@phdthesis{821,
abstract = {This dissertation focuses on algorithmic aspects of program verification, and presents modeling and complexity advances on several problems related to the
static analysis of programs, the stateless model checking of concurrent programs, and the competitive analysis of real-time scheduling algorithms.
Our contributions can be broadly grouped into five categories.
Our first contribution is a set of new algorithms and data structures for the quantitative and data-flow analysis of programs, based on the graph-theoretic notion of treewidth.
It has been observed that the control-flow graphs of typical programs have special structure, and are characterized as graphs of small treewidth.
We utilize this structural property to provide faster algorithms for the quantitative and data-flow analysis of recursive and concurrent programs.
In most cases we make an algebraic treatment of the considered problem,
where several interesting analyses, such as the reachability, shortest path, and certain kind of data-flow analysis problems follow as special cases.
We exploit the constant-treewidth property to obtain algorithmic improvements for on-demand versions of the problems,
and provide data structures with various tradeoffs between the resources spent in the preprocessing and querying phase.
We also improve on the algorithmic complexity of quantitative problems outside the algebraic path framework,
namely of the minimum mean-payoff, minimum ratio, and minimum initial credit for energy problems.
Our second contribution is a set of algorithms for Dyck reachability with applications to data-dependence analysis and alias analysis.
In particular, we develop an optimal algorithm for Dyck reachability on bidirected graphs, which are ubiquitous in context-insensitive, field-sensitive points-to analysis.
Additionally, we develop an efficient algorithm for context-sensitive data-dependence analysis via Dyck reachability,
where the task is to obtain analysis summaries of library code in the presence of callbacks.
Our algorithm preprocesses libraries in almost linear time, after which the contribution of the library in the complexity of the client analysis is (i)~linear in the number of call sites and (ii)~only logarithmic in the size of the whole library, as opposed to linear in the size of the whole library.
Finally, we prove that Dyck reachability is Boolean Matrix Multiplication-hard in general, and the hardness also holds for graphs of constant treewidth.
This hardness result strongly indicates that there exist no combinatorial algorithms for Dyck reachability with truly subcubic complexity.
Our third contribution is the formalization and algorithmic treatment of the Quantitative Interprocedural Analysis framework.
In this framework, the transitions of a recursive program are annotated as good, bad or neutral, and receive a weight which measures
the magnitude of their respective effect.
The Quantitative Interprocedural Analysis problem asks to determine whether there exists an infinite run of the program where the long-run ratio of the bad weights over the good weights is above a given threshold.
We illustrate how several quantitative problems related to static analysis of recursive programs can be instantiated in this framework,
and present some case studies to this direction.
Our fourth contribution is a new dynamic partial-order reduction for the stateless model checking of concurrent programs. Traditional approaches rely on the standard Mazurkiewicz equivalence between traces, by means of partitioning the trace space into equivalence classes, and attempting to explore a few representatives from each class.
We present a new dynamic partial-order reduction method called the Data-centric Partial Order Reduction (DC-DPOR).
Our algorithm is based on a new equivalence between traces, called the observation equivalence.
DC-DPOR explores a coarser partitioning of the trace space than any exploration method based on the standard Mazurkiewicz equivalence.
Depending on the program, the new partitioning can be even exponentially coarser.
Additionally, DC-DPOR spends only polynomial time in each explored class.
Our fifth contribution is the use of automata and game-theoretic verification techniques in the competitive analysis and synthesis of real-time scheduling algorithms for firm-deadline tasks.
On the analysis side, we leverage automata on infinite words to compute the competitive ratio of real-time schedulers subject to various environmental constraints.
