute of Science and Technology Austria, 2016. short: J. Schwarz, Quantitative Analysis of Haptotactic Cell Migration, Institute of Science and Technology Austria, 2016. date_created: 2018-12-11T11:50:18Z date_published: 2016-07-01T00:00:00Z date_updated: 2023-09-07T11:54:33Z day: '01' ddc: - '570' degree_awarded: PhD department: - _id: MiSi file: - access_level: closed checksum: e3cd6b28f9c5cccb8891855565a2dade content_type: application/pdf creator: dernst date_created: 2019-08-13T10:55:35Z date_updated: 2019-08-13T10:55:35Z file_id: '6813' file_name: Thesis_JSchwarz_final.pdf file_size: 32044069 relation: main_file - access_level: open_access checksum: c3dbe219acf87eed2f46d21d5cca00de content_type: application/pdf creator: dernst date_created: 2021-02-22T11:43:14Z date_updated: 2021-02-22T11:43:14Z file_id: '9181' file_name: 2016_Thesis_JSchwarz.pdf file_size: 8396717 relation: main_file success: 1 file_date_updated: 2021-02-22T11:43:14Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '178' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6231' status: public supervisor: - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 title: Quantitative analysis of haptotactic cell migration type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2016' ... --- _id: '1126' abstract: - lang: eng text: "Traditionally machine learning has been focusing on the problem of solving a single\r\ntask in isolation. While being quite well understood, this approach disregards an\r\nimportant aspect of human learning: when facing a new problem, humans are able to\r\nexploit knowledge acquired from previously learned tasks. Intuitively, access to several\r\nproblems simultaneously or sequentially could also be advantageous for a machine\r\nlearning system, especially if these tasks are closely related. Indeed, results of many\r\nempirical studies have provided justification for this intuition. However, theoretical\r\njustifications of this idea are rather limited.\r\nThe focus of this thesis is to expand the understanding of potential benefits of information\r\ntransfer between several related learning problems. We provide theoretical\r\nanalysis for three scenarios of multi-task learning - multiple kernel learning, sequential\r\nlearning and active task selection. We also provide a PAC-Bayesian perspective on\r\nlifelong learning and investigate how the task generation process influences the generalization\r\nguarantees in this scenario. In addition, we show how some of the obtained\r\ntheoretical results can be used to derive principled multi-task and lifelong learning\r\nalgorithms and illustrate their performance on various synthetic and real-world datasets." acknowledgement: "First and foremost I would like to express my gratitude to my supervisor, Christoph\r\nLampert. Thank you for your patience in teaching me all aspects of doing research\r\n(including English grammar), for your trust in my capabilities and endless support. Thank\r\nyou for granting me freedom in my research and, at the same time, having time and\r\nhelping me cope with the consequences whenever I needed it. Thank you for creating\r\nan excellent atmosphere in the group, it was a great pleasure and honor to be a part of\r\nit. There could not have been a better and more inspiring adviser and mentor.\r\nI thank Shai Ben-David for welcoming me into his group at the University of Waterloo,\r\nfor inspiring discussions and support. It was a great pleasure to work together. I am\r\nalso thankful to Ruth Urner for hosting me at the Max-Planck Institute Tübingen, for the\r\nfruitful collaboration and for taking care of me during that not-so-sunny month of May.\r\nI thank Jan Maas for kindly joining my thesis committee despite the short notice and\r\nproviding me with insightful comments.\r\nI would like to thank my colleagues for their support, entertaining conversations and\r\nendless table soccer games we shared together: Georg, Jan, Amelie and Emilie, Michal\r\nand Alex, Alex K. and Alex Z., Thomas, Sameh, Vlad, Mayu, Nathaniel, Silvester, Neel,\r\nCsaba, Vladimir, Morten. Thank you, Mabel and Ram, for the wonderful time we spent\r\ntogether. I am thankful to Shrinu and Samira for taking care of me during my stay at the\r\nUniversity of Waterloo. Special thanks to Viktoriia for her never-ending optimism and for\r\nbeing so inspiring and supportive, especially at the beginning of my PhD journey.\r\nThanks to IST administration, in particular, Vlad and Elisabeth for shielding me from\r\nmost of the bureaucratic paperwork.\r\n\r\nThis dissertation would not have been possible without funding from the European\r\nResearch Council under the European Union's Seventh Framework Programme\r\n(FP7/2007-2013)/ERC grant agreement no 308036." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Anastasia full_name: Pentina, Anastasia id: 42E87FC6-F248-11E8-B48F-1D18A9856A87 last_name: Pentina citation: ama: Pentina A. Theoretical foundations of multi-task lifelong learning. 2016. doi:10.15479/AT:ISTA:TH_776 apa: Pentina, A. (2016). Theoretical foundations of multi-task lifelong learning. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:TH_776 chicago: Pentina, Anastasia. “Theoretical Foundations of Multi-Task Lifelong Learning.” Institute of Science and Technology Austria, 2016. https://doi.org/10.15479/AT:ISTA:TH_776. ieee: A. Pentina, “Theoretical foundations of multi-task lifelong learning,” Institute of Science and Technology Austria, 2016. ista: Pentina A. 2016. Theoretical foundations of multi-task lifelong learning. Institute of Science and Technology Austria. mla: Pentina, Anastasia. Theoretical Foundations of Multi-Task Lifelong Learning. Institute of Science and Technology Austria, 2016, doi:10.15479/AT:ISTA:TH_776. short: A. Pentina, Theoretical Foundations of Multi-Task Lifelong Learning, Institute of Science and Technology Austria, 2016. date_created: 2018-12-11T11:50:17Z date_published: 2016-11-01T00:00:00Z date_updated: 2023-09-07T11:52:03Z day: '01' ddc: - '006' degree_awarded: PhD department: - _id: ChLa doi: 10.15479/AT:ISTA:TH_776 ec_funded: 1 file: - access_level: open_access content_type: application/pdf creator: system date_created: 2018-12-12T10:14:07Z date_updated: 2018-12-12T10:14:07Z file_id: '5056' file_name: IST-2017-776-v1+1_Pentina_Thesis_2016.pdf file_size: 2140062 relation: main_file file_date_updated: 2018-12-12T10:14:07Z has_accepted_license: '1' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: '127' project: - _id: 2532554C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '308036' name: Lifelong Learning of Visual Scene Understanding publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6234' pubrep_id: '776' status: public supervisor: - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 title: Theoretical foundations of multi-task lifelong learning type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2016' ... --- _id: '1397' abstract: - lang: eng text: 'We study partially observable Markov decision processes (POMDPs) with objectives used in verification and artificial intelligence. The qualitative analysis problem given a POMDP and an objective asks whether there is a strategy (policy) to ensure that the objective is satisfied almost surely (with probability 1), resp. with positive probability (with probability greater than 0). For POMDPs with limit-average payoff, where a reward value in the interval [0,1] is associated to every transition, and the payoff of an infinite path is the long-run average of the rewards, we consider two types of path constraints: (i) a quantitative limit-average constraint defines the set of paths where the payoff is at least a given threshold L1 = 1. Our main results for qualitative limit-average constraint under almost-sure winning are as follows: (i) the problem of deciding the existence of a finite-memory controller is EXPTIME-complete; and (ii) the problem of deciding the existence of an infinite-memory controller is undecidable. For quantitative limit-average constraints we show that the problem of deciding the existence of a finite-memory controller is undecidable. We present a prototype implementation of our EXPTIME algorithm. For POMDPs with w-regular conditions specified as parity objectives, while the qualitative analysis problems are known to be undecidable even for very special case of parity objectives, we establish decidability (with optimal complexity) of the qualitative analysis problems for POMDPs with parity objectives under finite-memory strategies. We establish optimal (exponential) memory bounds and EXPTIME-completeness of the qualitative analysis problems under finite-memory strategies for POMDPs with parity objectives. Based on our theoretical algorithms we also present a practical approach, where we design heuristics to deal with the exponential complexity, and have applied our implementation on a number of well-known POMDP examples for robotics applications. For POMDPs with a set of target states and an integer cost associated with every transition, we study the optimization objective that asks to minimize the expected total cost of reaching a state in the target set, while ensuring that the target set is reached almost surely. We show that for general integer costs approximating the optimal cost is undecidable. For positive costs, our results are as follows: (i) we establish matching lower and upper bounds