@phdthesis{8032, abstract = {Algorithms in computational 3-manifold topology typically take a triangulation as an input and return topological information about the underlying 3-manifold. However, extracting the desired information from a triangulation (e.g., evaluating an invariant) is often computationally very expensive. In recent years this complexity barrier has been successfully tackled in some cases by importing ideas from the theory of parameterized algorithms into the realm of 3-manifolds. Various computationally hard problems were shown to be efficiently solvable for input triangulations that are sufficiently “tree-like.” In this thesis we focus on the key combinatorial parameter in the above context: we consider the treewidth of a compact, orientable 3-manifold, i.e., the smallest treewidth of the dual graph of any triangulation thereof. By building on the work of Scharlemann–Thompson and Scharlemann–Schultens–Saito on generalized Heegaard splittings, and on the work of Jaco–Rubinstein on layered triangulations, we establish quantitative relations between the treewidth and classical topological invariants of a 3-manifold. In particular, among other results, we show that the treewidth of a closed, orientable, irreducible, non-Haken 3-manifold is always within a constant factor of its Heegaard genus.}, author = {Huszár, Kristóf}, isbn = {978-3-99078-006-0}, issn = {2663-337X}, pages = {xviii+120}, publisher = {Institute of Science and Technology Austria}, title = {{Combinatorial width parameters for 3-dimensional manifolds}}, doi = {10.15479/AT:ISTA:8032}, year = {2020}, } @phdthesis{8358, abstract = {During bacterial cell division, the tubulin-homolog FtsZ forms a ring-like structure at the center of the cell. This so-called Z-ring acts as a scaffold recruiting several division-related proteins to mid-cell and plays a key role in distributing proteins at the division site, a feature driven by the treadmilling motion of FtsZ filaments around the septum. What regulates the architecture, dynamics and stability of the Z-ring is still poorly understood, but FtsZ-associated proteins (Zaps) are known to play an important role. Advances in fluorescence microscopy and in vitro reconstitution experiments have helped to shed light into some of the dynamic properties of these complex systems, but methods that allow to collect and analyze large quantitative data sets of the underlying polymer dynamics are still missing. Here, using an in vitro reconstitution approach, we studied how different Zaps affect FtsZ filament dynamics and organization into large-scale patterns, giving special emphasis to the role of the well-conserved protein ZapA. For this purpose, we use high-resolution fluorescence microscopy combined with novel image analysis workfows to study pattern organization and polymerization dynamics of active filaments. We quantified the influence of Zaps on FtsZ on three diferent spatial scales: the large-scale organization of the membrane-bound filament network, the underlying polymerization dynamics and the behavior of single molecules. We found that ZapA cooperatively increases the spatial order of the filament network, binds only transiently to FtsZ filaments and has no effect on filament length and treadmilling velocity. Our data provides a model for how FtsZ-associated proteins can increase the precision and stability of the bacterial cell division machinery in a switch-like manner, without compromising filament dynamics. Furthermore, we believe that our automated quantitative methods can be used to analyze a large variety of dynamic cytoskeletal systems, using standard time-lapse movies of homogeneously labeled proteins obtained from experiments in vitro or even inside the living cell. }, author = {Dos Santos Caldas, Paulo R}, isbn = {978-3-99078-009-1}, issn = {2663-337X}, pages = {135}, publisher = {Institute of Science and Technology Austria}, title = {{Organization and dynamics of treadmilling filaments in cytoskeletal networks of FtsZ and its crosslinkers}}, doi = {10.15479/AT:ISTA:8358}, year = {2020}, } @phdthesis{8332, abstract = {Designing and verifying concurrent programs is a notoriously challenging, time consuming, and error prone task, even for experts. This is due to the sheer number of possible interleavings of a concurrent program, all of which have to be tracked and accounted for in a formal proof. Inventing an inductive invariant that captures all interleavings of a low-level implementation is theoretically possible, but practically intractable. We develop a refinement-based verification framework that provides mechanisms to simplify proof construction by decomposing the verification task into smaller subtasks. In a first line of work, we present a foundation for refinement reasoning over structured concurrent programs. We introduce layered concurrent programs as a compact notation to represent multi-layer refinement proofs. A layered concurrent program specifies a sequence of connected concurrent programs, from most concrete to most abstract, such that common parts of different programs are written exactly once. Each program in this sequence is expressed as structured concurrent program, i.e., a program over (potentially recursive) procedures, imperative control flow, gated atomic actions, structured parallelism, and asynchronous concurrency. This is in contrast to existing refinement-based verifiers, which represent concurrent systems as flat transition relations. We present a powerful refinement proof rule that decomposes refinement checking over structured programs into modular verification conditions. Refinement checking is supported by a new form of modular, parameterized invariants, called yield invariants, and a linear permission system to enhance local reasoning. In a second line of work, we present two new reduction-based program transformations that target asynchronous programs. These transformations reduce the number of interleavings that need to be considered, thus reducing the complexity of invariants. Synchronization simplifies the verification of asynchronous programs by introducing the fiction, for proof purposes, that asynchronous operations complete synchronously. Synchronization summarizes an asynchronous computation as immediate atomic effect. Inductive sequentialization establishes sequential reductions that captures every behavior of the original program up to reordering of coarse-grained commutative actions. A sequential reduction of a concurrent program is easy to reason about since it corresponds to a simple execution of the program in an idealized synchronous environment, where processes act in a fixed order and at the same speed. Our approach is implemented the CIVL verifier, which has been successfully used for the verification of several complex concurrent programs. In our methodology, the overall correctness of a program is established piecemeal by focusing on the invariant required for each refinement step separately. While the programmer does the creative work of specifying the chain of programs and the inductive invariant justifying each link in the chain, the tool automatically constructs the verification conditions underlying each refinement step.}, author = {Kragl, Bernhard}, issn = {2663-337X}, pages = {120}, publisher = {Institute of Science and Technology Austria}, title = {{Verifying concurrent programs: Refinement, synchronization, sequentialization}}, doi = {10.15479/AT:ISTA:8332}, year = {2020}, } @phdthesis{8958, abstract = {The oft-quoted dictum by Arthur Schawlow: ``A diatomic molecule has one atom too many'' has been disavowed. Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the rotation of coupled cold molecules in the presence of a many-body environment. In this thesis, we introduce new variational approaches to quantum impurities and apply them to the Fröhlich polaron - a quasiparticle formed out of an electron (or other point-like impurity) in a polar medium, and to the angulon - a quasiparticle formed out of a rotating molecule in a bosonic bath. With this theoretical toolbox, we reveal the self-localization transition for the angulon quasiparticle. We show that, unlike for polarons, self-localization of angulons occurs at finite impurity-bath coupling already at the mean-field level. The transition is accompanied by the spherical-symmetry breaking of the angulon ground state and a discontinuity in the first derivative of the ground-state energy. Moreover, the type of symmetry breaking is dictated by the symmetry of the microscopic impurity-bath interaction, which leads to a number of distinct self-localized states. For the system containing multiple impurities, by analogy with the bipolaron, we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attractive interaction mediated by the excitations of the bath. We study this system from the strong-coupling regime to the weak molecule-bath interaction regime. We show that the molecules tend to have a strong alignment in the ground state, the biangulon shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules and the bath takes place. Finally, we introduce a diagonalization scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two molecules.}, author = {Li, Xiang}, issn = {2663-337X}, pages = {125}, publisher = {Institute of Science and Technology Austria}, title = {{Rotation of coupled cold molecules in the presence of a many-body environment}}, doi = {10.15479/AT:ISTA:8958}, year = {2020}, } @phdthesis{8386, abstract = {Form versus function is a long-standing debate in various design-related fields, such as architecture as well as graphic and industrial design. A good design that balances form and function often requires considerable human effort and collaboration among experts from different professional fields. Computational design tools provide a new paradigm for designing functional objects. In computational design, form and function are represented as mathematical quantities, with the help of numerical and combinatorial algorithms, they can assist even novice users in designing versatile models that exhibit their desired functionality. This thesis presents three disparate research studies on the computational design of functional objects: The appearance of 3d print—we optimize the volumetric material distribution for faithfully replicating colored surface texture in 3d printing; the dynamic motion of mechanical structures— our design system helps the novice user to retarget various mechanical templates with different functionality to complex 3d shapes; and a more abstract functionality, multistability—our algorithm automatically generates models that exhibit multiple stable target poses. For each of these cases, our computational design tools not only ensure the functionality of the results but also permit the user aesthetic freedom over the form. Moreover, fabrication constraints were taken into account, which allow for the immediate creation of physical realization via 3D printing or laser cutting.}, author = {Zhang, Ran}, issn = {2663-337X}, pages = {148}, publisher = {Institute of Science and Technology Austria}, title = {{Structure-aware computational design and its application to 3D printable volume scattering, mechanism, and multistability}}, doi = {10.15479/AT:ISTA:8386}, year = {2020}, } @phdthesis{7996, abstract = {Quantum computation enables the execution of algorithms that have exponential complexity. This might open the path towards the synthesis of new materials or medical drugs, optimization of transport or financial strategies etc., intractable on even the fastest classical computers. A quantum computer consists of interconnected two level quantum systems, called qubits, that satisfy DiVincezo’s criteria. Worldwide, there are ongoing efforts to find the qubit architecture which will unite quantum error correction compatible single and two qubit fidelities, long distance qubit to qubit coupling and calability. Superconducting qubits have gone the furthest in this race, demonstrating an algorithm running on 53 coupled qubits, but still the fidelities are not even close to those required for realizing a single logical qubit. emiconductor qubits offer extremely good characteristics, but they are currently investigated across different platforms. Uniting those good characteristics into a single platform might be a big step towards the quantum computer realization. Here we describe the implementation of a hole spin qubit hosted in a Ge hut wire double quantum dot. The high and tunable spin-orbit coupling together with a heavy hole state character is expected to allow fast spin manipulation and long coherence times. Furthermore large lever arms, for hut wire devices, should allow good coupling to superconducting resonators enabling efficient long distance spin to spin coupling and a sensitive gate reflectometry spin readout. The developed cryogenic setup (printed circuit board sample holders, filtering, high-frequency wiring) enabled us to perform low temperature spin dynamics experiments. Indeed, we measured the fastest single spin qubit Rabi frequencies reported so far, reaching 140 MHz, while the dephasing times of 130 ns oppose the long decoherence predictions. In order to further investigate this, a double quantum dot gate was connected directly to a lumped element resonator which enabled gate reflectometry readout. The vanishing inter-dot transition signal, for increasing external magnetic field, revealed the spin nature of the measured quantity.}, author = {Kukucka, Josip}, issn = {2663-337X}, pages = {178}, publisher = {Institute of Science and Technology Austria}, title = {{Implementation of a hole spin qubit in Ge hut wires and dispersive spin sensing}}, doi = {10.15479/AT:ISTA:7996}, year = {2020}, } @phdthesis{8390, abstract = {Deep neural networks have established a new standard for data-dependent feature extraction pipelines in the Computer Vision literature. Despite their remarkable performance in the standard supervised learning scenario, i.e. when models are trained with labeled data and tested on samples that follow a similar distribution, neural networks have been shown to struggle with more advanced generalization abilities, such as transferring knowledge across visually different domains, or generalizing to new unseen combinations of known concepts. In this thesis we argue that, in contrast to the usual black-box behavior of neural networks, leveraging more structured internal representations is a promising direction for tackling such problems. In particular, we focus on two forms of structure. First, we tackle modularity: We show that (i) compositional architectures are a natural tool for modeling reasoning tasks, in that they efficiently capture their combinatorial nature, which is key for generalizing beyond the compositions seen during training. We investigate how to to learn such models, both formally and experimentally, for the task of abstract visual reasoning. Then, we show that (ii) in some settings, modularity allows us to efficiently break down complex tasks into smaller, easier, modules, thereby improving computational efficiency; We study this behavior in the context of generative models for colorization, as well as for small objects detection. Secondly, we investigate the inherently layered structure of representations learned by neural networks, and analyze its role in the context of transfer learning and domain adaptation across visually dissimilar domains. }, author = {Royer, Amélie}, isbn = {978-3-99078-007-7}, issn = {2663-337X}, pages = {197}, publisher = {Institute of Science and Technology Austria}, title = {{Leveraging structure in Computer Vision tasks for flexible Deep Learning models}}, doi = {10.15479/AT:ISTA:8390}, year = {2020}, } @phdthesis{7196, abstract = {In this thesis we study certain mathematical aspects of evolution. The two primary forces that drive an evolutionary process are mutation and selection. Mutation generates new variants in a population. Selection chooses among the variants depending on the reproductive rates of individuals. Evolutionary processes are intrinsically random – a new mutation that is initially present in the population at low frequency can go extinct, even if it confers a reproductive advantage. The overall rate of evolution is largely determined by two quantities: the probability that an invading advantageous mutation spreads through the population (called fixation probability) and the time until it does so (called fixation time). Both those quantities crucially depend not only on the strength of the invading mutation but also on the population structure. In this thesis, we aim to understand how the underlying population structure affects the overall rate of evolution. Specifically, we study population structures that increase the fixation probability of advantageous mutants (called amplifiers of selection). Broadly speaking, our results are of three different types: We present various strong amplifiers, we identify regimes under which only limited amplification is feasible, and we propose population structures that provide different tradeoffs between high fixation probability and short fixation time.