--- _id: '8155' abstract: - lang: eng text: "In the thesis we focus on the interplay of the biophysics and evolution of gene regulation. We start by addressing how the type of prokaryotic gene regulation – activation and repression – affects spurious binding to DNA, also known as\r\ntranscriptional crosstalk. We propose that regulatory interference caused by excess regulatory proteins in the dense cellular medium – global crosstalk – could be a factor in determining which type of gene regulatory network is evolutionarily preferred. Next,we use a normative approach in eukaryotic gene regulation to describe minimal\r\nnon-equilibrium enhancer models that optimize so-called regulatory phenotypes. We find a class of models that differ from standard thermodynamic equilibrium models by a single parameter that notably increases the regulatory performance. Next chapter addresses the question of genotype-phenotype-fitness maps of higher dimensional phenotypes. We show that our biophysically realistic approach allows us to understand how the mechanisms of promoter function constrain genotypephenotype maps, and how they affect the evolutionary trajectories of promoters.\r\nIn the last chapter we ask whether the intrinsic instability of gene duplication and amplification provides a generic alternative to canonical gene regulation. Using mathematical modeling, we show that amplifications can tune gene expression in many environments, including those where transcription factor-based schemes are\r\nhard to evolve or maintain. " acknowledgement: For the duration of his PhD, Rok was a recipient of a DOC fellowship of the Austrian Academy of Sciences. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Rok full_name: Grah, Rok id: 483E70DE-F248-11E8-B48F-1D18A9856A87 last_name: Grah orcid: 0000-0003-2539-3560 citation: ama: Grah R. Gene regulation across scales – how biophysical constraints shape evolution. 2020. doi:10.15479/AT:ISTA:8155 apa: Grah, R. (2020). Gene regulation across scales – how biophysical constraints shape evolution. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8155 chicago: Grah, Rok. “Gene Regulation across Scales – How Biophysical Constraints Shape Evolution.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8155. ieee: R. Grah, “Gene regulation across scales – how biophysical constraints shape evolution,” Institute of Science and Technology Austria, 2020. ista: Grah R. 2020. Gene regulation across scales – how biophysical constraints shape evolution. Institute of Science and Technology Austria. mla: Grah, Rok. Gene Regulation across Scales – How Biophysical Constraints Shape Evolution. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8155. short: R. Grah, Gene Regulation across Scales – How Biophysical Constraints Shape Evolution, Institute of Science and Technology Austria, 2020. date_created: 2020-07-23T09:51:28Z date_published: 2020-07-24T00:00:00Z date_updated: 2023-09-07T13:13:27Z day: '24' ddc: - '530' - '570' degree_awarded: PhD department: - _id: CaGu - _id: GaTk doi: 10.15479/AT:ISTA:8155 file: - access_level: open_access content_type: application/pdf creator: rgrah date_created: 2020-07-27T12:00:07Z date_updated: 2020-07-27T12:00:07Z file_id: '8176' file_name: Thesis_RokGrah_200727_convertedNew.pdf file_size: 16638998 relation: main_file success: 1 - access_level: closed content_type: application/zip creator: rgrah date_created: 2020-07-27T12:02:23Z date_updated: 2020-07-30T13:04:55Z file_id: '8177' file_name: Thesis_new.zip file_size: 347459978 relation: main_file file_date_updated: 2020-07-30T13:04:55Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '310' project: - _id: 267C84F4-B435-11E9-9278-68D0E5697425 name: Biophysically realistic genotype-phenotype maps for regulatory networks publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7675' relation: part_of_dissertation status: public - id: '7569' relation: part_of_dissertation status: public - id: '7652' relation: part_of_dissertation status: public status: public supervisor: - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 title: Gene regulation across scales – how biophysical constraints shape evolution type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7460' abstract: - lang: eng text: "Many methods for the reconstruction of shapes from sets of points produce ordered simplicial complexes, which are collections of vertices, edges, triangles, and their higher-dimensional analogues, called simplices, in which every simplex gets assigned a real value measuring its size. This thesis studies ordered simplicial complexes, with a focus on their topology, which reflects the connectedness of the represented shapes and the presence of holes. We are interested both in understanding better the structure of these complexes, as well as in developing algorithms for applications.\r\n\r\nFor the Delaunay triangulation, the most popular measure for a simplex is the radius of the smallest empty circumsphere. Based on it, we revisit Alpha and Wrap complexes and experimentally determine their probabilistic properties for random data. Also, we prove the existence of tri-partitions, propose algorithms to open and close holes, and extend the concepts from Euclidean to Bregman geometries." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Katharina full_name: Ölsböck, Katharina id: 4D4AA390-F248-11E8-B48F-1D18A9856A87 last_name: Ölsböck orcid: 0000-0002-4672-8297 citation: ama: Ölsböck K. The hole system of triangulated shapes. 2020. doi:10.15479/AT:ISTA:7460 apa: Ölsböck, K. (2020). The hole system of triangulated shapes. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7460 chicago: Ölsböck, Katharina. “The Hole System of Triangulated Shapes.