On the synthesis side, we introduce a new instance of two-player mean-payoff partial-information games, and show
how the synthesis of an optimal real-time scheduler can be reduced to computing winning strategies in this new type of games.},
author = {Pavlogiannis, Andreas},
pages = {418},
publisher = {IST Austria},
title = {{Algorithmic advances in program analysis and their applications}},
doi = {10.15479/AT:ISTA:th_854},
year = {2017},
}
@phdthesis{837,
abstract = {The hippocampus is a key brain region for memory and notably for spatial memory, and is needed for both spatial working and reference memories. Hippocampal place cells selectively discharge in specific locations of the environment to form mnemonic represen tations of space. Several behavioral protocols have been designed to test spatial memory which requires the experimental subject to utilize working memory and reference memory. However, less is known about how these memory traces are presented in the hippo campus, especially considering tasks that require both spatial working and long -term reference memory demand. The aim of my thesis was to elucidate how spatial working memory, reference memory, and the combination of both are represented in the hippocampus. In this thesis, using a radial eight -arm maze, I examined how the combined demand on these memories influenced place cell assemblies while reference memories were partially updated by changing some of the reward- arms. This was contrasted with task varian ts requiring working or reference memories only. Reference memory update led to gradual place field shifts towards the rewards on the switched arms. Cells developed enhanced firing in passes between newly -rewarded arms as compared to those containing an unchanged reward. The working memory task did not show such gradual changes. Place assemblies on occasions replayed trajectories of the maze; at decision points the next arm choice was preferentially replayed in tasks needing reference memory while in the pure working memory task the previously visited arm was replayed. Hence trajectory replay only reflected the decision of the animal in tasks needing reference memory update. At the reward locations, in all three tasks outbound trajectories of the current arm were preferentially replayed, showing the animals’ next path to the center. At reward locations trajectories were replayed preferentially in reverse temporal order. Moreover, in the center reverse replay was seen in the working memory task but in the other tasks forward replay was seen. Hence, the direction of reactivation was determined by the goal locations so that part of the trajectory which was closer to the goal was reactivated later in an HSE while places further away from the goal were reactivated earlier. Altogether my work demonstrated that reference memory update triggers several levels of reorganization of the hippocampal cognitive map which are not seen in simpler working memory demand s. Moreover, hippocampus is likely to be involved in spatial decisions through reactivating planned trajectories when reference memory recall is required for such a decision. },
author = {Xu, Haibing},
pages = {93},
publisher = {IST Austria},
title = {{Reactivation of the hippocampal cognitive map in goal-directed spatial tasks}},
doi = {10.15479/AT:ISTA:th_858},
year = {2017},
}
@phdthesis{838,
abstract = {In this thesis we discuss the exact security of message authentications codes HMAC , NMAC , and PMAC . NMAC is a mode of operation which turns a fixed input-length keyed hash function f into a variable input-length function. A practical single-key variant of NMAC called HMAC is a very popular and widely deployed message authentication code (MAC). PMAC is a block-cipher based mode of operation, which also happens to be the most famous fully parallel MAC. NMAC was introduced by Bellare, Canetti and Krawczyk Crypto’96, who proved it to be a secure pseudorandom function (PRF), and thus also a MAC, under two assumptions. Unfortunately, for many instantiations of HMAC one of them has been found to be wrong. To restore the provable guarantees for NMAC , Bellare [Crypto’06] showed its security without this assumption. PMAC was introduced by Black and Rogaway at Eurocrypt 2002. If instantiated with a pseudorandom permutation over n -bit strings, PMAC constitutes a provably secure variable input-length PRF. For adversaries making q queries, each of length at most ` (in n -bit blocks), and of total length σ ≤ q` , the original paper proves an upper bound on the distinguishing advantage of O ( σ 2 / 2 n ), while the currently best bound is O ( qσ/ 2 n ). In this work we show that this bound is tight by giving an attack with advantage Ω( q 2 `/ 2 n ). In the PMAC construction one initially XORs a mask to every message block, where the mask for the i th block is computed as τ i := γ i · L , where L is a (secret) random value, and γ i is the i -th codeword of the Gray code. Our attack applies more generally to any sequence of γ i ’s which contains a large coset of a subgroup of GF (2 n ). As for NMAC , our first contribution is a simpler and uniform proof: If f is an ε -secure PRF (against q queries) and a δ - non-adaptively secure PRF (against q queries), then NMAC f is an ( ε + `qδ )-secure PRF against q queries of length at most ` blocks each. We also show that this ε + `qδ bound is basically tight by constructing an f for which an attack with advantage `qδ exists. Moreover, we analyze the PRF-security of a