}, author = {Tkadlec, Josef}, issn = {2663-337X}, pages = {144}, publisher = {Institute of Science and Technology Austria}, title = {{A role of graphs in evolutionary processes}}, doi = {10.15479/AT:ISTA:7196}, year = {2020}, } @phdthesis{8156, abstract = {We present solutions to several problems originating from geometry and discrete mathematics: existence of equipartitions, maps without Tverberg multiple points, and inscribing quadrilaterals. Equivariant obstruction theory is the natural topological approach to these type of questions. However, for the specific problems we consider it had yielded only partial or no results. We get our results by complementing equivariant obstruction theory with other techniques from topology and geometry.}, author = {Avvakumov, Sergey}, issn = {2663-337X}, pages = {119}, publisher = {Institute of Science and Technology Austria}, title = {{Topological methods in geometry and discrete mathematics}}, doi = {10.15479/AT:ISTA:8156}, year = {2020}, } @phdthesis{8366, abstract = {Fabrication of curved shells plays an important role in modern design, industry, and science. Among their remarkable properties are, for example, aesthetics of organic shapes, ability to evenly distribute loads, or efficient flow separation. They find applications across vast length scales ranging from sky-scraper architecture to microscopic devices. But, at the same time, the design of curved shells and their manufacturing process pose a variety of challenges. In this thesis, they are addressed from several perspectives. In particular, this thesis presents approaches based on the transformation of initially flat sheets into the target curved surfaces. This involves problems of interactive design of shells with nontrivial mechanical constraints, inverse design of complex structural materials, and data-driven modeling of delicate and time-dependent physical properties. At the same time, two newly-developed self-morphing mechanisms targeting flat-to-curved transformation are presented. In architecture, doubly curved surfaces can be realized as cold bent glass panelizations. Originally flat glass panels are bent into frames and remain stressed. This is a cost-efficient fabrication approach compared to hot bending, when glass panels are shaped plastically. However such constructions are prone to breaking during bending, and it is highly nontrivial to navigate the design space, keeping the panels fabricable and aesthetically pleasing at the same time. We introduce an interactive design system for cold bent glass façades, while previously even offline optimization for such scenarios has not been sufficiently developed. Our method is based on a deep learning approach providing quick and high precision estimation of glass panel shape and stress while handling the shape multimodality. Fabrication of smaller objects of scales below 1 m, can also greatly benefit from shaping originally flat sheets. In this respect, we designed new self-morphing shell mechanisms transforming from an initial flat state to a doubly curved state with high precision and detail. Our so-called CurveUps demonstrate the encodement of the geometric information into the shell. Furthermore, we explored the frontiers of programmable materials and showed how temporal information can additionally be encoded into a flat shell. This allows prescribing deformation sequences for doubly curved surfaces and, thus, facilitates self-collision avoidance enabling complex shapes and functionalities otherwise impossible. Both of these methods include inverse design tools keeping the user in the design loop.}, author = {Guseinov, Ruslan}, isbn = {978-3-99078-010-7}, issn = {2663-337X}, keywords = {computer-aided design, shape modeling, self-morphing, mechanical engineering}, pages = {118}, publisher = {Institute of Science and Technology Austria}, title = {{Computational design of curved thin shells: From glass façades to programmable matter}}, doi = {10.15479/AT:ISTA:8366}, year = {2020}, } @phdthesis{7525, abstract = {The medial habenula (MHb) is an evolutionary conserved epithalamic structure important for the modulation of emotional memory. It is involved in regulation of anxiety, compulsive behavior, addiction (nicotinic and opioid), sexual and feeding behavior. MHb receives inputs from septal regions and projects exclusively to the interpeduncular nucleus (IPN). Distinct sub-regions of the septum project to different subnuclei of MHb: the bed nucleus of anterior commissure projects to dorsal MHb and the triangular septum projects to ventral MHb. Furthermore, the dorsal and ventral MHb project to the lateral and rostral/central IPN, respectively. Importantly, these projections have unique features of prominent co-release of different neurotransmitters and requirement of a peculiar type of calcium channel for release. In general, synaptic neurotransmission requires an activity-dependent influx of Ca2+ into the presynaptic terminal through voltage-gated calcium channels. The calcium channel family most commonly involved in neurotransmitter release comprises three members, P/Q-, N- and R-type with Cav2.1, Cav2.2 and Cav2.3 subunits, respectively. In contrast to most CNS synapses that mainly express Cav2.1 and/or Cav2.2, MHb terminals in the IPN exclusively express Cav2.3. In other parts of the brain, such as the hippocampus, Cav2.3 is mostly located to postsynaptic elements. This unusual presynaptic location of Cav2.3 in the MHb-IPN pathway implies unique mechanisms of glutamate release in this pathway. One potential example of such uniqueness is the facilitation of release by GABAB receptor (GBR) activation. Presynaptic GBRs usually inhibit the release of neurotransmitters by inhibiting presynaptic calcium channels. MHb shows the highest expression levels of GBR in the brain. GBRs comprise two subunits, GABAB1 (GB1) and GABAB2 (GB2), and are associated with auxiliary subunits, called potassium channel tetramerization domain containing proteins (KCTD) 8, 12, 12b and 16. Among these four subunits, KCTD12b is exclusively expressed in ventral MHb, and KCTD8 shows the strongest expression in the whole MHb among other brain regions, indicating that KCTD8 and KCTD12b may be involved in the unique mechanisms of neurotransmitter release mediated by Cav2.3 and regulated by GBRs in this pathway. In the present study, we first verified that neurotransmission in both dorsal and ventral MHb-IPN pathways is mainly mediated by Cav2.3 using a selective blocker of R-type channels, SNX-482. We next found that baclofen, a GBR agonist, has facilitatory effects on release from ventral MHb terminal in rostral IPN, whereas it has inhibitory effects on release from dorsal MHb terminals in lateral IPN, indicating that KCTD12b expressed exclusively in ventral MHb may have a role in the facilitatory effects of GBR activation. In a heterologous expression system using HEK cells, we found that KCTD8 and KCTD12b but not KCTD12 directly bind with Cav2.3. Pre-embedding immunogold electron microscopy data show that Cav2.3 and KCTD12b are distributed most densely in presynaptic active zone in IPN with KCTD12b being present only in rostral/central but not lateral IPN, whereas GABAB, KCTD8 and KCTD12 are distributed most densely in perisynaptic sites with KCTD12 present more frequently in postsynaptic elements and only in rostral/central IPN. In freeze-fracture replica labelling, Cav2.3, KCTD8 and KCTD12b are co-localized with each other in the same active zone indicating that they may form complexes regulating vesicle release in rostral IPN. On electrophysiological studies of wild type (WT) mice, we found that paired-pulse ratio in rostral IPN of KCTD12b knock-out (KO) mice is lower than those of WT and KCTD8 KO mice. Consistent with this finding, in mean variance analysis, release probability in rostral IPN of KCTD12b KO mice is higher than that of WT and KCTD8 KO mice. Although paired-pulse ratios are not different between WT and KCTD8 KO mice, the mean variance analysis revealed significantly lower release probability in rostral IPN of KCTD8 KO than WT mice. These results demonstrate bidirectional regulation of Cav2.3-mediated release by KCTD8 and KCTD12b without GBR activation in rostral IPN. Finally, we examined the baclofen effects in rostral IPN of KCTD8 and KCTD12b KO mice, and found the facilitation of release remained in both KO mice, indicating that the peculiar effects of the GBR activation in this pathway do not depend on the selective expression of these KCTD subunits in ventral MHb. However, we found that presynaptic potentiation of evoked EPSC amplitude by baclofen falls to baseline after washout faster in KCTD12b KO mice than WT, KCTD8 KO and KCTD8/12b double KO mice. This result indicates that KCTD12b is involved in sustained potentiation of vesicle release by GBR activation, whereas KCTD8 is involved in its termination in the absence of KCTD12b. Consistent with these functional findings, replica labelling revealed an increase in density of KCTD8, but not Cav2.3 or GBR at active zone in rostral IPN of KCTD12b KO mice compared with that of WT mice, suggesting that increased association of KCTD8 with Cav2.3 facilitates the release probability and termination of the GBR effect in the absence of KCTD12b. In summary, our study provided new insights into the physiological roles of presynaptic Cav2.3, GBRs and their auxiliary subunits KCTDs at an evolutionary conserved neuronal circuit. Future studies will be required to identify the exact molecular mechanism underlying the GBR-mediated presynaptic potentiation on ventral MHb terminals. It remains to be determined whether the prominent presence of presynaptic KCTDs at active zone could exert similar neuromodulatory functions in different pathways of the brain. }, author = {Bhandari, Pradeep}, issn = {2663-337X}, keywords = {Cav2.3, medial habenula (MHb), interpeduncular nucleus (IPN)}, pages = {79}, publisher = {Institute of Science and Technology Austria}, title = {{Localization and functional role of Cav2.3 in the medial habenula to interpeduncular nucleus pathway}}, doi = {10.15479/AT:ISTA:7525}, year = {2020}, } @phdthesis{8657, abstract = {Synthesis of proteins – translation – is a fundamental process of life. Quantitative studies anchor translation into the context of bacterial physiology and reveal several mathematical relationships, called “growth laws,” which capture physiological feedbacks between protein synthesis and cell growth. Growth laws describe the dependency of the ribosome abundance as a function of growth rate, which can change depending on the growth conditions. Perturbations of translation reveal that bacteria employ a compensatory strategy in which the reduced translation capability results in increased expression of the translation machinery. Perturbations of translation are achieved in various ways; clinically interesting is the application of translation-targeting antibiotics – translation inhibitors. The antibiotic effects on bacterial physiology are often poorly understood. Bacterial responses to two or more simultaneously applied antibiotics are even more puzzling. The combined antibiotic effect determines the type of drug interaction, which ranges from synergy (the effect is stronger than expected) to antagonism (the effect is weaker) and suppression (one of the drugs loses its potency). In the first part of this work, we systematically measure the pairwise interaction network for translation inhibitors that interfere with different steps in translation. We find that the interactions are surprisingly diverse and tend to be more antagonistic. To explore the underlying mechanisms, we begin with a minimal biophysical model of combined antibiotic action. We base this model on the kinetics of antibiotic uptake and binding together with the physiological response described by the growth laws. The biophysical model explains some drug interactions, but not all; it specifically fails to predict suppression. In the second part of this work, we hypothesize that elusive suppressive drug interactions result from the interplay between ribosomes halted in different stages of translation. To elucidate this putative mechanism of drug interactions between translation inhibitors, we generate translation bottlenecks genetically using in- ducible control of translation factors that regulate well-defined translation cycle steps. These perturbations accurately mimic antibiotic action and drug interactions, supporting that the interplay of different translation bottlenecks partially causes these interactions. We extend this approach by varying two translation bottlenecks simultaneously. This approach reveals the suppression of translocation inhibition by inhibited translation. We rationalize this effect by modeling dense traffic of ribosomes that move on transcripts in a translation factor-mediated manner. This model predicts a dissolution of traffic jams caused by inhibited translocation when the density of ribosome traffic is reduced by lowered initiation. We base this model on the growth laws and quantitative relationships between different translation and growth parameters. In the final part of this work, we describe a set of tools aimed at quantification of physiological and translation parameters. We further develop a simple model that directly connects the abundance of a translation factor with the growth rate, which allows us to extract physiological parameters describing initiation. We demonstrate the development of tools for measuring translation rate. This thesis showcases how a combination of high-throughput growth rate mea- surements, genetics, and modeling can reveal mechanisms of drug interactions. Furthermore, by a gradual transition from combinations of antibiotics to precise genetic interventions, we demonstrated the equivalency between genetic and chemi- cal perturbations of translation. These findings tile the path for quantitative studies of antibiotic combinations and illustrate future approaches towards the quantitative description of translation.}, author = {Kavcic, Bor}, isbn = {978-3-99078-011-4}, issn = {2663-337X}, pages = {271}, publisher = {Institute of Science and Technology Austria}, title = {{Perturbations of protein synthesis: from antibiotics to genetics and physiology}}, doi = {10.15479/AT:ISTA:8657}, year = {2020}, } @phdthesis{7680, abstract = {Proteins and their complex dynamic interactions regulate cellular mechanisms from sensing and transducing extracellular signals, to mediating genetic responses, and sustaining or changing cell morphology. To manipulate these protein-protein interactions (PPIs) that govern the behavior and fate of cells, synthetically constructed, genetically encoded tools provide the means to precisely target proteins of interest (POIs), and control their subcellular localization and activity in vitro and in vivo. Ideal synthetic tools react to an orthogonal cue, i.e. a trigger that does not activate any other endogenous process, thereby allowing manipulation of the POI alone. In optogenetics, naturally occurring photosensory domain from plants, algae and bacteria are re-purposed and genetically fused to POIs. Illumination with light of a specific wavelength triggers a conformational change that can mediate PPIs, such as dimerization or oligomerization. By using light as a trigger, these tools can be activated with high spatial and temporal precision, on subcellular and millisecond scales. Chemogenetic tools consist of protein domains that recognize and bind small molecules. By genetic fusion to POIs, these domains can mediate PPIs upon addition of their specific ligands, which are often synthetically designed to provide highly specific interactions and exhibit good bioavailability. Most optogenetic tools to mediate PPIs are based on well-studied photoreceptors responding to red, blue or near-UV light, leaving a striking gap in the green band of the visible light spectrum. Among both optogenetic and chemogenetic tools, there is an abundance of methods to induce PPIs, but tools to disrupt them require UV illumination, rely on covalent linkage and subsequent enzymatic cleavage or initially result in protein clustering of unknown stoichiometry. This work describes how the recently structurally and photochemically characterized green-light responsive cobalamin-binding domains (CBDs) from bacterial transcription factors were re-purposed to function as a green-light responsive optogenetic tool. In contrast to previously engineered optogenetic tools, CBDs do not induce PPI, but rather confer a PPI already upon expression, which can be rapidly disrupted by illumination. This was employed to mimic inhibition of constitutive activity of a growth factor receptor, and successfully implement for cell signalling in mammalian cells and in vivo to rescue development in zebrafish. This work further describes the development and application of a chemically induced de-dimerizer (CDD) based on a recently identified and structurally described bacterial oxyreductase. CDD forms a dimer upon expression in absence of its cofactor, the flavin derivative F420. Safety and of domain expression and ligand exposure are demonstrated in vitro and in vivo in zebrafish. The system is further applied to inhibit cell signalling output from a chimeric receptor upon F420 treatment. CBDs and CDD expand the repertoire of synthetic tools by providing novel mechanisms of mediating PPIs, and by recognizing previously not utilized cues. In the future, they can readily be combined with existing synthetic tools to functionally manipulate PPIs in vitro and in vivo.