for the optimal cost, both double and exponential in the POMDP state space size; (ii) we show that the problem of approximating the optimal cost is decidable and present approximation algorithms that extend existing algorithms for POMDPs with finite-horizon objectives. We show experimentally that it performs well in many examples of interest. We study more deeply the problem of almost-sure reachability, where given a set of target states, the question is to decide whether there is a strategy to ensure that the target set is reached almost surely. While in general the problem EXPTIME-complete, in many practical cases strategies with a small amount of memory suffice. Moreover, the existing solution to the problem is explicit, which first requires to construct explicitly an exponential reduction to a belief-support MDP. We first study the existence of observation-stationary strategies, which is NP-complete, and then small-memory strategies. We present a symbolic algorithm by an efficient encoding to SAT and using a SAT solver for the problem. We report experimental results demonstrating the scalability of our symbolic (SAT-based) approach. Decentralized POMDPs (DEC-POMDPs) extend POMDPs to a multi-agent setting, where several agents operate in an uncertain environment independently to achieve a joint objective. In this work we consider Goal DEC-POMDPs, where given a set of target states, the objective is to ensure that the target set is reached with minimal cost. We consider the indefinite-horizon (infinite-horizon with either discounted-sum, or undiscounted-sum, where absorbing goal states have zero-cost) problem. We present a new and novel method to solve the problem that extends methods for finite-horizon DEC-POMDPs and the real-time dynamic programming approach for POMDPs. We present experimental results on several examples, and show that our approach presents promising results. In the end we present a short summary of a few other results related to verification of MDPs and POMDPs.' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Martin full_name: Chmelik, Martin id: 3624234E-F248-11E8-B48F-1D18A9856A87 last_name: Chmelik citation: ama: Chmelik M. Algorithms for partially observable markov decision processes. 2016. apa: Chmelik, M. (2016). Algorithms for partially observable markov decision processes. Institute of Science and Technology Austria. chicago: Chmelik, Martin. “Algorithms for Partially Observable Markov Decision Processes.” Institute of Science and Technology Austria, 2016. ieee: M. Chmelik, “Algorithms for partially observable markov decision processes,” Institute of Science and Technology Austria, 2016. ista: Chmelik M. 2016. Algorithms for partially observable markov decision processes. Institute of Science and Technology Austria. mla: Chmelik, Martin. Algorithms for Partially Observable Markov Decision Processes. Institute of Science and Technology Austria, 2016. short: M. Chmelik, Algorithms for Partially Observable Markov Decision Processes, Institute of Science and Technology Austria, 2016. date_created: 2018-12-11T11:51:47Z date_published: 2016-02-01T00:00:00Z date_updated: 2023-09-07T11:54:58Z day: '01' degree_awarded: PhD department: - _id: KrCh language: - iso: eng month: '02' oa_version: None page: '232' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '5810' status: public supervisor: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X title: Algorithms for partially observable markov decision processes type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2016' ... --- _id: '1123' abstract: - lang: eng text: "Motivated by topological Tverberg-type problems in topological combinatorics and by classical\r\nresults about embeddings (maps without double points), we study the question whether a finite\r\nsimplicial complex K can be mapped into Rd without triple, quadruple, or, more generally, r-fold points (image points with at least r distinct preimages), for a given multiplicity r ≤ 2. In particular, we are interested in maps f : K → Rd that have no global r -fold intersection points, i.e., no r -fold points with preimages in r pairwise disjoint simplices of K , and we seek necessary and sufficient conditions for the existence of such maps.\r\n\r\nWe present higher-multiplicity analogues of several classical results for embeddings, in particular of the completeness of the Van Kampen obstruction \ for embeddability of k -dimensional\r\ncomplexes into R2k , k ≥ 3. Speciffically, we show that under suitable restrictions on the dimensions(viz., if dimK = (r ≥ 1)k and d = rk \\ for some k ≥ 3), a well-known deleted product criterion (DPC ) is not only necessary but also sufficient for the existence of maps without global r -fold points. Our main technical tool is a higher-multiplicity version of the classical Whitney trick , by which pairs of isolated r -fold points of opposite sign can be eliminated by local modiffications of the map, assuming codimension d – dimK ≥ 3.