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7460. ieee: K. Ölsböck, “The hole system of triangulated shapes,” Institute of Science and Technology Austria, 2020. ista: Ölsböck K. 2020. The hole system of triangulated shapes. Institute of Science and Technology Austria. mla: Ölsböck, Katharina. The Hole System of Triangulated Shapes. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7460. short: K. Ölsböck, The Hole System of Triangulated Shapes, Institute of Science and Technology Austria, 2020. date_created: 2020-02-06T14:56:53Z date_published: 2020-02-10T00:00:00Z date_updated: 2023-09-07T13:15:30Z day: '10' ddc: - '514' degree_awarded: PhD department: - _id: HeEd - _id: GradSch doi: 10.15479/AT:ISTA:7460 file: - access_level: open_access checksum: 1df9f8c530b443c0e63a3f2e4fde412e content_type: application/pdf creator: koelsboe date_created: 2020-02-06T14:43:54Z date_updated: 2020-07-14T12:47:58Z file_id: '7461' file_name: thesis_ist-final_noack.pdf file_size: 76195184 relation: main_file - access_level: closed checksum: 7a52383c812b0be64d3826546509e5a4 content_type: application/x-zip-compressed creator: koelsboe date_created: 2020-02-06T14:52:45Z date_updated: 2020-07-14T12:47:58Z description: latex source files, figures file_id: '7462' file_name: latex-files.zip file_size: 122103715 relation: source_file file_date_updated: 2020-07-14T12:47:58Z has_accepted_license: '1' keyword: - shape reconstruction - hole manipulation - ordered complexes - Alpha complex - Wrap complex - computational topology - Bregman geometry language: - iso: eng license: https://creativecommons.org/licenses/by-nc-sa/4.0/ month: '02' oa: 1 oa_version: Published Version page: '155' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '6608' relation: part_of_dissertation status: public status: public supervisor: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 title: The hole system of triangulated shapes tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7896' abstract: - lang: eng text: "A search problem lies in the complexity class FNP if a solution to the given instance of the problem can be verified efficiently. The complexity class TFNP consists of all search problems in FNP that are total in the sense that a solution is guaranteed to exist. TFNP contains a host of interesting problems from fields such as algorithmic game theory, computational topology, number theory and combinatorics. Since TFNP is a semantic class, it is unlikely to have a complete problem. Instead, one studies its syntactic subclasses which are defined based on the combinatorial principle used to argue totality. Of particular interest is the subclass PPAD, which contains important problems\r\nlike computing Nash equilibrium for bimatrix games and computational counterparts of several fixed-point theorems as complete. In the thesis, we undertake the study of averagecase hardness of TFNP, and in particular its subclass PPAD.\r\nAlmost nothing was known about average-case hardness of PPAD before a series of recent results showed how to achieve it using a cryptographic primitive called program obfuscation.\r\nHowever, it is currently not known how to construct program obfuscation from standard cryptographic assumptions. Therefore, it is desirable to relax the assumption under which average-case hardness of PPAD can be shown. In the thesis we take a step in this direction. First, we show that assuming the (average-case) hardness of a numbertheoretic\r\nproblem related to factoring of integers, which we call Iterated-Squaring, PPAD is hard-on-average in the random-oracle model. Then we strengthen this result to show that the average-case hardness of PPAD reduces to the (adaptive) soundness of the Fiat-Shamir Transform, a well-known technique used to compile a public-coin interactive protocol into a non-interactive one. As a corollary, we obtain average-case hardness for PPAD in the random-oracle model assuming the worst-case hardness of #SAT. Moreover, the above results can all be strengthened to obtain average-case hardness for the class CLS ⊆ PPAD.\r\nOur main technical contribution is constructing incrementally-verifiable procedures for computing Iterated-Squaring and #SAT. By incrementally-verifiable, we mean that every intermediate state of the computation includes a proof of its correctness, and the proof can be updated and verified in polynomial time. Previous constructions of such procedures relied on strong, non-standard assumptions. Instead, we introduce a technique called recursive proof-merging to obtain the same from weaker assumptions. " alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Chethan full_name: Kamath Hosdurg, Chethan id: 4BD3F30E-F248-11E8-B48F-1D18A9856A87 last_name: Kamath Hosdurg citation: ama: Kamath Hosdurg C. On the average-case hardness of total search problems. 2020. doi:10.15479/AT:ISTA:7896 apa: Kamath Hosdurg, C. (2020). On the average-case hardness of total search problems. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7896 chicago: Kamath Hosdurg, Chethan. “On the Average-Case Hardness of Total Search Problems.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7896. ieee: C. Kamath Hosdurg, “On the average-case hardness of total search problems,” Institute of Science and Technology Austria, 2020. ista: Kamath Hosdurg C. 2020. On the average-case hardness of total search problems. Institute of Science and Technology Austria. mla: Kamath Hosdurg, Chethan. On the Average-Case Hardness of Total Search Problems. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7896. short: C. Kamath Hosdurg, On the Average-Case Hardness of Total Search Problems, Institute of Science and Technology Austria, 2020. date_created: 2020-05-26T14:08:55Z date_published: 2020-05-25T00:00:00Z date_updated: 2023-09-07T13:15:55Z day: '25' ddc: - '000' degree_awarded: PhD department: - _id: KrPi doi: 10.15479/AT:ISTA:7896 ec_funded: 1 file: - access_level: open_access checksum: b39e2e1c376f5819b823fb7077491c64 content_type: application/pdf creator: dernst date_created: 2020-05-26T14:08:13Z date_updated: 2020-07-14T12:48:04Z file_id: '7897' file_name: 2020_Thesis_Kamath.pdf file_size: 1622742 relation: main_file - access_level: closed checksum: 8b26ba729c1a85ac6bea775f5d73cdc7 content_type: application/x-zip-compressed creator: dernst date_created: 2020-05-26T14:08:23Z date_updated: 2020-07-14T12:48:04Z file_id: '7898' file_name: Thesis_Kamath.zip file_size: 15301529 relation: source_file file_date_updated: 2020-07-14T12:48:04Z has_accepted_license: '1' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: '126' project: - _id: 258C570E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '259668' name: Provable Security for Physical Cryptography - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '6677' relation: part_of_dissertation status: public status: public supervisor: - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 title: On the average-case hardness of total search problems tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7944' abstract: - lang: eng text: "This thesis considers two examples of reconfiguration problems: flipping edges in edge-labelled triangulations of planar point sets and swapping labelled tokens placed on vertices of a graph. In both cases the studied structures – all the triangulations of a given point set or all token placements on a given graph – can be thought of as vertices of the so-called reconfiguration graph, in which two vertices are adjacent if the corresponding structures differ by a single elementary operation – by a flip of a diagonal in a triangulation or by a swap of tokens on adjacent vertices, respectively. We study the reconfiguration of one instance of a structure into another via (shortest) paths in the reconfiguration graph.\r\n\r\nFor triangulations of point sets in which each edge has a unique label and a flip transfers the label from the removed edge to the new edge, we prove a polynomial-time testable condition, called the Orbit Theorem, that characterizes when two triangulations of the same point set lie in the same connected component of the reconfiguration graph. The condition was first conjectured by Bose, Lubiw, Pathak and Verdonschot. We additionally provide a polynomial time algorithm that computes a reconfiguring flip sequence, if it exists. Our proof of the Orbit Theorem uses topological properties of a certain high-dimensional cell complex that has the usual reconfiguration graph as its 1-skeleton.\r\n\r\nIn the context of token swapping on a tree graph, we make partial progress on the problem of finding shortest reconfiguration sequences. We disprove the so-called Happy Leaf Conjecture and demonstrate the importance of swapping tokens that are already placed at the correct vertices. We also prove that a generalization of the problem to weighted coloured token swapping is NP-hard on trees but solvable in polynomial time on paths and stars." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Zuzana full_name: Masárová, Zuzana id: 45CFE238-F248-11E8-B48F-1D18A9856A87 last_name: Masárová orcid: 0000-0002-6660-1322 citation: ama: Masárová Z. Reconfiguration problems. 2020. doi:10.15479/AT:ISTA:7944 apa: Masárová, Z. (2020). Reconfiguration problems. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7944 chicago: Masárová, Zuzana. “Reconfiguration Problems.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7944. ieee: Z. Masárová, “Reconfiguration problems,” Institute of Science and Technology Austria, 2020. ista: Masárová Z. 2020. Reconfiguration problems. Institute of Science and Technology Austria. mla: Masárová, Zuzana. Reconfiguration Problems. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7944. short: Z. Masárová, Reconfiguration Problems, Institute of Science and Technology Austria, 2020. date_created: 2020-06-08T00:49:46Z date_published: 2020-06-09T00:00:00Z date_updated: 2023-09-07T13:17:37Z day: '09' ddc: - '516' - '514' degree_awarded: PhD department: - _id: HeEd - _id: UlWa doi: 10.15479/AT:ISTA:7944 file: - access_level: open_access checksum: df688bc5a82b50baee0b99d25fc7b7f0 content_type: application/pdf creator: zmasarov date_created: 2020-06-08T00:34:00Z date_updated: 2020-07-14T12:48:05Z file_id: '7945' file_name: THESIS_Zuzka_Masarova.pdf file_size: 13661779 relation: main_file - access_level: closed checksum: 45341a35b8f5529c74010b7af43ac188 content_type: application/zip creator: zmasarov date_created: 2020-06-08T00:35:30Z date_updated: 2020-07-14T12:48:05Z file_id: '7946' file_name: THESIS_Zuzka_Masarova_SOURCE_FILES.zip file_size: 32184006 relation: source_file file_date_updated: 2020-07-14T12:48:05Z has_accepted_license: '1' keyword: - reconfiguration - reconfiguration graph - triangulations - flip - constrained triangulations - shellability - piecewise-linear balls - token swapping - trees - coloured weighted token swapping language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: '160' publication_identifier: isbn: - 978-3-99078-005-3 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7950' relation: part_of_dissertation status: public - id: '5986' relation: part_of_dissertation status: public status: public supervisor: - first_name: Uli full_name: Wagner, Uli id: 36690CA2-F248-11E8-B48F-1D18A9856A87 last_name: Wagner orcid: 0000-0002-1494-0568 - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 title: Reconfiguration problems tmp: image: /images/cc_by_sa.png legal_code_url: https://creativecommons.org/licenses/by-sa/4.0/legalcode