}, author = {Kainrath, Stephanie}, issn = {2663-337X}, pages = {98}, publisher = {Institute of Science and Technology Austria}, title = {{Synthetic tools for optogenetic and chemogenetic inhibition of cellular signals}}, doi = {10.15479/AT:ISTA:7680}, year = {2020}, } @phdthesis{8620, abstract = {The development of the human brain occurs through a tightly regulated series of dynamic and adaptive processes during prenatal and postnatal life. A disruption of this strictly orchestrated series of events can lead to a number of neurodevelopmental conditions, including Autism Spectrum Disorders (ASDs). ASDs are a very common, etiologically and phenotypically heterogeneous group of disorders sharing the core symptoms of social interaction and communication deficits and restrictive and repetitive interests and behaviors. They are estimated to affect one in 59 individuals in the U.S. and, over the last three decades, mutations in more than a hundred genetic loci have been convincingly linked to ASD pathogenesis. Yet, for the vast majority of these ASD-risk genes their role during brain development and precise molecular function still remain elusive. De novo loss of function mutations in the ubiquitin ligase-encoding gene Cullin 3 (CUL3) lead to ASD. In the study described here, we used Cul3 mouse models to evaluate the consequences of Cul3 mutations in vivo. Our results show that Cul3 heterozygous knockout mice exhibit deficits in motor coordination as well as ASD-relevant social and cognitive impairments. Cul3+/-, Cul3+/fl Emx1-Cre and Cul3fl/fl Emx1-Cre mutant brains display cortical lamination abnormalities due to defective migration of post-mitotic excitatory neurons, as well as reduced numbers of excitatory and inhibitory neurons. In line with the observed abnormal cortical organization, Cul3 heterozygous deletion is associated with decreased spontaneous excitatory and inhibitory activity in the cortex. At the molecular level we show that Cul3 regulates cytoskeletal and adhesion protein abundance in the mouse embryonic cortex. Abnormal regulation of cytoskeletal proteins in Cul3 mutant neural cells results in atypical organization of the actin mesh at the cell leading edge. Of note, heterozygous deletion of Cul3 in adult mice does not induce the majority of the behavioral defects observed in constitutive Cul3 haploinsufficient animals, pointing to a critical time-window for Cul3 deficiency. In conclusion, our data indicate that Cul3 plays a critical role in the regulation of cytoskeletal proteins and neuronal migration. ASD-associated defects and behavioral abnormalities are primarily due to dosage sensitive Cul3 functions at early brain developmental stages.}, author = {Morandell, Jasmin}, issn = {2663-337X}, pages = {138}, publisher = {Institute of Science and Technology Austria}, title = {{Illuminating the role of Cul3 in autism spectrum disorder pathogenesis}}, doi = {10.15479/AT:ISTA:8620}, year = {2020}, } @phdthesis{8340, abstract = {Mitochondria are sites of oxidative phosphorylation in eukaryotic cells. Oxidative phosphorylation operates by a chemiosmotic mechanism made possible by redox-driven proton pumping machines which establish a proton motive force across the inner mitochondrial membrane. This electrochemical proton gradient is used to drive ATP synthesis, which powers the majority of cellular processes such as protein synthesis, locomotion and signalling. In this thesis I investigate the structures and molecular mechanisms of two inner mitochondrial proton pumping enzymes, respiratory complex I and transhydrogenase. I present the first high-resolution structure of the full transhydrogenase from any species, and a significantly improved structure of complex I. Improving the resolution from 3.3 Å available previously to up to 2.3 Å in this thesis allowed us to model bound water molecules, crucial in the proton pumping mechanism. For both enzymes, up to five cryo-EM datasets with different substrates and inhibitors bound were solved to delineate the catalytic cycle and understand the proton pumping mechanism. In transhydrogenase, the proton channel is gated by reversible detachment of the NADP(H)-binding domain which opens the proton channel to the opposite sites of the membrane. In complex I, the proton channels are gated by reversible protonation of key glutamate and lysine residues and breaking of the water wire connecting the proton pumps with the quinone reduction site. The tight coupling between the redox and the proton pumping reactions in transhydrogenase is achieved by controlling the NADP(H) exchange which can only happen when the NADP(H)-binding domain interacts with the membrane domain. In complex I, coupling is achieved by cycling of the whole complex between the closed state, in which quinone can get reduced, and the open state, in which NADH can induce quinol ejection from the binding pocket. On the basis of these results I propose detailed mechanisms for catalytic cycles of transhydrogenase and complex I that are consistent with a large amount of previous work. In both enzymes, conformational and electrostatic mechanisms contribute to the overall catalytic process. Results presented here could be used for better understanding of the human pathologies arising from deficiencies of complex I or transhydrogenase and could be used to develop novel therapies.}, author = {Kampjut, Domen}, isbn = {978-3-99078-008-4}, issn = {2663-337X}, pages = {242}, publisher = {Institute of Science and Technology Austria}, title = {{Molecular mechanisms of mitochondrial redox-coupled proton pumping enzymes}}, doi = {10.15479/AT:ISTA:8340}, year = {2020}, } @phdthesis{8983, abstract = {Metabolic adaptation is a critical feature of migrating cells. It tunes the metabolic programs of migrating cells to allow them to efficiently exert their crucial roles in development, inflammatory responses and tumor metastasis. Cell migration through physically challenging contexts requires energy. However, how the metabolic reprogramming that underlies in vivo cell invasion is controlled is still unanswered. In my PhD project, I identify a novel conserved metabolic shift in Drosophila melanogaster immune cells that by modulating their bioenergetic potential controls developmentally programmed tissue invasion. We show that this regulation requires a novel conserved nuclear protein, named Atossa. Atossa enhances the transcription of a set of proteins, including an RNA helicase Porthos and two metabolic enzymes, each of which increases the tissue invasion of leading Drosophila macrophages and can rescue the atossa mutant phenotype. Porthos selectively regulates the translational efficiency of a subset of mRNAs containing a 5’-UTR cis-regulatory TOP-like sequence. These 5’TOPL mRNA targets encode mitochondrial-related proteins, including subunits of mitochondrial oxidative phosphorylation (OXPHOS) components III and V and other metabolic-related proteins. Porthos powers up mitochondrial OXPHOS to engender a sufficient ATP supply, which is required for tissue invasion of leading macrophages. Atossa’s two vertebrate orthologs rescue the invasion defect. In my PhD project, I elucidate that Atossa displays a conserved developmental metabolic control to modulate metabolic capacities and the cellular energy state, through altered transcription and translation, to aid the tissue infiltration of leading cells into energy demanding barriers.}, author = {Emtenani, Shamsi}, issn = {2663-337X}, pages = {141}, publisher = {Institute of Science and Technology Austria}, title = {{Metabolic regulation of Drosophila macrophage tissue invasion}}, doi = {10.15479/AT:ISTA:8983}, year = {2020}, } @phdthesis{7258, abstract = {Many flows encountered in nature and applications are characterized by a chaotic motion known as turbulence. Turbulent flows generate intense friction with pipe walls and are responsible for considerable amounts of energy losses at world scale. The nature of turbulent friction and techniques aimed at reducing it have been subject of extensive research over the last century, but no definite answer has been found yet. In this thesis we show that in pipes at moderate turbulent Reynolds numbers friction is better described by the power law first introduced by Blasius and not by the Prandtl–von Kármán formula. At higher Reynolds numbers, large scale motions gradually become more important in the flow and can be related to the change in scaling of friction. Next, we present a series of new techniques that can relaminarize turbulence by suppressing a key mechanism that regenerates it at walls, the lift–up effect. In addition, we investigate the process of turbulence decay in several experiments and discuss the drag reduction potential. Finally, we examine the behavior of friction under pulsating conditions inspired by the human heart cycle and we show that under such circumstances turbulent friction can be reduced to produce energy savings.}, author = {Scarselli, Davide}, issn = {2663-337X}, pages = {174}, publisher = {Institute of Science and Technology Austria}, title = {{New approaches to reduce friction in turbulent pipe flow}}, doi = {10.15479/AT:ISTA:7258}, year = {2020}, } @phdthesis{8653, abstract = {Mutations are the raw material of evolution and come in many different flavors. Point mutations change a single letter in the DNA sequence, while copy number mutations like duplications or deletions add or remove many letters of the DNA sequence simultaneously. Each type of mutation exhibits specific properties like its rate of formation and reversal. Gene expression is a fundamental phenotype that can be altered by both, point and copy number mutations. The following thesis is concerned with the dynamics of gene expression evolution and how it is affected by the properties exhibited by point and copy number mutations. Specifically, we are considering i) copy number mutations during adaptation to fluctuating environments and ii) the interaction of copy number and point mutations during adaptation to constant environments.  }, author = {Tomanek, Isabella}, issn = {2663-337X}, keywords = {duplication, amplification, promoter, CNV, AMGET, experimental evolution, Escherichia coli}, pages = {117}, publisher = {Institute of Science and Technology Austria}, title = {{The evolution of gene expression by copy number and point mutations}}, doi = {10.15479/AT:ISTA:8653}, year = {2020}, } @phdthesis{8822, abstract = {Self-organization is a hallmark of plant development manifested e.g. by intricate leaf vein patterns, flexible formation of vasculature during organogenesis or its regeneration following wounding. Spontaneously arising channels transporting the phytohormone auxin, created by coordinated polar localizations of PIN-FORMED 1 (PIN1) auxin exporter, provide positional cues for these as well as other plant patterning processes. To find regulators acting downstream of auxin and the TIR1/AFB auxin signaling pathway essential for PIN1 coordinated polarization during auxin canalization, we performed microarray experiments. Besides the known components of general PIN polarity maintenance, such as PID and PIP5K kinases, we identified and characterized a new regulator of auxin canalization, the transcription factor WRKY DNA-BINDING PROTEIN 23 (WRKY23). Next, we designed a subsequent microarray experiment to further uncover other molecular players, downstream of auxin-TIR1/AFB-WRKY23 involved in the regulation of auxin-mediated PIN repolarization. We identified a novel and crucial part of the molecular machinery underlying auxin canalization. The auxin-regulated malectin-type receptor-like kinase CAMEL and the associated leucine-rich repeat receptor-like kinase CANAR target and directly phosphorylate PIN auxin transporters. camel and canar mutants are impaired in PIN1 subcellular trafficking and auxin-mediated repolarization leading to defects in auxin transport, ultimately to leaf venation and vasculature regeneration defects. Our results describe the CAMEL-CANAR receptor complex, which is required for auxin feed-back on its own transport and thus for coordinated tissue polarization during auxin canalization.}, author = {Hajny, Jakub}, issn = {2663-337X}, pages = {249}, publisher = {Institute of Science and Technology Austria}, title = {{Identification and characterization of the molecular machinery of auxin-dependent canalization during vasculature formation and regeneration}}, doi = {10.15479/AT:ISTA:8822}, year = {2020}, } @phdthesis{8350, abstract = {Cytoplasm is a gel-like crowded environment composed of tens of thousands of macromolecules, organelles, cytoskeletal networks and cytosol. The structure of the cytoplasm is thought to be highly organized and heterogeneous due to the crowding of its constituents and their effective compartmentalization. In such an environment, the diffusive dynamics of the molecules is very restricted, an effect that is further amplified by clustering and anchoring of molecules. Despite the jammed nature of the cytoplasm at the microscopic scale, large-scale reorganization of cytoplasm is essential for important cellular functions, such as nuclear positioning and cell division. How such mesoscale reorganization of the cytoplasm is achieved, especially for very large cells such as oocytes or syncytial tissues that can span hundreds of micrometers in size, has only begun to be understood. In this thesis, I focus on the recent advances in elucidating the molecular, cellular and biophysical principles underlying cytoplasmic organization across different scales, structures and species. First, I outline which of these principles have been identified by reductionist approaches, such as in vitro reconstitution assays, where boundary conditions and components can be modulated at ease. I then describe how the theoretical and experimental framework established in these reduced systems have been applied to their more complex in vivo counterparts, in particular oocytes and embryonic syncytial structures, and discuss how such complex biological systems can initiate symmetry breaking and establish patterning. Specifically, I examine an example of large-scale reorganizations taking place in zebrafish embryos, where extensive cytoplasmic streaming leads to the segregation of cytoplasm from yolk granules along the animal-vegetal axis of the embryo. Using biophysical experimentation and theory, I investigate the forces underlying this process, to show that this process does not rely on cortical actin reorganization, as previously thought, but instead on a cell-cycle-dependent bulk actin polymerization wave traveling from the animal to the vegetal pole of the embryo. This wave functions in segregation by both pulling cytoplasm animally and pushing yolk granules vegetally. Cytoplasm pulling is mediated by bulk actin network flows exerting friction forces on the cytoplasm, while yolk granule pushing is achieved by a mechanism closely resembling actin comet formation on yolk granules. This study defines a novel role of bulk actin polymerization waves in embryo polarization via cytoplasmic segregation. Lastly, I describe the cytoplasmic reorganizations taking place during zebrafish oocyte maturation, where the initial segregation of the cytoplasm and yolk granules occurs. Here, I demonstrate a previously uncharacterized wave of microtubule aster formation, traveling the oocyte along the animal-vegetal axis. Further research is required to determine the role of such microtubule structures in cytoplasmic reorganizations therein. Collectively, these studies provide further evidence for the coupling between cell cytoskeleton and cell cycle machinery, which can underlie a core self-organizing mechanism for orchestrating large-scale reorganizations in a cell-cycle-tunable manner, where the modulations of the force-generating machinery and cytoplasmic mechanics can be harbored to fulfill cellular functions.