\r\n\r\nAn important guiding idea for our work was that suffciency of the DPC, together with an old\r\nresult of Özaydin's on the existence of equivariant maps, might yield an approach to disproving the remaining open cases of the the long-standing topological Tverberg conjecture , i.e., to construct maps from the N -simplex σN to Rd without r-Tverberg points when r not a prime power and\r\nN = (d + 1)(r – 1). Unfortunately, our proof of the sufficiency of the DPC requires codimension d – dimK ≥ 3, which is not satisfied for K = σN .\r\n\r\nIn 2015, Frick [16] found a very elegant way to overcome this \\codimension 3 obstacle" and\r\nto construct the first counterexamples to the topological Tverberg conjecture for all parameters(d; r ) with d ≥ 3r + 1 and r not a prime power, by a reduction1 to a suitable lower-dimensional skeleton, for which the codimension 3 restriction is satisfied and maps without r -Tverberg points exist by Özaydin's result and sufficiency of the DPC.\r\n\r\nIn this thesis, we present a different construction (which does not use the constraint method) that yields counterexamples for d ≥ 3r , r not a prime power. " acknowledgement: "Foremost, I would like to thank Uli Wagner for introducing me to the exciting interface between\r\ntopology and combinatorics, and for our subsequent years of fruitful collaboration.\r\nIn our creative endeavors to eliminate intersection points, we had the chance to be joined later\r\nby Sergey Avvakumov and Arkadiy Skopenkov, which led us to new surprises in dimension 12.\r\nMy stay at EPFL and IST Austria was made very agreeable thanks to all these wonderful\r\npeople: Cyril Becker, Marek Filakovsky, Peter Franek, Radoslav Fulek, Peter Gazi, Kristof Huszar,\r\nMarek Krcal, Zuzana Masarova, Arnaud de Mesmay, Filip Moric, Michal Rybar, Martin Tancer,\r\nand Stephan Zhechev.\r\nFinally, I would like to thank my thesis committee Herbert Edelsbrunner and Roman Karasev\r\nfor their careful reading of the present manuscript and for the many improvements they suggested." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Isaac full_name: Mabillard, Isaac id: 32BF9DAA-F248-11E8-B48F-1D18A9856A87 last_name: Mabillard citation: ama: 'Mabillard I. Eliminating higher-multiplicity intersections: an r-fold Whitney trick for the topological Tverberg conjecture. 2016.' apa: 'Mabillard, I. (2016). Eliminating higher-multiplicity intersections: an r-fold Whitney trick for the topological Tverberg conjecture. Institute of Science and Technology Austria.' chicago: 'Mabillard, Isaac. “Eliminating Higher-Multiplicity Intersections: An r-Fold Whitney Trick for the Topological Tverberg Conjecture.” Institute of Science and Technology Austria, 2016.' ieee: 'I. Mabillard, “Eliminating higher-multiplicity intersections: an r-fold Whitney trick for the topological Tverberg conjecture,” Institute of Science and Technology Austria, 2016.' ista: 'Mabillard I. 2016. Eliminating higher-multiplicity intersections: an r-fold Whitney trick for the topological Tverberg conjecture. Institute of Science and Technology Austria.' mla: 'Mabillard, Isaac. Eliminating Higher-Multiplicity Intersections: An r-Fold Whitney Trick for the Topological Tverberg Conjecture. Institute of Science and Technology Austria, 2016.' short: 'I. Mabillard, Eliminating Higher-Multiplicity Intersections: An r-Fold Whitney Trick for the Topological Tverberg Conjecture, Institute of Science and Technology Austria, 2016.' date_created: 2018-12-11T11:50:16Z date_published: 2016-08-01T00:00:00Z date_updated: 2023-09-07T11:56:28Z day: '01' ddc: - '500' degree_awarded: PhD department: - _id: UlWa file: - access_level: closed checksum: 2d140cc924cd1b764544906fc22684ef content_type: application/pdf creator: dernst date_created: 2019-08-13T08:45:27Z date_updated: 2019-08-13T08:45:27Z file_id: '6809' file_name: Thesis_final version_Mabillard_w_signature_page.pdf file_size: 2227916 relation: main_file - access_level: open_access checksum: 2d140cc924cd1b764544906fc22684ef content_type: application/pdf creator: dernst date_created: 2021-02-22T11:36:34Z date_updated: 2021-02-22T11:36:34Z file_id: '9178' file_name: 2016_Mabillard_Thesis.pdf file_size: 2227916 relation: main_file success: 1 file_date_updated: 2021-02-22T11:36:34Z has_accepted_license: '1' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: '55' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6237' related_material: record: - id: '2159' relation: part_of_dissertation status: public status: public supervisor: - first_name: Uli full_name: Wagner, Uli id: 36690CA2-F248-11E8-B48F-1D18A9856A87 last_name: Wagner orcid: 0000-0002-1494-0568 title: 'Eliminating higher-multiplicity intersections: an r-fold Whitney trick for the topological Tverberg conjecture' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2016' ... --- _id: '1396' abstract: - lang: eng text: CA3 pyramidal neurons are thought to pay a key role in memory storage and pattern completion by activity-dependent synaptic plasticity between CA3-CA3 recurrent excitatory synapses. To examine the induction rules of synaptic plasticity at CA3-CA3 synapses, we performed whole-cell patch-clamp recordings in acute hippocampal slices from rats (postnatal 21-24 days) at room temperature. Compound excitatory postsynaptic potentials (ESPSs) were recorded by tract stimulation in stratum oriens in the presence of 10 µM gabazine. High-frequency stimulation (HFS) induced N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP). Although LTP by HFS did not requier postsynaptic spikes, it was blocked by Na+-channel blockers suggesting that local active processes (e.g.) dendritic spikes) may contribute to LTP induction without requirement of a somatic action potential (AP). We next examined the properties of spike timing-dependent plasticity (STDP) at CA3-CA3 synapses. Unexpectedly, low-frequency pairing of EPSPs and backpropagated action potentialy (bAPs) induced LTP, independent of temporal order. The STDP curve was symmetric and broad, with a half-width of ~150 ms. Consistent with these specific STDP induction properties, post-presynaptic sequences led to a supralinear summation of spine [Ca2+] transients. Furthermore, in autoassociative network models, storage and recall was substantially more robust with symmetric than with asymmetric STDP rules. In conclusion, we found associative forms of LTP at CA3-CA3 recurrent collateral synapses with distinct induction rules. LTP induced by HFS may be associated with dendritic spikes. In contrast, low frequency pairing of pre- and postsynaptic activity induced LTP only if EPSP-AP were temporally very close. Together, these induction mechanisms of synaptiic plasticity may contribute to memory storage in the CA3-CA3 microcircuit at different ranges of activity. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Rajiv Kumar full_name: Mishra, Rajiv Kumar id: 46CB58F2-F248-11E8-B48F-1D18A9856A87 last_name: Mishra citation: ama: Mishra RK. Synaptic plasticity rules at CA3-CA3 recurrent synapses in hippocampus. 2016. apa: Mishra, R. K. (2016). Synaptic plasticity rules at CA3-CA3 recurrent synapses in hippocampus. Institute of Science and Technology Austria. chicago: Mishra, Rajiv Kumar. “Synaptic Plasticity Rules at CA3-CA3 Recurrent Synapses in Hippocampus.” Institute of Science and Technology Austria, 2016. ieee: R. K. Mishra, “Synaptic plasticity rules at CA3-CA3 recurrent synapses in hippocampus,” Institute of Science and Technology Austria, 2016. ista: Mishra RK. 2016. Synaptic plasticity rules at CA3-CA3 recurrent synapses in hippocampus. Institute of Science and Technology Austria. mla: Mishra, Rajiv Kumar. Synaptic Plasticity Rules at CA3-CA3 Recurrent Synapses in Hippocampus. Institute of Science and Technology Austria, 2016. short: R.K. Mishra, Synaptic Plasticity Rules at CA3-CA3 Recurrent Synapses in Hippocampus, Institute of Science and Technology Austria, 2016. date_created: 2018-12-11T11:51:46Z date_published: 2016-03-01T00:00:00Z date_updated: 2023-09-07T11:55:26Z day: '01' ddc: - '570' degree_awarded: PhD department: - _id: PeJo file: - access_level: closed checksum: 5a010a838faf040f7064f3cfb802f743 content_type: application/pdf creator: dernst date_created: 2019-08-09T12:14:46Z date_updated: 2020-07-14T12:44:48Z file_id: '6782' file_name: Thesis_Mishra_Rajiv (Final).pdf file_size: 2407572 relation: main_file - access_level: open_access checksum: 81b26d9ede92c99f1d8cc6fa1d04cbbb content_type: application/pdf creator: dernst date_created: 2021-02-22T11:48:44Z date_updated: 2021-02-22T11:48:44Z file_id: '9183' file_name: 2016_RajivMishra_Thesis.pdf file_size: 2407572 relation: main_file success: 1 file_date_updated: 2021-02-22T11:48:44Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: '83' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '5811' related_material: record: - id: '1432' relation: part_of_dissertation status: public status: public supervisor: - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 title: Synaptic plasticity rules at CA3-CA3 recurrent synapses in hippocampus type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2016' ...