name: Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) short: CC BY-SA (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8341' abstract: - lang: eng text: "One of the most striking hallmarks of the eukaryotic cell is the presence of intracellular vesicles and organelles. Each of these membrane-enclosed compartments has a distinct composition of lipids and proteins, which is essential for accurate membrane traffic and homeostasis. Interestingly, their biochemical identities are achieved with the help\r\nof small GTPases of the Rab family, which cycle between GDP- and GTP-bound forms on the selected membrane surface. While this activity switch is well understood for an individual protein, how Rab GTPases collectively transition between states to generate decisive signal propagation in space and time is unclear. In my PhD thesis, I present\r\nin vitro reconstitution experiments with theoretical modeling to systematically study a minimal Rab5 activation network from bottom-up. We find that positive feedback based on known molecular interactions gives rise to bistable GTPase activity switching on system’s scale. Furthermore, we determine that collective transition near the critical\r\npoint is intrinsically stochastic and provide evidence that the inactive Rab5 abundance on the membrane can shape the network response. Finally, we demonstrate that collective switching can spread on the lipid bilayer as a traveling activation wave, representing a possible emergent activity pattern in endosomal maturation. Together, our\r\nfindings reveal new insights into the self-organization properties of signaling networks away from chemical equilibrium. Our work highlights the importance of systematic characterization of biochemical systems in well-defined physiological conditions. This way, we were able to answer long-standing open questions in the field and close the gap between regulatory processes on a molecular scale and emergent responses on system’s level." acknowledged_ssus: - _id: Bio - _id: LifeSc - _id: NanoFab acknowledgement: My thanks goes to the Loose lab members, BioImaging, Life Science and Nanofabrication Facilities and the wonderful international community at IST for sharing this experience with me. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Urban full_name: Bezeljak, Urban id: 2A58201A-F248-11E8-B48F-1D18A9856A87 last_name: Bezeljak orcid: 0000-0003-1365-5631 citation: ama: Bezeljak U. In vitro reconstitution of a Rab activation switch. 2020. doi:10.15479/AT:ISTA:8341 apa: Bezeljak, U. (2020). In vitro reconstitution of a Rab activation switch. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8341 chicago: Bezeljak, Urban. “In Vitro Reconstitution of a Rab Activation Switch.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8341. ieee: U. Bezeljak, “In vitro reconstitution of a Rab activation switch,” Institute of Science and Technology Austria, 2020. ista: Bezeljak U. 2020. In vitro reconstitution of a Rab activation switch. Institute of Science and Technology Austria. mla: Bezeljak, Urban. In Vitro Reconstitution of a Rab Activation Switch. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8341. short: U. Bezeljak, In Vitro Reconstitution of a Rab Activation Switch, Institute of Science and Technology Austria, 2020. date_created: 2020-09-08T08:53:53Z date_published: 2020-09-08T00:00:00Z date_updated: 2023-09-07T13:17:06Z day: '08' ddc: - '570' degree_awarded: PhD department: - _id: MaLo doi: 10.15479/AT:ISTA:8341 file: - access_level: closed checksum: 70871b335a595252a66c6bbf0824fb02 content_type: application/x-zip-compressed creator: dernst date_created: 2020-09-08T09:00:29Z date_updated: 2021-09-16T12:49:12Z file_id: '8342' file_name: 2020_Urban_Bezeljak_Thesis_TeX.zip file_size: 65246782 relation: source_file - access_level: open_access checksum: 59a62275088b00b7241e6ff4136434c7 content_type: application/pdf creator: dernst date_created: 2020-09-08T09:00:27Z date_updated: 2021-09-16T12:49:12Z file_id: '8343' file_name: 2020_Urban_Bezeljak_Thesis.pdf file_size: 31259058 relation: main_file file_date_updated: 2021-09-16T12:49:12Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '215' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7580' relation: part_of_dissertation status: public status: public supervisor: - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 title: In vitro reconstitution of a Rab activation switch tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8032' abstract: - lang: eng text: "Algorithms in computational 3-manifold topology typically take a triangulation as an input and return topological information about the underlying 3-manifold. However, extracting the desired information from a triangulation (e.g., evaluating an invariant) is often computationally very expensive. In recent years this complexity barrier has been successfully tackled in some cases by importing ideas from the theory of parameterized algorithms into the realm of 3-manifolds. Various computationally hard problems were shown to be efficiently solvable for input triangulations that are sufficiently “tree-like.”\r\nIn this thesis we focus on the key combinatorial parameter in the above context: we consider the treewidth of a compact, orientable 3-manifold, i.e., the smallest treewidth of the dual graph of any triangulation thereof. By building on the work of Scharlemann–Thompson and Scharlemann–Schultens–Saito on generalized Heegaard splittings, and on the work of Jaco–Rubinstein on layered triangulations, we establish quantitative relations between the treewidth and classical topological invariants of a 3-manifold. In particular, among other results, we show that the treewidth of a closed, orientable, irreducible, non-Haken 3-manifold is always within a constant factor of its Heegaard genus." acknowledged_ssus: - _id: E-Lib - _id: CampIT alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Kristóf full_name: Huszár, Kristóf id: 33C26278-F248-11E8-B48F-1D18A9856A87 last_name: Huszár orcid: 0000-0002-5445-5057 citation: ama: Huszár K. Combinatorial width parameters for 3-dimensional manifolds. 