}, author = {Shamipour, Shayan}, issn = {2663-337X}, pages = {107}, publisher = {Institute of Science and Technology Austria}, title = {{Bulk actin dynamics drive phase segregation in zebrafish oocytes }}, doi = {10.15479/AT:ISTA:8350}, year = {2020}, } @phdthesis{7902, abstract = {Mosaic genetic analysis has been widely used in different model organisms such as the fruit fly to study gene-function in a cell-autonomous or tissue-specific fashion. More recently, and less easily conducted, mosaic genetic analysis in mice has also been enabled with the ambition to shed light on human gene function and disease. These genetic tools are of particular interest, but not restricted to, the study of the brain. Notably, the MADM technology offers a genetic approach in mice to visualize and concomitantly manipulate small subsets of genetically defined cells at a clonal level and single cell resolution. MADM-based analysis has already advanced the study of genetic mechanisms regulating brain development and is expected that further MADM-based analysis of genetic alterations will continue to reveal important insights on the fundamental principles of development and disease to potentially assist in the development of new therapies or treatments. In summary, this work completed and characterized the necessary genome-wide genetic tools to perform MADM-based analysis at single cell level of the vast majority of mouse genes in virtually any cell type and provided a protocol to perform lineage tracing using the novel MADM resource. Importantly, this work also explored and revealed novel aspects of biologically relevant events in an in vivo context, such as the chromosome-specific bias of chromatid sister segregation pattern, the generation of cell-type diversity in the cerebral cortex and in the cerebellum and finally, the relevance of the interplay between the cell-autonomous gene function and cell-non-autonomous (community) effects in radial glial progenitor lineage progression. This work provides a foundation and opens the door to further elucidating the molecular mechanisms underlying neuronal diversity and astrocyte generation.}, author = {Contreras, Ximena}, issn = {2663-337X}, pages = {214}, publisher = {Institute of Science and Technology Austria}, title = {{Genetic dissection of neural development in health and disease at single cell resolution}}, doi = {10.15479/AT:ISTA:7902}, year = {2020}, } @phdthesis{8311, abstract = {One of the core promises of blockchain technology is that of enabling trustworthy data dissemination in a trustless environment. What current blockchain systems deliver, however, is slow dissemination of public data, rendering blockchain technology unusable in settings where latency, transaction capacity, or data confidentiality are important. In this thesis we focus on providing solutions on two of the most pressing problems blockchain technology currently faces: scalability and data confidentiality. To address the scalability issue, we present OMNILEDGER, a novel scale-out distributed ledger that preserves long-term security under permissionless operation. It ensures security and correctness by using a bias-resistant public-randomness protocol for choosing large, statistically representative shards that process transactions, and by introducing an efficient cross-shard commit protocol that atomically handles transactions affecting multiple shards. To enable secure sharing of confidential data we present CALYPSO, the first fully decentralized, auditable access-control framework for secure blockchain-based data sharing which builds upon two abstractions. First, on-chain secrets enable collective management of (verifiably shared) secrets under a Byzantine adversary where an access-control blockchain enforces user-specific access rules and a secret-management cothority administers encrypted data. Second, skipchain-based identity and access management enables efficient administration of dynamic, sovereign identities and access policies and, in particular, permits clients to maintain long-term relationships with respect to evolving user identities thanks to the trust-delegating forward links of skipchains. In order to build OMNILEDGER and CALYPSO, we first build a set of tools for efficient decentralization, which are presented in Part II of this dissertation. These tools can be used in decentralized and distributed systems to achieve (1) scalable consensus (BYZCOIN), (2) bias- resistant distributed randomness creations (RANDHOUND), and (3) relationship-keeping between independently updating communication endpoints (SKIPCHAINIAC). Although we use this tools in the scope off this thesis, they can be (and already have been) used in a far wider scope.}, author = {Kokoris Kogias, Eleftherios}, pages = {244}, publisher = {École Polytechnique Fédérale de Lausanne}, title = {{Secure, confidential blockchains providing high throughput and low latency}}, doi = {10.5075/epfl-thesis-7101}, year = {2019}, } @phdthesis{6957, abstract = {In many shear flows like pipe flow, plane Couette flow, plane Poiseuille flow, etc. turbulence emerges subcritically. Here, when subjected to strong enough perturbations, the flow becomes turbulent in spite of the laminar base flow being linearly stable. The nature of this instability has puzzled the scientific community for decades. At onset, turbulence appears in localized patches and flows are spatio-temporally intermittent. In pipe flow the localized turbulent structures are referred to as puffs and in planar flows like plane Couette and channel flow, patches arise in the form of localized oblique bands. In this thesis, we study the onset of turbulence in channel flow in direct numerical simulations from a dynamical system theory perspective, as well as by performing experiments in a large aspect ratio channel. The aim of the experimental work is to determine the critical Reynolds number where turbulence first becomes sustained. Recently, the onset of turbulence has been described in analogy to absorbing state phase transition (i.e. directed percolation). In particular, it has been shown that the critical point can be estimated from the competition between spreading and decay processes. Here, by performing experiments, we identify the mechanisms underlying turbulence proliferation in channel flow and find the critical Reynolds number, above which turbulence becomes sustained. Above the critical point, the continuous growth at the tip of the stripes outweighs the stochastic shedding of turbulent patches at the tail and the stripes expand. For growing stripes, the probability to decay decreases while the probability of stripe splitting increases. Consequently, and unlike for the puffs in pipe flow, neither of these two processes is time-independent i.e. memoryless. Coupling between stripe expansion and creation of new stripes via splitting leads to a significantly lower critical point ($Re_c=670+/-10$) than most earlier studies suggest. While the above approach sheds light on how turbulence first becomes sustained, it provides no insight into the origin of the stripes themselves. In the numerical part of the thesis we investigate how turbulent stripes form from invariant solutions of the Navier-Stokes equations. The origin of these turbulent stripes can be identified by applying concepts from the dynamical system theory. In doing so, we identify the exact coherent structures underlying stripes and their bifurcations and how they give rise to the turbulent attractor in phase space. We first report a family of localized nonlinear traveling wave solutions of the Navier-Stokes equations in channel flow. These solutions show structural similarities with turbulent stripes in experiments like obliqueness, quasi-streamwise streaks and vortices, etc. A parametric study of these traveling wave solution is performed, with parameters like Reynolds number, stripe tilt angle and domain size, including the stability of the solutions. These solutions emerge through saddle-node bifurcations and form a phase space skeleton for the turbulent stripes observed in the experiments. The lower branches of these TW solutions at different tilt angles undergo Hopf bifurcation and new solutions branches of relative periodic orbits emerge. These RPO solutions do not belong to the same family and therefore the routes to chaos for different angles are different. In shear flows, turbulence at onset is transient in nature. Consequently,turbulence can not be tracked to lower Reynolds numbers, where the dynamics may simplify. Before this happens, turbulence becomes short-lived and laminarizes. In the last part of the thesis, we show that using numerical simulations we can continue turbulent stripes in channel flow past the 'relaminarization barrier' all the way to their origin. Here, turbulent stripe dynamics simplifies and the fluctuations are no longer stochastic and the stripe settles down to a relative periodic orbit. This relative periodic orbit originates from the aforementioned traveling wave solutions. Starting from the relative periodic orbit, a small increase in speed i.e. Reynolds number gives rise to chaos and the attractor dimension sharply increases in contrast to the classical transition scenario where the instabilities affect the flow globally and give rise to much more gradual route to turbulence.}, author = {Paranjape, Chaitanya S}, issn = {2663-337X}, keywords = {Instabilities, Turbulence, Nonlinear dynamics}, pages = {138}, publisher = {Institute of Science and Technology Austria}, title = {{Onset of turbulence in plane Poiseuille flow}}, doi = {10.15479/AT:ISTA:6957}, year = {2019}, } @phdthesis{7186, abstract = {Tissue morphogenesis in developmental or physiological processes is regulated by molecular and mechanical signals. While the molecular signaling cascades are increasingly well described, the mechanical signals affecting tissue shape changes have only recently been studied in greater detail. To gain more insight into the mechanochemical and biophysical basis of an epithelial spreading process (epiboly) in early zebrafish development, we studied cell-cell junction formation and actomyosin network dynamics at the boundary between surface layer epithelial cells (EVL) and the yolk syncytial layer (YSL). During zebrafish epiboly, the cell mass sitting on top of the yolk cell spreads to engulf the yolk cell by the end of gastrulation. It has been previously shown that an actomyosin ring residing within the YSL pulls on the EVL tissue through a cable-constriction and a flow-friction motor, thereby dragging the tissue vegetal wards. Pulling forces are likely transmitted from the YSL actomyosin ring to EVL cells; however, the nature and formation of the junctional structure mediating this process has not been well described so far. Therefore, our main aim was to determine the nature, dynamics and potential function of the EVL-YSL junction during this epithelial tissue spreading. Specifically, we show that the EVL-YSL junction is a mechanosensitive structure, predominantly made of tight junction (TJ) proteins. The process of TJ mechanosensation depends on the retrograde flow of non-junctional, phase-separated Zonula Occludens-1 (ZO-1) protein clusters towards the EVL-YSL boundary. Interestingly, we could demonstrate that ZO-1 is present in a non-junctional pool on the surface of the yolk cell, and ZO-1 undergoes a phase separation process that likely renders the protein responsive to flows. These flows are directed towards the junction and mediate proper tension-dependent recruitment of ZO-1. Upon reaching the EVL-YSL junction ZO-1 gets incorporated into the junctional pool mediated through its direct actin-binding domain. When the non-junctional pool and/or ZO-1 direct actin binding is absent, TJs fail in their proper mechanosensitive responses resulting in slower tissue spreading. We could further demonstrate that depletion of ZO proteins within the YSL results in diminished actomyosin ring formation. This suggests that a mechanochemical feedback loop is at work during zebrafish epiboly: ZO proteins help in proper actomyosin ring formation and actomyosin contractility and flows positively influence ZO-1 junctional recruitment. Finally, such a mesoscale polarization process mediated through the flow of phase-separated protein clusters might have implications for other processes such as immunological synapse formation, C. elegans zygote polarization and wound healing.}, author = {Schwayer, Cornelia}, issn = {2663-337X}, pages = {107}, publisher = {Institute of Science and Technology Austria}, title = {{Mechanosensation of tight junctions depends on ZO-1 phase separation and flow}}, doi = {10.15479/AT:ISTA:7186}, year = {2019}, } @phdthesis{6681, abstract = {The first part of the thesis considers the computational aspects of the homotopy groups πd(X) of a topological space X. It is well known that there is no algorithm to decide whether the fundamental group π1(X) of a given finite simplicial complex X is trivial. On the other hand, there are several algorithms that, given a finite simplicial complex X that is simply connected (i.e., with π1(X) trivial), compute the higher homotopy group πd(X) for any given d ≥ 2. However, these algorithms come with a caveat: They compute the isomorphism type of πd(X), d ≥ 2 as an abstract finitely generated abelian group given by generators and relations, but they work with very implicit representations of the elements of πd(X). We present an algorithm that, given a simply connected space X, computes πd(X) and represents its elements as simplicial maps from suitable triangulations of the d-sphere Sd to X. For fixed d, the algorithm runs in time exponential in size(X), the number of simplices of X. Moreover, we prove that this is optimal: For every fixed d ≥ 2, we construct a family of simply connected spaces X such that for any simplicial map representing a generator of πd(X), the size of the triangulation of S d on which the map is defined, is exponential in size(X). In the second part of the thesis, we prove that the following question is algorithmically undecidable for d < ⌊3(k+1)/2⌋, k ≥ 5 and (k, d) ̸= (5, 7), which covers essentially everything outside the meta-stable range: Given a finite simplicial complex K of dimension k, decide whether there exists a piecewise-linear (i.e., linear on an arbitrarily fine subdivision of K) embedding f : K ↪→ Rd of K into a d-dimensional Euclidean space.}, author = {Zhechev, Stephan Y}, issn = {2663-337X}, pages = {104}, publisher = {Institute of Science and Technology Austria}, title = {{Algorithmic aspects of homotopy theory and embeddability}}, doi = {10.15479/AT:ISTA:6681}, year = {2019}, } @phdthesis{6894, abstract = {Hybrid automata combine finite automata and dynamical systems, and model the interaction of digital with physical systems. Formal analysis that can guarantee the safety of all behaviors or rigorously witness failures, while unsolvable in general, has been tackled algorithmically using, e.g., abstraction, bounded model-checking, assisted theorem proving. Nevertheless, very few methods have addressed the time-unbounded reachability analysis of hybrid automata and, for current sound and automatic tools, scalability remains critical. We develop methods for the polyhedral abstraction of hybrid automata, which construct coarse overapproximations and tightens them incrementally, in a CEGAR fashion. We use template polyhedra, i.e., polyhedra whose facets are normal to a given set of directions. While, previously, directions were given by the user, we introduce (1) the first method for computing template directions from spurious counterexamples, so as to generalize and eliminate them. The method applies naturally to convex hybrid automata, i.e., hybrid automata with (possibly non-linear) convex constraints on derivatives only, while for linear ODE requires further abstraction. Specifically, we introduce (2) the conic abstractions, which, partitioning the state space into appropriate (possibly non-uniform) cones, divide curvy trajectories into relatively straight sections, suitable for polyhedral abstractions. Finally, we introduce (3) space-time interpolation, which, combining interval arithmetic and template refinement, computes appropriate (possibly non-uniform) time partitioning and template directions along spurious trajectories, so as to eliminate them. We obtain sound and automatic methods for the reachability analysis over dense and unbounded time of convex hybrid automata and hybrid automata with linear ODE. We build prototype tools and compare—favorably—our methods against the respective state-of-the-art tools, on several benchmarks.}, author = {Giacobbe, Mirco}, issn = {2663-337X}, pages = {132}, publisher = {Institute of Science and Technology Austria}, title = {{Automatic time-unbounded reachability analysis of hybrid systems}}, doi = {10.15479/AT:ISTA:6894}, year = {2019}, } @phdthesis{7172, abstract = {The development and growth of Arabidopsis thaliana is regulated by a combination of genetic programing and also by the environmental influences. An important role in these processes play the phytohormones and among them, auxin is crucial as it controls many important functions. It is transported through the whole plant body by creating local and temporal concentration maxima and minima, which have an impact on the cell status, tissue and organ identity. Auxin has the property to undergo a directional and finely regulated cell-to-cell transport, which is enabled by the transport proteins, localized on the plasma membrane. An important role in this process have the PIN auxin efflux proteins, which have an asymmetric/polar subcellular localization and determine the directionality of the auxin transport. During the last years, there were significant advances in understanding how the trafficking molecular machineries function, including studies on molecular interactions, function, subcellular localization and intracellular distribution. However, there is still a lack of detailed characterization on the steps of endocytosis, exocytosis, endocytic recycling and degradation. Due to this fact, I focused on the identification of novel trafficking factors and better characterization of the intracellular trafficking pathways. My PhD thesis consists of an introductory chapter, three experimental chapters, a chapter containing general discussion, conclusions and perspectives and also an appendix chapter with published collaborative papers. The first chapter is separated in two different parts: I start by a general introduction to auxin biology and then I introduce the trafficking pathways in the model plant Arabidopsis thaliana. Then, I explain also the phosphorylation-signals for polar targeting and also the roles of the phytohormone strigolactone. The second chapter includes the characterization of bar1/sacsin mutant, which was identified in a forward genetic screen for novel trafficking components in Arabidopsis thaliana, where by the implementation of an EMS-treated pPIN1::PIN1-GFP marker line and by using the established inhibitor of ARF-GEFs, Brefeldin A (BFA) as a tool to study trafficking processes, we identified a novel factor, which is mediating the adaptation of the plant cell to ARF-GEF inhibition. The mutation is in a previously uncharacterized gene, encoding a very big protein that we, based on its homologies, called SACSIN with domains suggesting roles as a molecular chaperon or as a component of the ubiquitin-proteasome system. Our physiology and imaging studies revealed that SACSIN is a crucial plant cell component of the adaptation to the ARF-GEF inhibition. The third chapter includes six subchapters, where I focus on the role of the phytohormone strigolactone, which interferes with auxin feedback on PIN internalization. Strigolactone moderates the polar auxin transport by increasing the internalization of the PIN auxin efflux carriers, which reduces the canalization related growth responses. In addition, I also studied the role of phosphorylation in the strigolactone regulation of auxin feedback on PIN internalization. In this chapter I also present my results on the MAX2-dependence of strigolactone-mediated root growth inhibition and I also share my results on the auxin metabolomics profiling after application of GR24. In the fourth chapter I studied the effect of two small molecules ES-9 and ES9-17, which were identified from a collection of small molecules with the property to impair the clathrin-mediated endocytosis. In the fifth chapter, I discuss all my observations and experimental findings and suggest alternative hypothesis to interpret my results. In the appendix there are three collaborative published projects. In the first, I participated in the characterization of the role of ES9 as a small molecule, which is inhibitor of clathrin- mediated endocytosis in different model organisms. In the second paper, I contributed to the characterization of another small molecule ES9-17, which is a non-protonophoric analog of ES9 and also impairs the clathrin-mediated endocytosis not only in plant cells, but also in mammalian HeLa cells. Last but not least, I also attach another paper, where I tried to establish the grafting method as a technique in our lab to study canalization related processes.}, author = {Vasileva, Mina K}, issn = {2663-337X}, pages = {192}, publisher = {Institute of Science and Technology Austria}, title = {{Molecular mechanisms of endomembrane trafficking in Arabidopsis thaliana}}, doi = {10.15479/AT:ISTA:7172}, year = {2019}, } @phdthesis{6473, abstract = {Single cells are constantly interacting with their environment and each other, more importantly, the accurate perception of environmental cues is crucial for growth, survival, and reproduction. This communication between cells and their environment can be formalized in mathematical terms and be quantified as the information flow between them, as prescribed by information theory. The recent availability of real–time dynamical patterns of signaling molecules in single cells has allowed us to identify encoding about the identity of the environment in the time–series. However, efficient estimation of the information transmitted by these signals has been a data–analysis challenge due to the high dimensionality of the trajectories and the limited number of samples. In the first part of this thesis, we develop and evaluate decoding–based estimation methods to lower bound the mutual information and derive model–based precise information estimates for biological reaction networks governed by the chemical master equation. This is followed by applying the decoding-based methods to study the intracellular representation of extracellular changes in budding yeast, by observing the transient dynamics of nuclear translocation of 10 transcription factors in response to 3 stress conditions. Additionally, we apply these estimators to previously published data on ERK and Ca2+ signaling and yeast stress response. We argue that this single cell decoding-based measure of information provides an unbiased, quantitative and interpretable measure for the fidelity of biological signaling processes. Finally, in the last section, we deal with gene regulation which is primarily controlled by transcription factors (TFs) that bind to the DNA to activate gene expression. The possibility that non-cognate TFs activate transcription diminishes the accuracy of regulation with potentially disastrous effects for the cell. This ’crosstalk’ acts as a previously unexplored source of noise in biochemical networks and puts a strong constraint on their performance. To mitigate erroneous initiation we propose an out of equilibrium scheme that implements kinetic proofreading. We show that such architectures are favored over their equilibrium counterparts for complex organisms despite introducing noise in gene expression. }, author = {Cepeda Humerez, Sarah A}, issn = {2663-337X}, keywords = {Information estimation, Time-series, data analysis}, pages = {135}, publisher = {Institute of Science and Technology Austria}, title = {{Estimating information flow in single cells}}, doi = {10.15479/AT:ISTA:6473}, year = {2019}, } @phdthesis{6071, abstract = {Transcription factors, by binding to specific sequences on the DNA, control the precise spatio-temporal expression of genes inside a cell. However, this specificity is limited, leading to frequent incorrect binding of transcription factors that might have deleterious consequences on the cell. By constructing a biophysical model of TF-DNA binding in the context of gene regulation, I will first explore how regulatory constraints can strongly shape the distribution of a population in sequence space. Then, by directly linking this to a picture of multiple types of transcription factors performing their functions simultaneously inside the cell, I will explore the extent of regulatory crosstalk -- incorrect binding interactions between transcription factors and binding sites that lead to erroneous regulatory states -- and understand the constraints this places on the design of regulatory systems. I will then develop a generic theoretical framework to investigate the coevolution of multiple transcription factors and multiple binding sites, in the context of a gene regulatory network that performs a certain function. As a particular tractable version of this problem, I will consider the evolution of two transcription factors when they transmit upstream signals to downstream target genes. Specifically, I will describe the evolutionary steady states and the evolutionary pathways involved, along with their timescales, of a system that initially undergoes a transcription factor duplication event. To connect this important theoretical model to the prominent biological event of transcription factor duplication giving rise to paralogous families, I will then describe a bioinformatics analysis of C2H2 Zn-finger transcription factors, a major family in humans, and focus on the patterns of evolution that paralogs have undergone in their various protein domains in the recent past. }, author = {Prizak, Roshan}, issn = {2663-337X}, pages = {189}, publisher = {Institute of Science and Technology Austria}, title = {{Coevolution of transcription factors and their binding sites in sequence space}}, doi = {10.15479/at:ista:th6071}, year = {2019}, } @phdthesis{6179, abstract = {In the first part of this thesis we consider large random matrices with arbitrary expectation and a general slowly decaying correlation among its entries. We prove universality of the local eigenvalue statistics and optimal local laws for the resolvent in the bulk and edge regime. The main novel tool is a systematic diagrammatic control of a multivariate cumulant expansion. In the second part we consider Wigner-type matrices and show that at any cusp singularity of the limiting eigenvalue distribution the local eigenvalue statistics are uni- versal and form a Pearcey process. Since the density of states typically exhibits only square root or cubic root cusp singularities, our work complements previous results on the bulk and edge universality and it thus completes the resolution of the Wigner- Dyson-Mehta universality conjecture for the last remaining universality type. Our analysis holds not only for exact cusps, but approximate cusps as well, where an ex- tended Pearcey process emerges. As a main technical ingredient we prove an optimal local law at the cusp, and extend the fast relaxation to equilibrium of the Dyson Brow- nian motion to the cusp regime. In the third and final part we explore the entrywise linear statistics of Wigner ma- trices and identify the fluctuations for a large class of test functions with little regularity. This enables us to study the rectangular Young diagram obtained from the interlacing eigenvalues of the random matrix and its minor, and we find that, despite having the same limit, the fluctuations differ from those of the algebraic Young tableaux equipped with the Plancharel measure.}, author = {Schröder, Dominik J}, issn = {2663-337X}, pages = {375}, publisher = {Institute of Science and Technology Austria}, title = {{From Dyson to Pearcey: Universal statistics in random matrix theory}}, doi = {10.15479/AT:ISTA:th6179}, year = {2019}, } @phdthesis{6392, abstract = {The regulation of gene expression is one of the most fundamental processes in living systems. In recent years, thanks to advances in sequencing technology and automation, it has become possible to study gene expression quantitatively, genome-wide and in high-throughput. This leads to the possibility of exploring changes in gene expression in the context of many external perturbations and their combinations, and thus of characterising the basic principles governing gene regulation. In this thesis, I present quantitative experimental approaches to studying transcriptional and protein level changes in response to combinatorial drug treatment, as well as a theoretical data-driven approach to analysing thermodynamic principles guiding transcription of protein coding genes. In the first part of this work, I present a novel methodological framework for quantifying gene expression changes in drug combinations, termed isogrowth profiling. External perturbations through small molecule drugs influence the growth rate of the cell, leading to wide-ranging changes in cellular physiology and gene expression. This confounds the gene expression changes specifically elicited by the particular drug. Combinatorial perturbations, owing to the increased stress they exert, influence the growth rate even more strongly and hence suffer the convolution problem to a greater extent when measuring gene expression changes. Isogrowth profiling is a way to experimentally abstract non-specific, growth rate related changes, by performing the measurement using varying ratios of two drugs at such concentrations that the overall inhibition rate is constant. Using a robotic setup for automated high-throughput re-dilution culture of Saccharomyces cerevisiae, the budding yeast, I investigate all pairwise interactions of four small molecule drugs through sequencing RNA along a growth isobole. Through principal component analysis, I demonstrate here that isogrowth profiling can uncover drug-specific as well as drug-interaction-specific gene expression changes. I show that drug-interaction-specific gene expression changes can be used for prediction of higher-order drug interactions. I propose a simplified generalised framework of isogrowth profiling, with few measurements needed for each drug pair, enabling the broad application of isogrowth profiling to high-throughput screening of inhibitors of cellular growth and beyond. Such high-throughput screenings of gene expression changes specific to pairwise drug interactions will be instrumental for predicting the higher-order interactions of the drugs. In the second part of this work, I extend isogrowth profiling to single-cell measurements of gene expression, characterising population heterogeneity in the budding yeast in response to combinatorial drug perturbation while controlling for non-specific growth rate effects. Through flow cytometry of strains with protein products fused to green fluorescent protein, I discover multiple proteins with bi-modally distributed expression levels in the population in response to drug treatment. I characterize more closely the effect of an ionic stressor, lithium chloride, and find that it inhibits the splicing of mRNA, most strongly affecting ribosomal protein transcripts and leading to a bi-stable behaviour of a small ribosomal subunit protein Rps22B. Time-lapse microscopy of a microfluidic culture system revealed that the induced Rps22B heterogeneity leads to preferential survival of Rps22B-low cells after long starvation, but to preferential proliferation of Rps22B-high cells after short starvation. Overall, this suggests that yeast cells might use splicing of ribosomal genes for bet-hedging in fluctuating environments. I give specific examples of how further exploration of cellular heterogeneity in yeast in response to external perturbation has the potential to reveal yet-undiscovered gene regulation circuitry. In the last part of this thesis, a re-analysis of a published sequencing dataset of nascent elongating transcripts is used to characterise the thermodynamic constraints for RNA polymerase II (RNAP) elongation. Population-level data on RNAP position throughout the transcribed genome with single nucleotide resolution are used to infer the sequence specific thermodynamic determinants of RNAP pausing and backtracking. This analysis reveals that the basepairing strength of the eight nucleotide-long RNA:DNA duplex relative to the basepairing strength of the same sequence when in DNA:DNA duplex, and the change in this quantity during RNA polymerase movement, is the key determinant of RNAP pausing. This is true for RNAP pausing while elongating, but also of RNAP pausing while backtracking and of the backtracking length. The quantitative dependence of RNAP pausing on basepairing energetics is used to infer the increase in pausing due to transcriptional mismatches, leading to a hypothesis that pervasive RNA polymerase II pausing is due to basepairing energetics, as an evolutionary cost for increased RNA polymerase II fidelity. This work advances our understanding of the general principles governing gene expression, with the goal of making computational predictions of single-cell gene expression responses to combinatorial perturbations based on the individual perturbations possible. This ability would substantially facilitate the design of drug combination treatments and, in the long term, lead to our increased ability to more generally design targeted manipulations to any biological system. }, author = {Lukacisin, Martin}, isbn = {978-3-99078-001-5}, issn = {2663-337X}, pages = {103}, publisher = {IST Austria}, title = {{Quantitative investigation of gene expression principles through combinatorial drug perturbation and theory}}, doi = {10.15479/AT:ISTA:6392}, year = {2019}, } @phdthesis{6435, abstract = {Social insect colonies tend to have numerous members which function together like a single organism in such harmony that the term ``super-organism'' is often used. In this analogy the reproductive caste is analogous to the primordial germ cells of a metazoan, while the sterile worker caste corresponds to somatic cells. The worker castes, like tissues, are in charge of all functions of a living being, besides reproduction. The establishment of new super-organismal units (i.e. new colonies) is accomplished by the co-dependent castes. The term oftentimes goes beyond a metaphor. We invoke it when we speak about the metabolic rate, thermoregulation, nutrient regulation and gas exchange of a social insect colony. Furthermore, we assert that the super-organism has an immune system, and benefits from ``social immunity''. Social immunity was first summoned by evolutionary biologists to resolve the apparent discrepancy between the expected high frequency of disease outbreak amongst numerous, closely related tightly-interacting hosts, living in stable and microbially-rich environments, against the exceptionally scarce epidemic accounts in natural populations. Social immunity comprises a multi-layer assembly of behaviours which have evolved to effectively keep the pathogenic enemies of a colony at bay. The field of social immunity has drawn interest, as it becomes increasingly urgent to stop the collapse of pollinator species and curb the growth of invasive pests. In the past decade, several mechanisms of social immune responses have been dissected, but many more questions remain open. I present my work in two experimental chapters. In the first, I use invasive garden ants (*Lasius neglectus*) to study how pathogen load and its distribution among nestmates affect the grooming response of the group. Any given group of ants will carry out the same total grooming work, but will direct their grooming effort towards individuals carrying a relatively higher spore load. Contrary to expectation, the highest risk of transmission does not stem from grooming highly contaminated ants, but instead, we suggest that the grooming response likely minimizes spore loss to the environment, reducing contamination from inadvertent pickup from the substrate. The second is a comparative developmental approach. I follow black garden ant queens (*Lasius niger*) and their colonies from mating flight, through hibernation for a year. Colonies which grow fast from the start, have a lower chance of survival through hibernation, and those which survive grow at a lower pace later. This is true for colonies of naive and challenged queens. Early pathogen exposure of the queens changes colony dynamics in an unexpected way: colonies from exposed queens are more likely to grow slowly and recover in numbers only after they survive hibernation. In addition to the two experimental chapters, this thesis includes a co-authored published review on organisational immunity, where we enlist the experimental evidence and theoretical framework on which this hypothesis is built, identify the caveats and underline how the field is ripe to overcome them. In a final chapter, I describe my part in two collaborative efforts, one to develop an image-based tracker, and the second to develop a classifier for ant behaviour.}, author = {Casillas Perez, Barbara E}, issn = {2663-337X}, keywords = {Social Immunity, Sanitary care, Social Insects, Organisational Immunity, Colony development, Multi-target tracking}, pages = {183}, publisher = {Institute of Science and Technology Austria}, title = {{Collective defenses of garden ants against a fungal pathogen}}, doi = {10.15479/AT:ISTA:6435}, year = {2019}, } @phdthesis{6269, abstract = {Clathrin-Mediated Endocytosis (CME) is an aspect of cellular trafficking that is constantly regulated for mediating developmental and physiological responses. The main aim of my thesis is to decipher the basic mechanisms of CME and post-endocytic trafficking in the whole multicellular organ systems of Arabidopsis. The first chapter of my thesis describes the search for new components involved in CME. Tandem affinity purification was conducted using CLC and its interacting partners were identified. Amongst the identified proteins were the Auxilin-likes1 and 2 (Axl1/2), putative uncoating factors, for which we made a full functional analysis. Over-expression of Axl1/2 causes extreme modifications in the dynamics of the machinery proteins and inhibition of endocytosis altogether. However the loss of function of the axl1/2 did not present any cellular or physiological phenotype, meaning Auxilin-likes do not form the major uncoating machinery. The second chapter of my thesis describes the establishment/utilisation of techniques to capture the dynamicity and the complexity of CME and post-endocytic trafficking. We have studied the development of endocytic pits at the PM – specifically, the mode of membrane remodeling during pit development and the role of actin in it, given plant cells possess high turgor pressure. Utilizing the improved z-resolution of TIRF and VAEM techniques, we captured the time-lapse of the endocytic events at the plasma membrane; and using particle detection software, we quantitatively analysed all the endocytic trajectories in an unbiased way to obtain the endocytic rate of the system. This together with the direct analysis of cargo internalisation from the PM provided an estimate on the endocytic potential of the cell. We also developed a methodology for ultrastructural analysis of different populations of Clathrin-Coated Structures (CCSs) in both PM and endomembranes in unroofed protoplasts. Structural analysis, together with the intensity profile of CCSs at the PM show that the mode of CCP development at the PM follows ‘Constant curvature model’; meaning that clathrin polymerisation energy is a major contributing factor of membrane remodeling. In addition, other analyses clearly show that actin is not required for membrane remodeling during invagination or any other step of CCP development, despite the prevalent high turgor pressure. However, actin is essential in orchestrating the post-endocytic trafficking of CCVs facilitating the EE formation. We also observed that the uncoating process post-endocytosis is not immediate; an alternative mechanism of uncoating – Sequential multi-step process – functions in the cell. Finally we also looked at one of the important physiological stimuli modulating the process – hormone, auxin. auxin has been known to influence CME before. We have made a detailed study on the concentration-time based effect of auxin on the machinery proteins, CCP development, and the specificity of cargoes endocytosed. To this end, we saw no general effect of auxin on CME at earlier time points. However, very low concentration of IAA, such as 50nM, accelerates endocytosis of specifically PIN2 through CME. Such a tight regulatory control with high specificity to PIN2 could be essential in modulating its polarity. }, author = {Narasimhan, Madhumitha}, issn = {2663-337X}, pages = {138}, publisher = {Institute of Science and Technology Austria}, title = {{Clathrin-Mediated endocytosis, post-endocytic trafficking and their regulatory controls in plants }}, doi = {10.15479/at:ista:th1075}, year = {2019}, } @phdthesis{6947, abstract = {Lymph nodes are es s ential organs of the immune s ys tem where adaptive immune responses originate, and consist of various leukocyte populations and a stromal backbone. Fibroblastic reticular cells (FRCs) are the main stromal cells and form a sponge-like extracellular matrix network, called conduits , which they thems elves enwrap and contract. Lymph, containing s oluble antigens , arrive in lymph nodes via afferent lymphatic vessels that connect to the s ubcaps ular s inus and conduit network. According to the current paradigm, the conduit network dis tributes afferent lymph through lymph nodes and thus provides acces s for immune cells to lymph-borne antigens. An elas tic caps ule s urrounds the organ and confines the immune cells and FRC network. Lymph nodes are completely packed with lymphocytes and lymphocyte numbers directly dictates the size of the organ. Although lymphocytes cons tantly enter and leave the lymph node, its s ize remains remarkedly s table under homeostatic conditions. It is only partly known how the cellularity and s ize of the lymph node is regulated and how the lymph node is able to swell in inflammation. The role of the FRC network in lymph node s welling and trans fer of fluids are inves tigated in this thes is. Furthermore, we s tudied what trafficking routes are us ed by cancer cells in lymph nodes to form distal metastases.We examined the role of a mechanical feedback in regulation of lymph node swelling. Using parallel plate compression and UV-las er cutting experiments we dis s ected the mechanical force dynamics of the whole lymph node, and individually for FRCs and the caps ule. Physical forces generated by packed lymphocytes directly affect the tens ion on the FRC network and capsule, which increases its resistance to swelling. This implies a feedback mechanism between tis s ue pres s ure and ability of lymphocytes to enter the organ. Following inflammation, the lymph node swells ∼10 fold in two weeks . Yet, what is the role for tens ion on the FRC network and caps ule, and how are lymphocytes able to enter in conditions that resist swelling remain open ques tions . We s how that tens ion on the FRC network is important to limit the swelling rate of the organ so that the FRC network can grow in a coordinated fashion. This is illustrated by interfering with FRC contractility, which leads to faster swelling rates and a dis organized FRC network in the inflamed lymph node. Growth of the FRC network in turn is expected to releas e tens ion on thes e s tructures and lowers the res is tance to swelling, thereby allowing more lymphocytes to enter the organ and drive more swelling. Halt of swelling coincides with a thickening of the caps ule, which forms a thick res is tant band around the organ and lowers tens ion on the FRC network to form a new force equilibrium.The FRC and conduit network are further believed to be a privileged s ite of s oluble information within the lymph node, although many details remain uns olved. We s how by 3D ultra-recons truction that FRCs and antigen pres enting cells cover the s urface of conduit s ys tem for more than 99% and we dis cus s the implications for s oluble information exchangeat the conduit level.Finally, there is an ongoing debate in the cancer field whether and how cancer cells in lymph nodes s eed dis tal metas tas es . We s how that cancer cells infus ed into the lymph node can utilize trafficking routes of immune cells and rapidly migrate to blood vessels. Once in the blood circulation, these cells are able to form metastases in distal tissues.}, author = {Assen, Frank P}, issn = {2663-337X}, pages = {142}, publisher = {Institute of Science and Technology Austria}, title = {{Lymph node mechanics: Deciphering the interplay between stroma contractility, morphology and lymphocyte trafficking}}, doi = {10.15479/AT:ISTA:6947}, year = {2019}, } @phdthesis{6849, abstract = {Brain function is mediated by complex dynamical interactions between excitatory and inhibitory cell types. The Cholecystokinin-expressing inhibitory cells (CCK-interneurons) are one of the least studied types, despite being suspected to play important roles in cognitive processes. We studied the network effects of optogenetic silencing of CCK-interneurons in the CA1 hippocampal area during exploration and sleep states. The cell firing pattern in response to light pulses allowed us to classify the recorded neurons in 5 classes, including disinhibited and non-responsive pyramidal cell and interneurons, and the inhibited interneurons corresponding to the CCK group. The light application, which inhibited the activity of CCK interneurons triggered wider changes in the firing dynamics of cells. We observed rate changes (i.e. remapping) of pyramidal cells during the exploration session in which the light was applied relative to the previous control session that was not restricted neither in time nor space to the light delivery. Also, the disinhibited pyramidal cells had higher increase in bursting than in single spike firing rate as a result of CCK silencing. In addition, the firing activity patterns during exploratory periods were more weakly reactivated in sleep for those periods in which CCK-interneuron were silenced than in the unaffected periods. Furthermore, light pulses during sleep disrupted the reactivation of recent waking patterns. Hence, silencing CCK neurons during exploration suppressed the reactivation of waking firing patterns in sleep and CCK interneuron activity was also required during sleep for the normal reactivation of waking patterns. These findings demonstrate the involvement of CCK cells in reactivation-related memory consolidation. An important part of our analysis was to test the relationship of the identified CCKinterneurons to brain oscillations. Our findings showed that these cells exhibited different oscillatory behaviour during anaesthesia and natural waking and sleep conditions. We showed that: 1) Contrary to the past studies performed under anaesthesia, the identified CCKinterneurons fired on the descending portion of the theta phase in waking exploration. 2) CCKinterneuron preferred phases around the trough of gamma oscillations. 3) Contrary to anaesthesia conditions, the average firing rate of the CCK-interneurons increased around the peak activity of the sharp-wave ripple (SWR) events in natural sleep, which is congruent with new reports about their functional connectivity. We also found that light driven CCK-interneuron silencing altered the dynamics on the CA1 network oscillatory activity: 1) Pyramidal cells negatively shifted their preferred theta phases when the light was applied, while interneurons responses were less consistent. 2) As a population, pyramidal cells negatively shifted their preferred activity during gamma oscillations, albeit we did not find gamma modulation differences related to the light application when pyramidal cells were subdivided into the disinhibited and unaffected groups. 3) During the peak of SWR events, all but the CCK-interneurons had a reduction in their relative firing rate change during the light application as compared to the change observed at SWR initiation. Finally, regarding to the place field activity of the recorded pyramidal neurons, we showed that the disinhibited pyramidal cells had reduced place field similarity, coherence and spatial information, but only during the light application. The mechanisms behind such observed behaviours might involve eCB signalling and plastic changes in CCK-interneuron synapses. In conclusion, the observed changes related to the light-mediated silencing of CCKinterneurons have unravelled characteristics of this interneuron subpopulation that might change the understanding not only of their particular network interactions, but also of the current theories about the emergence of certain cognitive processes such as place coding needed for navigation or hippocampus-dependent memory consolidation. }, author = {Rangel Guerrero, Dámaris K}, isbn = {9783990780039}, issn = {2663-337X}, pages = {97}, publisher = {Institute of Science and Technology Austria}, title = {{The role of CCK-interneurons in regulating hippocampal network dynamics}}, doi = {10.15479/AT:ISTA:6849}, year = {2019}, } @phdthesis{7132, abstract = {A major challenge in neuroscience research is to dissect the circuits that orchestrate behavior in health and disease. Proteins from a wide range of non-mammalian species, such as microbial opsins, have been successfully transplanted to specific neuronal targets to override their natural communication patterns. The goal of our work is to manipulate synaptic communication in a manner that closely incorporates the functional intricacies of synapses by preserving temporal encoding (i.e. the firing pattern of the presynaptic neuron) and connectivity (i.e. target specific synapses rather than specific neurons). Our strategy to achieve this goal builds on the use of non-mammalian transplants to create a synthetic synapse. The mode of modulation comes from pre-synaptic uptake of a synthetic neurotransmitter (SN) into synaptic vesicles by means of a genetically targeted transporter selective for the SN. Upon natural vesicular release, exposure of the SN to the synaptic cleft will modify the post-synaptic potential through an orthogonal ligand gated ion channel. To achieve this goal we have functionally characterized a mixed cationic methionine-gated ion channel from Arabidopsis thaliana, designed a method to functionally characterize a synthetic transporter in isolated synaptic vesicles without the need for transgenic animals, identified and extracted multiple prokaryotic uptake systems that are substrate specific for methionine (Met), and established a primary/cell line co-culture system that would allow future combinatorial testing of this orthogonal transmitter-transporter-channel trifecta. Synthetic synapses will provide a unique opportunity to manipulate synaptic communication while maintaining the electrophysiological integrity of the pre-synaptic cell. In this way, information may be preserved that was generated in upstream circuits and that could be essential for concerted function and information processing.}, author = {Mckenzie, Catherine}, issn = {2663-337X}, pages = {95}, publisher = {Institute of Science and Technology Austria}, title = {{Design and characterization of methods and biological components to realize synthetic neurotransmission}}, doi = {10.15479/at:ista:7132}, year = {2019}, } @phdthesis{6825, abstract = {The solving of complex tasks requires the functions of more than one brain area and their interaction. Whilst spatial navigation and memory is dependent on the hippocampus, flexible behavior relies on the medial prefrontal cortex (mPFC). To further examine the roles of the hippocampus and mPFC, we recorded their neural activity during a task that depends on both of these brain regions. With tetrodes, we recorded the extracellular activity of dorsal hippocampal CA1 (HPC) and mPFC neurons in Long-Evans rats performing a rule-switching task on the plus-maze. The plus-maze task had a spatial component since it required navigation along one of the two start arms and at the maze center a choice between one of the two goal arms. Which goal contained a reward depended on the rule currently in place. After an uncued rule change the animal had to abandon the old strategy and switch to the new rule, testing cognitive flexibility. Investigating the coordination of activity between the HPC and mPFC allows determination during which task stages their interaction is required. Additionally, comparing neural activity patterns in these two brain regions allows delineation of the specialized functions of the HPC and mPFC in this task. We analyzed neural activity in the HPC and mPFC in terms of oscillatory interactions, rule coding and replay. We found that theta coherence between the HPC and mPFC is increased at the center and goals of the maze, both when the rule was stable or has changed. Similar results were found for locking of HPC and mPFC neurons to HPC theta oscillations. However, no differences in HPC-mPFC theta coordination were observed between the spatially- and cue-guided rule. Phase locking of HPC and mPFC neurons to HPC gamma oscillations was not modulated by maze position or rule type. We found that the HPC coded for the two different rules with cofiring relationships between cell pairs. However, we could not find conclusive evidence for rule coding in the mPFC. Spatially-selective firing in the mPFC generalized between the two start and two goal arms. With Bayesian positional decoding, we found that the mPFC reactivated non-local positions during awake immobility periods. Replay of these non-local positions could represent entire behavioral trajectories resembling trajectory replay of the HPC. Furthermore, mPFC trajectory-replay at the goal positively correlated with rule-switching performance. Finally, HPC and mPFC trajectory replay occurred independently of each other. These results show that the mPFC can replay ordered patterns of activity during awake immobility, possibly underlying its role in flexible behavior. }, author = {Käfer, Karola}, issn = {2663-337X}, pages = {89}, publisher = {Institute of Science and Technology Austria}, title = {{The hippocampus and medial prefrontal cortex during flexible behavior}}, doi = {10.15479/AT:ISTA:6825}, year = {2019}, } @phdthesis{6546, abstract = {Invasive migration plays a crucial role not only during development and homeostasis but also in pathological states, such as tumor metastasis. Drosophila macrophage migration into the extended germband is an interesting system to study invasive migration. It carries similarities to immune cell transmigration and cancer cell invasion, therefore studying this process could also bring new understanding of invasion in higher organisms. In our work, we uncover a highly conserved member of the major facilitator family that plays a role in tissue invasion through regulation of glycosylation on a subgroup of proteins and/or by aiding the precise timing of DN-Cadherin downregulation. Aberrant display of the truncated core1 O-glycan T-antigen is a common feature of human cancer cells that correlates with metastasis. Here we show that T-antigen in Drosophila melanogaster macrophages is involved in their developmentally programmed tissue invasion. Higher macrophage T-antigen levels require an atypical major facilitator superfamily (MFS) member that we named Minerva which enables macrophage dissemination and invasion. We characterize for the first time the T and Tn glycoform O-glycoproteome of the Drosophila melanogaster embryo, and determine that Minerva increases the presence of T-antigen on proteins in pathways previously linked to cancer, most strongly on the sulfhydryl oxidase Qsox1 which we show is required for macrophage tissue entry. Minerva’s vertebrate ortholog, MFSD1, rescues the minerva mutant’s migration and T-antigen glycosylation defects. We thus identify a key conserved regulator that orchestrates O-glycosylation on a protein subset to activate a program governing migration steps important for both development and cancer metastasis. }, author = {Valosková, Katarina}, issn = {2663-337X}, pages = {141}, publisher = {Institute of Science and Technology Austria}, title = {{The role of a highly conserved major facilitator superfamily member in Drosophila embryonic macrophage migration}}, doi = {10.15479/AT:ISTA:6546}, year = {2019}, } @phdthesis{6363, abstract = {Distinguishing between similar experiences is achieved by the brain in a process called pattern separation. In the hippocampus, pattern separation reduces the interference of memories and increases the storage capacity by decorrelating similar inputs patterns of neuronal activity into non-overlapping output firing patterns. Winners-take-all (WTA) mechanism is a theoretical model for pattern separation in which a "winner" cell suppresses the activity of the neighboring neurons through feedback inhibition. However, if the network properties of the dentate gyrus support WTA as a biologically conceivable model remains unknown. Here, we showed that the connectivity rules of PV+interneurons and their synaptic properties are optimizedfor efficient pattern separation. We found using multiple whole-cell in vitrorecordings that PV+interneurons mainly connect to granule cells (GC) through lateral inhibition, a form of feedback inhibition in which a GC inhibits other GCs but not itself through the activation of PV+interneurons. Thus, lateral inhibition between GC–PV+interneurons was ~10 times more abundant than recurrent connections. Furthermore, the GC–PV+interneuron connectivity was more spatially confined but less abundant than PV+interneurons–GC connectivity, leading to an asymmetrical distribution of excitatory and inhibitory connectivity. Our network model of the dentate gyrus with incorporated real connectivity rules efficiently decorrelates neuronal activity patterns using WTA as the primary mechanism. This process relied on lateral inhibition, fast-signaling properties of PV+interneurons and the asymmetrical distribution of excitatory and inhibitory connectivity. Finally, we found that silencing the activity of PV+interneurons in vivoleads to acute deficits in discrimination between similar environments, suggesting that PV+interneuron networks are necessary for behavioral relevant computations. Our results demonstrate that PV+interneurons possess unique connectivity and fast signaling properties that confer to the dentate gyrus network properties that allow the emergence of pattern separation. Thus, our results contribute to the knowledge of how specific forms of network organization underlie sophisticated types of information processing. }, author = {Espinoza Martinez, Claudia }, isbn = {978-3-99078-000-8}, issn = {2663-337X}, pages = {140}, publisher = {Institute of Science and Technology Austria}, title = {{Parvalbumin+ interneurons enable efficient pattern separation in hippocampal microcircuits}}, doi = {10.15479/AT:ISTA:6363}, year = {2019}, } @phdthesis{6891, abstract = {While cells of mesenchymal or epithelial origin perform their effector functions in a purely anchorage dependent manner, cells derived from the hematopoietic lineage are not committed to operate only within a specific niche. Instead, these cells are able to function autonomously of the molecular composition in a broad range of tissue compartments. By this means, cells of the hematopoietic lineage retain the capacity to disseminate into connective tissue and recirculate between organs, building the foundation for essential processes such as tissue regeneration or immune surveillance. Cells of the immune system, specifically leukocytes, are extraordinarily good at performing this task. These cells are able to flexibly shift their mode of migration between an adhesion-mediated and an adhesion-independent manner, instantaneously accommodating for any changes in molecular composition of the external scaffold. The key component driving directed leukocyte migration is the chemokine receptor 7, which guides the cell along gradients of chemokine ligand. Therefore, the physical destination of migrating leukocytes is purely deterministic, i.e. given by global directional cues such as chemokine gradients. Nevertheless, these cells typically reside in three-dimensional scaffolds of inhomogeneous complexity, raising the question whether cells are able to locally discriminate between multiple optional migration routes. Current literature provides evidence that leukocytes, specifically dendritic cells, do indeed probe their surrounding by virtue of multiple explorative protrusions. However, it remains enigmatic how these cells decide which one is the more favorable route to follow and what are the key players involved in performing this task. Due to the heterogeneous environment of most tissues, and the vast adaptability of migrating leukocytes, at this time it is not clear to what extent leukocytes are able to optimize their migratory strategy by adapting their level of adhesiveness. And, given the fact that leukocyte migration is characterized by branched cell shapes in combination with high migration velocities, it is reasonable to assume that these cells require fine tuned shape maintenance mechanisms that tightly coordinate protrusion and adhesion dynamics in a spatiotemporal manner. Therefore, this study aimed to elucidate how rapidly migrating leukocytes opt for an ideal migratory path while maintaining a continuous cell shape and balancing adhesive forces to efficiently navigate through complex microenvironments. The results of this study unraveled a role for the microtubule cytoskeleton in promoting the decision making process during path finding and for the first time point towards a microtubule-mediated function in cell shape maintenance of highly ramified cells such as dendritic cells. Furthermore, we found that migrating low-adhesive leukocytes are able to instantaneously adapt to increased tensile load by engaging adhesion receptors. This response was only occurring tangential to the substrate while adhesive properties in the vertical direction were not increased. As leukocytes are primed for rapid migration velocities, these results demonstrate that leukocyte integrins are able to confer a high level of traction forces parallel to the cell membrane along the direction of migration without wasting energy in gluing the cell to the substrate. Thus, the data in the here presented thesis provide new insights into the pivotal role of cytoskeletal dynamics and the mechanisms of force transduction during leukocyte migration. Thereby the here presented results help to further define fundamental principles underlying leukocyte migration and open up potential therapeutic avenues of clinical relevance. }, author = {Kopf, Aglaja}, isbn = {978-3-99078-002-2}, issn = {2663-337X}, keywords = {cell biology, immunology, leukocyte, migration, microfluidics}, pages = {171}, publisher = {Institute of Science and Technology Austria}, title = {{The implication of cytoskeletal dynamics on leukocyte migration}}, doi = {10.15479/AT:ISTA:6891}, year = {2019}, } @phdthesis{6371, abstract = {Decades of studies have revealed the mechanisms of gene regulation in molecular detail. We make use of such well-described regulatory systems to explore how the molecular mechanisms of protein-protein and protein-DNA interactions shape the dynamics and evolution of gene regulation. i) We uncover how the biophysics of protein-DNA binding determines the potential of regulatory networks to evolve and adapt, which can be captured using a simple mathematical model. ii) The evolution of regulatory connections can lead to a significant amount of crosstalk between binding proteins. We explore the effect of crosstalk on gene expression from a target promoter, which seems to be modulated through binding competition at non-specific DNA sites. iii) We investigate how the very same biophysical characteristics as in i) can generate significant fitness costs for cells through global crosstalk, meaning non-specific DNA binding across the genomic background. iv) Binding competition between proteins at a target promoter is a prevailing regulatory feature due to the prevalence of co-regulation at bacterial promoters. However, the dynamics of these systems are not always straightforward to determine even if the molecular mechanisms of regulation are known. A detailed model of the biophysical interactions reveals that interference between the regulatory proteins can constitute a new, generic form of system memory that records the history of the input signals at the promoter. We demonstrate how the biophysics of protein-DNA binding can be harnessed to investigate the principles that shape and ultimately limit cellular gene regulation. These results provide a basis for studies of higher-level functionality, which arises from the underlying regulation. }, author = {Igler, Claudia}, issn = {2663-337X}, keywords = {gene regulation, biophysics, transcription factor binding, bacteria}, pages = {152}, publisher = {Institute of Science and Technology Austria}, title = {{On the nature of gene regulatory design - The biophysics of transcription factor binding shapes gene regulation}}, doi = {10.15479/AT:ISTA:6371}, year = {2019}, } @phdthesis{49, abstract = {Nowadays, quantum computation is receiving more and more attention as an alternative to the classical way of computing. For realizing a quantum computer, different devices are investigated as potential quantum bits. In this thesis, the focus is on Ge hut wires, which turned out to be promising candidates for implementing hole spin quantum bits. The advantages of Ge as a material system are the low hyperfine interaction for holes and the strong spin orbit coupling, as well as the compatibility with the highly developed CMOS processes in industry. In addition, Ge can also be isotopically purified which is expected to boost the spin coherence times. The strong spin orbit interaction for holes in Ge on the one hand enables the full electrical control of the quantum bit and on the other hand should allow short spin manipulation times. Starting with a bare Si wafer, this work covers the entire process reaching from growth over the fabrication and characterization of hut wire devices up to the demonstration of hole spin resonance. From experiments with single quantum dots, a large g-factor anisotropy between the in-plane and the out-of-plane direction was found. A comparison to a theoretical model unveiled the heavy-hole character of the lowest energy states. The second part of the thesis addresses double quantum dot devices, which were realized by adding two gate electrodes to a hut wire. In such devices, Pauli spin blockade was observed, which can serve as a read-out mechanism for spin quantum bits. Applying oscillating electric fields in spin blockade allowed the demonstration of continuous spin rotations and the extraction of a lower bound for the spin dephasing time. Despite the strong spin orbit coupling in Ge, the obtained value for the dephasing time is comparable to what has been recently reported for holes in Si. All in all, the presented results point out the high potential of Ge hut wires as a platform for long-lived, fast and fully electrically tunable hole spin quantum bits.}, author = {Watzinger, Hannes}, issn = {2663-337X}, pages = {77}, publisher = {Institute of Science and Technology Austria}, title = {{Ge hut wires - from growth to hole spin resonance}}, doi = {10.15479/AT:ISTA:th_1033}, year = {2018}, } @phdthesis{201, abstract = {We describe arrangements of three-dimensional spheres from a geometrical and topological point of view. Real data (fitting this setup) often consist of soft spheres which show certain degree of deformation while strongly packing against each other. In this context, we answer the following questions: If we model a soft packing of spheres by hard spheres that are allowed to overlap, can we measure the volume in the overlapped areas? Can we be more specific about the overlap volume, i.e. quantify how much volume is there covered exactly twice, three times, or k times? What would be a good optimization criteria that rule the arrangement of soft spheres while making a good use of the available space? Fixing a particular criterion, what would be the optimal sphere configuration? The first result of this thesis are short formulas for the computation of volumes covered by at least k of the balls. The formulas exploit information contained in the order-k Voronoi diagrams and its closely related Level-k complex. The used complexes lead to a natural generalization into poset diagrams, a theoretical formalism that contains the order-k and degree-k diagrams as special cases. In parallel, we define different criteria to determine what could be considered an optimal arrangement from a geometrical point of view. Fixing a criterion, we find optimal soft packing configurations in 2D and 3D where the ball centers lie on a lattice. As a last step, we use tools from computational topology on real physical data, to show the potentials of higher-order diagrams in the description of melting crystals. The results of the experiments leaves us with an open window to apply the theories developed in this thesis in real applications.}, author = {Iglesias Ham, Mabel}, issn = {2663-337X}, pages = {171}, publisher = {Institute of Science and Technology Austria}, title = {{Multiple covers with balls}}, doi = {10.15479/AT:ISTA:th_1026}, year = {2018}, } @phdthesis{68, abstract = {The most common assumption made in statistical learning theory is the assumption of the independent and identically distributed (i.i.d.) data. While being very convenient mathematically, it is often very clearly violated in practice. This disparity between the machine learning theory and applications underlies a growing demand in the development of algorithms that learn from dependent data and theory that can provide generalization guarantees similar to the independent situations. This thesis is dedicated to two variants of dependencies that can arise in practice. One is a dependence on the level of samples in a single learning task. Another dependency type arises in the multi-task setting when the tasks are dependent on each other even though the data for them can be i.i.d. In both cases we model the data (samples or tasks) as stochastic processes and introduce new algorithms for both settings that take into account and exploit the resulting dependencies. We prove the theoretical guarantees on the performance of the introduced algorithms under different evaluation criteria and, in addition, we compliment the theoretical study by the empirical one, where we evaluate some of the algorithms on two real world datasets to highlight their practical applicability.}, author = {Zimin, Alexander}, issn = {2663-337X}, pages = {92}, publisher = {Institute of Science and Technology Austria}, title = {{Learning from dependent data}}, doi = {10.15479/AT:ISTA:TH1048}, year = {2018}, } @phdthesis{83, abstract = {A proof system is a protocol between a prover and a verifier over a common input in which an honest prover convinces the verifier of the validity of true statements. Motivated by the success of decentralized cryptocurrencies, exemplified by Bitcoin, the focus of this thesis will be on proof systems which found applications in some sustainable alternatives to Bitcoin, such as the Spacemint and Chia cryptocurrencies. In particular, we focus on proofs of space and proofs of sequential work. Proofs of space (PoSpace) were suggested as more ecological, economical, and egalitarian alternative to the energy-wasteful proof-of-work mining of Bitcoin. However, the state-of-the-art constructions of PoSpace are based on sophisticated graph pebbling lower bounds, and are therefore complex. Moreover, when these PoSpace are used in cryptocurrencies like Spacemint, miners can only start mining after ensuring that a commitment to their space is already added in a special transaction to the blockchain. Proofs of sequential work (PoSW) are proof systems in which a prover, upon receiving a statement x and a time parameter T, computes a proof which convinces the verifier that T time units had passed since x was received. Whereas Spacemint assumes synchrony to retain some interesting Bitcoin dynamics, Chia requires PoSW with unique proofs, i.e., PoSW in which it is hard to come up with more than one accepting proof for any true statement. In this thesis we construct simple and practically-efficient PoSpace and PoSW. When using our PoSpace in cryptocurrencies, miners can start mining on the fly, like in Bitcoin, and unlike current constructions of PoSW, which either achieve efficient verification of sequential work, or faster-than-recomputing verification of correctness of proofs, but not both at the same time, ours achieve the best of these two worlds.}, author = {Abusalah, Hamza M}, issn = {2663-337X}, pages = {59}, publisher = {Institute of Science and Technology Austria}, title = {{Proof systems for sustainable decentralized cryptocurrencies}}, doi = {10.15479/AT:ISTA:TH_1046}, year = {2018}, } @phdthesis{197, abstract = {Modern computer vision systems heavily rely on statistical machine learning models, which typically require large amounts of labeled data to be learned reliably. Moreover, very recently computer vision research widely adopted techniques for representation learning, which further increase the demand for labeled data. However, for many important practical problems there is relatively small amount of labeled data available, so it is problematic to leverage full potential of the representation learning methods. One way to overcome this obstacle is to invest substantial resources into producing large labelled datasets. Unfortunately, this can be prohibitively expensive in practice. In this thesis we focus on the alternative way of tackling the aforementioned issue. We concentrate on methods, which make use of weakly-labeled or even unlabeled data. Specifically, the first half of the thesis is dedicated to the semantic image segmentation task. We develop a technique, which achieves competitive segmentation performance and only requires annotations in a form of global image-level labels instead of dense segmentation masks. Subsequently, we present a new methodology, which further improves segmentation performance by leveraging tiny additional feedback from a human annotator. By using our methods practitioners can greatly reduce the amount of data annotation effort, which is required to learn modern image segmentation models. In the second half of the thesis we focus on methods for learning from unlabeled visual data. We study a family of autoregressive models for modeling structure of natural images and discuss potential applications of these models. Moreover, we conduct in-depth study of one of these applications, where we develop the state-of-the-art model for the probabilistic image colorization task.}, author = {Kolesnikov, Alexander}, issn = {2663-337X}, pages = {113}, publisher = {Institute of Science and Technology Austria}, title = {{Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images}}, doi = {10.15479/AT:ISTA:th_1021}, year = {2018}, } @phdthesis{200, abstract = {This thesis is concerned with the inference of current population structure based on geo-referenced genetic data. The underlying idea is that population structure affects its spatial genetic structure. Therefore, genotype information can be utilized to estimate important demographic parameters such as migration rates. These indirect estimates of population structure have become very attractive, as genotype data is now widely available. However, there also has been much concern about these approaches. Importantly, genetic structure can be influenced by many complex patterns, which often cannot be disentangled. Moreover, many methods merely fit heuristic patterns of genetic structure, and do not build upon population genetics theory. Here, I describe two novel inference methods that address these shortcomings. In Chapter 2, I introduce an inference scheme based on a new type of signal, identity by descent (IBD) blocks. Recently, it has become feasible to detect such long blocks of genome shared between pairs of samples. These blocks are direct traces of recent coalescence events. As such, they contain ample signal for inferring recent demography. I examine sharing of IBD blocks in two-dimensional populations with local migration. Using a diffusion approximation, I derive formulas for an isolation by distance pattern of long IBD blocks and show that sharing of long IBD blocks approaches rapid exponential decay for growing sample distance. I describe an inference scheme based on these results. It can robustly estimate the dispersal rate and population density, which is demonstrated on simulated data. I also show an application to estimate mean migration and the rate of recent population growth within Eastern Europe. Chapter 3 is about a novel method to estimate barriers to gene flow in a two dimensional population. This inference scheme utilizes geographically localized allele frequency fluctuations - a classical isolation by distance signal. The strength of these local fluctuations increases on average next to a barrier, and there is less correlation across it. I again use a framework of diffusion of ancestral lineages to model this effect, and provide an efficient numerical implementation to fit the results to geo-referenced biallelic SNP data. This inference scheme is able to robustly estimate strong barriers to gene flow, as tests on simulated data confirm.}, author = {Ringbauer, Harald}, issn = {2663-337X}, pages = {146}, publisher = {Institute of Science and Technology Austria}, title = {{Inferring recent demography from spatial genetic structure}}, doi = {10.15479/AT:ISTA:th_963}, year = {2018}, } @phdthesis{418, abstract = {The aim of this thesis was the development of new strategies for optical and optogenetic control of proliferative and pro-survival signaling, and characterizing them from the molecular mechanism up to cellular effects. These new light-based methods have unique features, such as red light as an activator, or the avoidance of gene delivery, which enable to overcome current limitations, such as light delivery to target tissues and feasibility as therapeutic approach. A special focus was placed on implementing these new light-based approaches in pancreatic β-cells, as β-cells are the key players in diabetes and especially their loss in number negatively affects disease progression. Currently no treatment options are available to compensate the lack of functional β-cells in diabetic patients. In a first approach, red-light-activated growth factor receptors, in particular receptor tyrosine kinases were engineered and characterized. Receptor activation with light allows spatio-temporal control compared to ligand-based activation, and especially red light exhibits deeper tissue penetration than other wavelengths of the visible spectrum. Red-light-activated receptor tyrosine kinases robustly activated major growth factor related signaling pathways with a high temporal resolution. Moreover, the remote activation of the proliferative MAPK/Erk pathway by red-light-activated receptor tyrosine kinases in a pancreatic β-cell line was also achieved, through one centimeter thick mouse tissue. Although red-light-activated receptor tyrosine kinases are particularly attractive for applications in animal models due to the deep tissue penetration of red light, a drawback, especially with regard to translation into humans, is the requirement of gene therapy. In a second approach an endogenous light-sensitive mechanism was identified and its potential to promote proliferative and pro-survival signals was explored, towards light-based tissue regeneration without the need for gene transfer. Blue-green light illumination was found to be sufficient for the activation of proliferation and survival promoting signaling pathways in primary pancreatic murine and human islets. Blue-green light also led to an increase in proliferation of primary islet cells, an effect which was shown to be mostly β-cell specific in human islets. Moreover, it was demonstrated that this approach of pancreatic β-cell expansion did not have any negative effect on the β-cell function, in particular on their insulin secretion capacity. In contrast, a trend for enhanced insulin secretion under high glucose conditions after illumination was detected. In order to unravel the detailed characteristics of this endogenous light-sensitive mechanism, the precise light requirements were determined. In addition, the expression of light sensing proteins, OPN3 and rhodopsin, was detected. The observed effects were found to be independent of handling effects such as temperature differences and cytochrome c oxidase dependent ATP increase, but they were found to be enhanced through the knockout of OPN3. The exact mechanism of how islets cells sense light and the identity of the photoreceptor remains unknown. Summarized two new light-based systems with unique features were established that enable the activation of proliferative and pro-survival signaling pathways. While red-light-activated receptor tyrosine kinases open a new avenue for optogenetics research, by allowing non-invasive control of signaling in vivo, the identified endogenous light-sensitive mechanism has the potential to be the basis of a gene therapy-free therapeutical approach for light-based β-cell expansion.}, author = {Gschaider-Reichhart, Eva}, issn = {2663-337X}, pages = {107}, publisher = {Institute of Science and Technology Austria}, title = {{Optical and optogenetic control of proliferation and survival }}, doi = {10.15479/AT:ISTA:th_913}, year = {2018}, } @phdthesis{52, abstract = {In this thesis we will discuss systems of point interacting fermions, their stability and other spectral properties. Whereas for bosons a point interacting system is always unstable this ques- tion is more subtle for a gas of two species of fermions. In particular the answer depends on the mass ratio between these two species. Most of this work will be focused on the N + M model which consists of two species of fermions with N, M particles respectively which interact via point interactions. We will introduce this model using a formal limit and discuss the N + 1 system in more detail. In particular, we will show that for mass ratios above a critical one, which does not depend on the particle number, the N + 1 system is stable. In the context of this model we will prove rigorous versions of Tan relations which relate various quantities of the point-interacting model. By restricting the N + 1 system to a box we define a finite density model with point in- teractions. In the context of this system we will discuss the energy change when introducing a point-interacting impurity into a system of non-interacting fermions. We will see that this change in energy is bounded independently of the particle number and in particular the bound only depends on the density and the scattering length. As another special case of the N + M model we will show stability of the 2 + 2 model for mass ratios in an interval around one. Further we will investigate a different model of point interactions which was discussed before in the literature and which is, contrary to the N + M model, not given by a limiting procedure but is based on a Dirichlet form. We will show that this system behaves trivially in the thermodynamic limit, i.e. the free energy per particle is the same as the one of the non-interacting system.}, author = {Moser, Thomas}, issn = {2663-337X}, pages = {115}, publisher = {Institute of Science and Technology Austria}, title = {{Point interactions in systems of fermions}}, doi = {10.15479/AT:ISTA:th_1043}, year = {2018}, } @phdthesis{69, abstract = {A qubit, a unit of quantum information, is essentially any quantum mechanical two-level system which can be coherently controlled. Still, to be used for computation, it has to fulfill criteria. Qubits, regardless of the system in which they are realized, suffer from decoherence. This leads to loss of the information stored in the qubit. The upper bound of the time scale on which decoherence happens is set by the spin relaxation time. In this thesis I studied a two-level system consisting of a Zeeman-split hole spin confined in a quantum dot formed in a Ge hut wire. Such Ge hut wires have emerged as a promising material system for the realization of spin qubits, due to the combination of two significant properties: long spin coherence time as expected for group IV semiconductors due to the low hyperfine interaction and a strong valence band spin-orbit coupling. Here, I present how to fabricate quantum dot devices suitable for electrical transport measurements. Coupled quantum dot devices allowed the realization of a charge sensor, which is electrostatically and tunnel coupled to a quantum dot. By integrating the charge sensor into a radio-frequency reflectometry setup, I performed for the first time single-shot readout measurements of hole spins and extracted the hole spin relaxation times in Ge hut wires.}, author = {Vukušić, Lada}, issn = {2663-337X}, pages = {103}, publisher = {Institute of Science and Technology Austria}, title = {{Charge sensing and spin relaxation times of holes in Ge hut wires}}, doi = {10.15479/AT:ISTA:TH_1047}, year = {2018}, }