modification of NMAC called NI by An and Bellare that avoids the constant rekeying on multi-block messages in NMAC and allows for an information-theoretic analysis. We carry out such an analysis, obtaining a tight `q 2 / 2 c bound for this step, improving over the trivial bound of ` 2 q 2 / 2 c . Finally, we investigate, if the security of PMAC can be further improved by using τ i ’s that are k -wise independent, for k > 1 (the original has k = 1). We observe that the security of PMAC will not increase in general if k = 2, and then prove that the security increases to O ( q 2 / 2 n ), if the k = 4. Due to simple extension attacks, this is the best bound one can hope for, using any distribution on the masks. Whether k = 3 is already sufficient to get this level of security is left as an open problem. Keywords: Message authentication codes, Pseudorandom functions, HMAC, PMAC. },
author = {Rybar, Michal},
pages = {86},
publisher = {IST Austria},
title = {{(The exact security of) Message authentication codes}},
doi = {10.15479/AT:ISTA:th_828},
year = {2017},
}
@phdthesis{839,
abstract = {This thesis describes a brittle fracture simulation method for visual effects applications. Building upon a symmetric Galerkin boundary element method, we first compute stress intensity factors following the theory of linear elastic fracture mechanics. We then use these stress intensities to simulate the motion of a propagating crack front at a significantly higher resolution than the overall deformation of the breaking object. Allowing for spatial variations of the material's toughness during crack propagation produces visually realistic, highly-detailed fracture surfaces. Furthermore, we introduce approximations for stress intensities and crack opening displacements, resulting in both practical speed-up and theoretically superior runtime complexity compared to previous methods. While we choose a quasi-static approach to fracture mechanics, ignoring dynamic deformations, we also couple our fracture simulation framework to a standard rigid-body dynamics solver, enabling visual effects artists to simulate both large scale motion, as well as fracturing due to collision forces in a combined system. As fractures inside of an object grow, their geometry must be represented both in the coarse boundary element mesh, as well as at the desired fine output resolution. Using a boundary element method, we avoid complicated volumetric meshing operations. Instead we describe a simple set of surface meshing operations that allow us to progressively add cracks to the mesh of an object and still re-use all previously computed entries of the linear boundary element system matrix. On the high resolution level, we opt for an implicit surface representation. We then describe how to capture fracture surfaces during crack propagation, as well as separate the individual fragments resulting from the fracture process, based on this implicit representation. We show results obtained with our method, either solving the full boundary element system in every time step, or alternatively using our fast approximations. These results demonstrate that both of these methods perform well in basic test cases and produce realistic fracture surfaces. Furthermore we show that our fast approximations substantially out-perform the standard approach in more demanding scenarios. Finally, these two methods naturally combine, using the full solution while the problem size is manageably small and switching to the fast approximations later on. The resulting hybrid method gives the user a direct way to choose between speed and accuracy of the simulation. },
author = {Hahn, David},
pages = {124},
publisher = {IST Austria},
title = {{Brittle fracture simulation with boundary elements for computer graphics}},
doi = {10.15479/AT:ISTA:th_855},
year = {2017},
}
@phdthesis{6287,
abstract = {The main objects considered in the present work are simplicial and CW-complexes with vertices forming a random point cloud. In particular, we consider a Poisson point process in R^n and study Delaunay and Voronoi complexes of the first and higher orders and weighted Delaunay complexes obtained as sections of Delaunay complexes, as well as the Čech complex. Further, we examine theDelaunay complex of a Poisson point process on the sphere S^n, as well as of a uniform point cloud, which is equivalent to the convex hull, providing a connection to the theory of random polytopes. Each of the complexes in question can be endowed with a radius function, which maps its cells to the radii of appropriately chosen circumspheres, called the radius of the cell. Applying and developing discrete Morse theory for these functions, joining it together with probabilistic and sometimes analytic machinery, and developing several integral geometric tools, we aim at getting the distributions of circumradii of typical cells. For all considered complexes, we are able to generalize and obtain up to constants the distribution of radii of typical intervals of all types. In low dimensions the constants can be computed explicitly, thus providing the explicit expressions for the expected numbers of cells. In particular, it allows to find the expected density of simplices of every dimension for a Poisson point process in R^4, whereas the result for R^3 was known already in 1970's.},
author = {Nikitenko, Anton},
pages = {86},
publisher = {IST Austria},
title = {{Discrete Morse theory for random complexes }},
doi = {10.15479/AT:ISTA:th_873},
year = {2017},
}