2020. doi:10.15479/AT:ISTA:8032 apa: Huszár, K. (2020). Combinatorial width parameters for 3-dimensional manifolds. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8032 chicago: Huszár, Kristóf. “Combinatorial Width Parameters for 3-Dimensional Manifolds.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8032. ieee: K. Huszár, “Combinatorial width parameters for 3-dimensional manifolds,” Institute of Science and Technology Austria, 2020. ista: Huszár K. 2020. Combinatorial width parameters for 3-dimensional manifolds. Institute of Science and Technology Austria. mla: Huszár, Kristóf. Combinatorial Width Parameters for 3-Dimensional Manifolds. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8032. short: K. Huszár, Combinatorial Width Parameters for 3-Dimensional Manifolds, Institute of Science and Technology Austria, 2020. date_created: 2020-06-26T10:00:36Z date_published: 2020-06-26T00:00:00Z date_updated: 2023-09-07T13:18:27Z day: '26' ddc: - '514' degree_awarded: PhD department: - _id: UlWa doi: 10.15479/AT:ISTA:8032 file: - access_level: open_access checksum: bd8be6e4f1addc863dfcc0fad29ee9c3 content_type: application/pdf creator: khuszar date_created: 2020-06-26T10:03:58Z date_updated: 2020-07-14T12:48:08Z file_id: '8034' file_name: Kristof_Huszar-Thesis.pdf file_size: 2637562 relation: main_file - access_level: closed checksum: d5f8456202b32f4a77552ef47a2837d1 content_type: application/x-zip-compressed creator: khuszar date_created: 2020-06-26T10:10:06Z date_updated: 2020-07-14T12:48:08Z file_id: '8035' file_name: Kristof_Huszar-Thesis-source.zip file_size: 7163491 relation: source_file file_date_updated: 2020-07-14T12:48:08Z has_accepted_license: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: xviii+120 publication_identifier: isbn: - 978-3-99078-006-0 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '6556' relation: dissertation_contains status: public - id: '7093' relation: dissertation_contains status: public status: public supervisor: - first_name: Uli full_name: Wagner, Uli id: 36690CA2-F248-11E8-B48F-1D18A9856A87 last_name: Wagner orcid: 0000-0002-1494-0568 - first_name: Jonathan full_name: Spreer, Jonathan last_name: Spreer title: Combinatorial width parameters for 3-dimensional manifolds tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8358' abstract: - lang: eng text: "During bacterial cell division, the tubulin-homolog FtsZ forms a ring-like structure at the center of the cell. This so-called Z-ring acts as a scaffold recruiting several division-related proteins to mid-cell and plays a key role in distributing proteins at the division site, a feature driven by the treadmilling motion of FtsZ filaments around the septum. What regulates the architecture, dynamics and stability of the Z-ring is still poorly understood, but FtsZ-associated proteins (Zaps) are known to play an important role. \r\nAdvances in fluorescence microscopy and in vitro reconstitution experiments have helped to shed light into some of the dynamic properties of these complex systems, but methods that allow to collect and analyze large quantitative data sets of the underlying polymer dynamics are still missing.\r\nHere, using an in vitro reconstitution approach, we studied how different Zaps affect FtsZ filament dynamics and organization into large-scale patterns, giving special emphasis to the role of the well-conserved protein ZapA. For this purpose, we use high-resolution fluorescence microscopy combined with novel image analysis workfows to study pattern organization and polymerization dynamics of active filaments. We quantified the influence of Zaps on FtsZ on three diferent spatial scales: the large-scale organization of the membrane-bound filament network, the underlying\r\npolymerization dynamics and the behavior of single molecules.\r\nWe found that ZapA cooperatively increases the spatial order of the filament network, binds only transiently to FtsZ filaments and has no effect on filament length and treadmilling velocity. Our data provides a model for how FtsZ-associated proteins can increase the precision and stability of the bacterial cell division machinery in a\r\nswitch-like manner, without compromising filament dynamics. Furthermore, we believe that our automated quantitative methods can be used to analyze a large variety of dynamic cytoskeletal systems, using standard time-lapse\r\nmovies of homogeneously labeled proteins obtained from experiments in vitro or even inside the living cell.\r\n" acknowledged_ssus: - _id: Bio acknowledgement: I should also express my gratitude to the bioimaging facility at IST Austria, for their assistance with the TIRF setup over the years, and especially to Christoph Sommer, who gave me a lot of input when I was starting to dive into programming. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Paulo R full_name: Dos Santos Caldas, Paulo R id: 38FCDB4C-F248-11E8-B48F-1D18A9856A87 last_name: Dos Santos Caldas orcid: 0000-0001-6730-4461 citation: ama: Dos Santos Caldas PR. Organization and dynamics of treadmilling filaments in cytoskeletal networks of FtsZ and its crosslinkers. 2020. doi:10.15479/AT:ISTA:8358 apa: Dos Santos Caldas, P. R. (2020). Organization and dynamics of treadmilling filaments in cytoskeletal networks of FtsZ and its crosslinkers. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8358 chicago: Dos Santos Caldas, Paulo R. “Organization and Dynamics of Treadmilling Filaments in Cytoskeletal Networks of FtsZ and Its Crosslinkers.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8358. ieee: P. R. Dos Santos Caldas, “Organization and dynamics of treadmilling filaments in cytoskeletal networks of FtsZ and its crosslinkers,” Institute of Science and Technology Austria, 2020. ista: Dos Santos Caldas PR. 2020. Organization and dynamics of treadmilling filaments in cytoskeletal networks of FtsZ and its crosslinkers. Institute of Science and Technology Austria. mla: Dos Santos Caldas, Paulo R. Organization and Dynamics of Treadmilling Filaments in Cytoskeletal Networks of FtsZ and Its Crosslinkers. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8358. short: P.R. Dos Santos Caldas, Organization and Dynamics of Treadmilling Filaments in Cytoskeletal Networks of FtsZ and Its Crosslinkers, Institute of Science and Technology Austria, 2020. date_created: 2020-09-10T09:26:49Z date_published: 2020-09-10T00:00:00Z date_updated: 2023-09-07T13:18:51Z day: '10' ddc: - '572' degree_awarded: PhD department: - _id: MaLo doi: 10.15479/AT:ISTA:8358 file: - access_level: open_access checksum: 882f93fe9c351962120e2669b84bf088 content_type: application/pdf creator: pcaldas date_created: 2020-09-10T12:11:29Z date_updated: 2020-09-10T12:11:29Z file_id: '8364' file_name: phd_thesis_pcaldas.pdf file_size: 141602462 relation: main_file success: 1 - access_level: closed checksum: 70cc9e399c4e41e6e6ac445ae55e8558 content_type: application/x-zip-compressed creator: pcaldas date_created: 2020-09-10T12:18:17Z date_updated: 2020-09-11T07:48:10Z file_id: '8365' file_name: phd_thesis_latex_pcaldas.zip file_size: 450437458 relation: source_file file_date_updated: 2020-09-11T07:48:10Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '135' publication_identifier: isbn: - 978-3-99078-009-1 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7572' relation: dissertation_contains status: public - id: '7197' relation: part_of_dissertation status: public status: public supervisor: - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 title: Organization and dynamics of treadmilling filaments in cytoskeletal networks of FtsZ and its crosslinkers tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8332' abstract: - lang: eng text: "Designing and verifying concurrent programs is a notoriously challenging, time consuming, and error prone task, even for experts. This is due to the sheer number of possible interleavings of a concurrent program, all of which have to be tracked and accounted for in a formal proof. Inventing an inductive invariant that captures all interleavings of a low-level implementation is theoretically possible, but practically intractable. We develop a refinement-based verification framework that provides mechanisms to simplify proof construction by decomposing the verification task into smaller subtasks.\r\n\r\nIn a first line of work, we present a foundation for refinement reasoning over structured concurrent programs. We introduce layered concurrent programs as a compact notation to represent multi-layer refinement proofs. A layered concurrent program specifies a sequence of connected concurrent programs, from most concrete to most abstract, such that common parts of different programs are written exactly once. Each program in this sequence is expressed as structured concurrent program, i.e., a program over (potentially recursive) procedures, imperative control flow, gated atomic actions, structured parallelism, and asynchronous concurrency. This is in contrast to existing refinement-based verifiers, which represent concurrent systems as flat transition relations. We present a powerful refinement proof rule that decomposes refinement checking over structured programs into modular verification conditions. Refinement checking is supported by a new form of modular, parameterized invariants, called yield invariants, and a linear permission system to enhance local reasoning.\r\n\r\nIn a second line of work, we present two new reduction-based program transformations that target asynchronous programs. These transformations reduce the number of interleavings that need to be considered, thus reducing the complexity of invariants. Synchronization simplifies the verification of asynchronous programs by introducing the fiction, for proof purposes, that asynchronous operations complete synchronously. Synchronization summarizes an asynchronous computation as immediate atomic effect. Inductive sequentialization establishes sequential reductions that captures every behavior of the original program up to reordering of coarse-grained commutative actions. A sequential reduction of a concurrent program is easy to reason about since it corresponds to a simple execution of the program in an idealized synchronous environment, where processes act in a fixed order and at the same speed.\r\n\r\nOur approach is implemented the CIVL verifier, which has been successfully used for the verification of several complex concurrent programs. In our methodology, the overall correctness of a program is established piecemeal by focusing on the invariant required for each refinement step separately. While the programmer does the creative work of specifying the chain of programs and the inductive invariant justifying each link in the chain, the tool automatically constructs the verification conditions underlying each refinement step." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Bernhard full_name: Kragl, Bernhard id: 320FC952-F248-11E8-B48F-1D18A9856A87 last_name: Kragl orcid: 0000-0001-7745-9117 citation: ama: 'Kragl B. Verifying concurrent programs: Refinement, synchronization, sequentialization. 2020. doi:10.15479/AT:ISTA:8332' apa: 'Kragl, B. (2020). Verifying concurrent programs: Refinement, synchronization, sequentialization. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8332' chicago: 'Kragl, Bernhard. “Verifying Concurrent Programs: Refinement, Synchronization, Sequentialization.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8332.' ieee: 'B. Kragl, “Verifying concurrent programs: Refinement, synchronization, sequentialization,” Institute of Science and Technology Austria, 2020.' ista: 'Kragl B. 2020. Verifying concurrent programs: Refinement, synchronization, sequentialization. Institute of Science and Technology Austria.' mla: 'Kragl, Bernhard. Verifying Concurrent Programs: Refinement, Synchronization, Sequentialization. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8332.' short: 'B. Kragl, Verifying Concurrent Programs: Refinement, Synchronization, Sequentialization, Institute of Science and Technology Austria, 2020.' date_created: 2020-09-04T12:24:12Z date_published: 2020-09-03T00:00:00Z date_updated: 2023-09-13T08:45:08Z day: '03' ddc: - '000' degree_awarded: PhD department: - _id: ToHe doi: 10.15479/AT:ISTA:8332 file: - access_level: open_access checksum: 26fe261550f691280bda4c454bf015c7 content_type: application/pdf creator: bkragl date_created: 2020-09-04T12:17:47Z date_updated: 2020-09-04T12:17:47Z file_id: '8333' file_name: kragl-thesis.pdf file_size: 1348815 relation: main_file - access_level: closed checksum: b9694ce092b7c55557122adba8337ebc content_type: application/zip creator: bkragl date_created: 2020-09-04T13:00:17Z date_updated: 2020-09-04T13:00:17Z file_id: '8335' file_name: kragl-thesis.zip file_size: 372312 relation: source_file file_date_updated: 2020-09-04T13:00:17Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '120' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '133' relation: part_of_dissertation status: public - id: '8012' relation: part_of_dissertation status: public - id: '8195' relation: part_of_dissertation status: public - id: '160' relation: part_of_dissertation status: public status: public supervisor: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 title: 'Verifying concurrent programs: Refinement, synchronization, sequentialization' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8958' abstract: - lang: eng text: "The oft-quoted dictum by Arthur Schawlow: ``A diatomic molecule has one atom too many'' has been disavowed. Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the rotation of coupled cold molecules in the presence of a many-body environment.\r\nIn this thesis, we introduce new variational approaches to quantum impurities and apply them to the Fröhlich polaron - a quasiparticle formed out of an electron (or other point-like impurity) in a polar medium, and to the angulon - a quasiparticle formed out of a rotating molecule in a bosonic bath.\r\nWith this theoretical toolbox, we reveal the self-localization transition for the angulon quasiparticle. We show that, unlike for polarons, self-localization of angulons occurs at finite impurity-bath coupling already at the mean-field level. The transition is accompanied by the spherical-symmetry breaking of the angulon ground state and a discontinuity in the first derivative of the ground-state energy. Moreover, the type of symmetry breaking is dictated by the symmetry of the microscopic impurity-bath interaction, which leads to a number of distinct self-localized states. \r\nFor the system containing multiple impurities, by analogy with the bipolaron, we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attractive interaction mediated by the excitations of the bath. We study this system from the strong-coupling regime to the weak molecule-bath interaction regime. We show that the molecules tend to have a strong alignment in the ground state, the biangulon shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules and the bath takes place. Finally, we introduce a diagonalization scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two molecules." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Xiang full_name: Li, Xiang id: 4B7E523C-F248-11E8-B48F-1D18A9856A87 last_name: Li citation: ama: Li X. Rotation of coupled cold molecules in the presence of a many-body environment. 2020. doi:10.15479/AT:ISTA:8958 apa: Li, X. (2020). Rotation of coupled cold molecules in the presence of a many-body environment. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8958 chicago: Li, Xiang. “Rotation of Coupled Cold Molecules in the Presence of a Many-Body Environment.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8958. ieee: X. Li, “Rotation of coupled cold molecules in the presence of a many-body environment,” Institute of Science and Technology Austria, 2020. ista: Li X. 2020. Rotation of coupled cold molecules in the presence of a many-body environment. Institute of Science and Technology Austria. mla: Li, Xiang. Rotation of Coupled Cold Molecules in the Presence of a Many-Body Environment. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8958. short: X. Li, Rotation of Coupled Cold Molecules in the Presence of a Many-Body Environment, Institute of Science and Technology Austria, 2020. date_created: 2020-12-21T09:44:30Z date_published: 2020-12-21T00:00:00Z date_updated: 2023-09-20T11:30:58Z day: '21' ddc: - '539' degree_awarded: PhD department: - _id: MiLe doi: 10.15479/AT:ISTA:8958 ec_funded: 1 file: - access_level: open_access checksum: 3994c54a1241451d561db1d4f43bad30 content_type: application/pdf creator: xli date_created: 2020-12-22T10:55:56Z date_updated: 2020-12-22T10:55:56Z file_id: '8967' file_name: THESIS_Xiang_Li.pdf file_size: 3622305 relation: main_file success: 1 - access_level: closed checksum: 0954ecfc5554c05615c14de803341f00 content_type: application/x-zip-compressed creator: xli date_created: 2020-12-22T10:56:03Z date_updated: 2020-12-30T07:18:03Z file_id: '8968' file_name: THESIS_Xiang_Li.zip file_size: 4018859 relation: source_file file_date_updated: 2020-12-30T07:18:03Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: '125' project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '5886' relation: part_of_dissertation status: public - id: '8587' relation: part_of_dissertation status: public - id: '1120' relation: part_of_dissertation status: public status: public supervisor: - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 title: Rotation of coupled cold molecules in the presence of a many-body environment type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8386' abstract: - lang: eng text: "Form versus function is a long-standing debate in various design-related fields, such as architecture as well as graphic and industrial design. A good design that balances form and function often requires considerable human effort and collaboration among experts from different professional fields. Computational design tools provide a new paradigm for designing functional objects. In computational design, form and function are represented as mathematical\r\nquantities, with the help of numerical and combinatorial algorithms, they can assist even novice users in designing versatile models that exhibit their desired functionality. This thesis presents three disparate research studies on the computational design of functional objects: The appearance of 3d print—we optimize the volumetric material distribution for faithfully replicating colored surface texture in 3d printing; the dynamic motion of mechanical structures—\r\nour design system helps the novice user to retarget various mechanical templates with different functionality to complex 3d shapes; and a more abstract functionality, multistability—our algorithm automatically generates models that exhibit multiple stable target poses. For each of these cases, our computational design tools not only ensure the functionality of the results but also permit the user aesthetic freedom over the form. Moreover, fabrication constraints\r\nwere taken into account, which allow for the immediate creation of physical realization via 3D printing or laser cutting." acknowledged_ssus: - _id: SSU acknowledgement: The research in this thesis has received funding from the European Union’s Horizon 2020 research and innovation programme, under the Marie Skłodowska-Curie grant agreement No 642841 (DISTRO) and the European Research Council grant agreement No 715767 (MATERIALIZABLE). All the research projects in this thesis were also supported by Scientific Service Units (SSUs) at IST Austria. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Ran full_name: Zhang, Ran id: 4DDBCEB0-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0002-3808-281X citation: ama: Zhang R. Structure-aware computational design and its application to 3D printable volume scattering, mechanism, and multistability. 2020. doi:10.15479/AT:ISTA:8386 apa: Zhang, R. (2020). Structure-aware computational design and its application to 3D printable volume scattering, mechanism, and multistability. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8386 chicago: Zhang, Ran. “Structure-Aware Computational Design and Its Application to 3D Printable Volume Scattering, Mechanism, and Multistability.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8386. ieee: R. Zhang, “Structure-aware computational design and its application to 3D printable volume scattering, mechanism, and multistability,” Institute of Science and Technology Austria, 2020. ista: Zhang R. 2020. Structure-aware computational design and its application to 3D printable volume scattering, mechanism, and multistability. Institute of Science and Technology Austria. mla: Zhang, Ran. Structure-Aware Computational Design and Its Application to 3D Printable Volume Scattering, Mechanism, and Multistability. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8386. short: R. Zhang, Structure-Aware Computational Design and Its Application to 3D Printable Volume Scattering, Mechanism, and Multistability, Institute of Science and Technology Austria, 2020. date_created: 2020-09-14T01:04:53Z date_published: 2020-09-14T00:00:00Z date_updated: 2023-09-22T09:49:31Z day: '14' ddc: - '003' degree_awarded: PhD department: - _id: BeBi doi: 10.15479/AT:ISTA:8386 ec_funded: 1 file: - access_level: closed checksum: edcf578b6e1c9b0dd81ff72d319b66ba content_type: application/x-zip-compressed creator: rzhang date_created: 2020-09-14T01:02:59Z date_updated: 2020-09-14T12:18:43Z file_id: '8388' file_name: Thesis_Ran.zip file_size: 1245800191 relation: source_file - access_level: open_access checksum: 817e20c33be9247f906925517c56a40d content_type: application/pdf creator: rzhang date_created: 2020-09-15T12:51:53Z date_updated: 2020-09-15T12:51:53Z file_id: '8396' file_name: PhD_thesis_Ran Zhang_20200915.pdf file_size: 161385316 relation: main_file success: 1 file_date_updated: 2020-09-15T12:51:53Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '148' project: - _id: 2508E324-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '642841' name: Distributed 3D Object Design - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '486' relation: part_of_dissertation status: public - id: '1002' relation: part_of_dissertation status: public status: public supervisor: - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 title: Structure-aware computational design and its application to 3D printable volume scattering, mechanism, and multistability type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ...