--- _id: '11196' abstract: - lang: eng text: "One of the fundamental questions in Neuroscience is how the structure of synapses and their physiological properties are related. While synaptic transmission remains a dynamic process, electron microscopy provides images with comparably low temporal resolution (Studer et al., 2014). The current work overcomes this challenge and describes an improved “Flash and Freeze” technique (Watanabe et al., 2013a; Watanabe et al., 2013b) to study synaptic transmission at the hippocampal mossy fiber-CA3 pyramidal neuron synapses, using mouse acute brain slices and organotypic slices culture. The improved method allowed for selective stimulation of presynaptic mossy fiber boutons and the observation of synaptic vesicle pool dynamics at the active zones. Our results uncovered several intriguing morphological features of mossy fiber boutons. First, the docked vesicle pool was largely depleted (more than 70%) after stimulation, implying that the docked synaptic vesicles pool and readily releasable pool are vastly overlapping in mossy fiber boutons. Second, the synaptic vesicles are skewed towards larger diameters, displaying a wide range of sizes. An increase in the mean diameter of synaptic vesicles, after single and repetitive stimulation, suggests that smaller vesicles have a higher release probability. Third, we observed putative endocytotic structures after moderate light stimulation, matching the timing of previously described ultrafast endocytosis (Watanabe et al., 2013a; Delvendahl et al., 2016). \r\n\tIn addition, synaptic transmission depends on a sophisticated system of protein machinery and calcium channels (Südhof, 2013b), which amplifies the challenge in studying synaptic communication as these interactions can be potentially modified during synaptic plasticity. And although recent study elucidated the potential correlation between physiological and morphological properties of synapses during synaptic plasticity (Vandael et al., 2020), the molecular underpinning of it remains unknown. Thus, the presented work tries to overcome this challenge and aims to pinpoint changes in the molecular architecture at hippocampal mossy fiber bouton synapses during short- and long-term potentiation (STP and LTP), we combined chemical potentiation, with the application of a cyclic adenosine monophosphate agonist (i.e. forskolin) and freeze-fracture replica immunolabelling. This method allowed the localization of membrane-bound proteins with nanometer precision within the active zone, in particular, P/Q-type calcium channels and synaptic vesicle priming proteins Munc13-1/2. First, we found that the number of clusters of Munc13-1 in the mossy fiber bouton active zone increased significantly during STP, but decreased to lower than the control value during LTP. Secondly, although the distance between the calcium channels and Munc13-1s did not change after induction of STP, it shortened during the LTP phase. Additionally, forskolin did not affect Munc13-2 distribution during STP and LTP. These results indicate the existence of two distinct mechanisms that govern STP and LTP at mossy fiber bouton synapses: an increase in the readily realizable pool in the case of STP and a potential increase in release probability during LTP. “Flash and freeze” and functional electron microscopy, are versatile methods that can be successfully applied to intact brain circuits to study synaptic transmission even at the molecular level.\r\n" acknowledged_ssus: - _id: EM-Fac - _id: PreCl alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Olena full_name: Kim, Olena id: 3F8ABDDA-F248-11E8-B48F-1D18A9856A87 last_name: Kim citation: ama: Kim O. Nanoarchitecture of hippocampal mossy fiber-CA3 pyramidal neuron synapses. 2022. doi:10.15479/at:ista:11196 apa: Kim, O. (2022). Nanoarchitecture of hippocampal mossy fiber-CA3 pyramidal neuron synapses. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:11196 chicago: Kim, Olena. “Nanoarchitecture of Hippocampal Mossy Fiber-CA3 Pyramidal Neuron Synapses.” Institute of Science and Technology Austria, 2022. https://doi.org/10.15479/at:ista:11196. ieee: O. Kim, “Nanoarchitecture of hippocampal mossy fiber-CA3 pyramidal neuron synapses,” Institute of Science and Technology Austria, 2022. ista: Kim O. 2022. Nanoarchitecture of hippocampal mossy fiber-CA3 pyramidal neuron synapses. Institute of Science and Technology Austria. mla: Kim, Olena. Nanoarchitecture of Hippocampal Mossy Fiber-CA3 Pyramidal Neuron Synapses. Institute of Science and Technology Austria, 2022, doi:10.15479/at:ista:11196. short: O. Kim, Nanoarchitecture of Hippocampal Mossy Fiber-CA3 Pyramidal Neuron Synapses, Institute of Science and Technology Austria, 2022. date_created: 2022-04-20T09:47:12Z date_published: 2022-04-20T00:00:00Z date_updated: 2023-08-18T06:31:52Z day: '20' ddc: - '570' degree_awarded: PhD department: - _id: PeJo - _id: GradSch doi: 10.15479/at:ista:11196 ec_funded: 1 file: - access_level: open_access checksum: 1616a8bf6f13a57c892dac873dcd0936 content_type: application/pdf creator: okim date_created: 2022-04-20T14:21:56Z date_updated: 2023-04-20T22:30:03Z embargo: 2023-04-19 file_id: '11220' file_name: Olena_KIM_thesis_final.pdf file_size: 21273537 relation: main_file - access_level: closed checksum: 1acb433f98dc42abb0b4b0cbb0c4b918 content_type: application/x-zip-compressed creator: okim date_created: 2022-04-20T14:22:56Z date_updated: 2023-04-20T22:30:03Z embargo_to: open_access file_id: '11221' file_name: KIM_thesis_final.zip file_size: 59248569 relation: source_file file_date_updated: 2023-04-20T22:30:03Z has_accepted_license: '1' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '04' oa: 1 oa_version: Published Version page: '132' project: - _id: 25BAF7B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '708497' name: Presynaptic calcium channels distribution and impact on coupling at the hippocampal mossy fiber synapse - _id: 25B7EB9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '692692' name: Biophysics and circuit function of a giant cortical glumatergic synapse - _id: 25C3DBB6-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: W01205 name: Zellkommunikation in Gesundheit und Krankheit - _id: 25C5A090-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00312 name: The Wittgenstein Prize publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '11222' relation: part_of_dissertation status: public - id: '7473' relation: part_of_dissertation status: public status: public supervisor: - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 title: Nanoarchitecture of hippocampal mossy fiber-CA3 pyramidal neuron synapses tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2022' ... --- _id: '10727' abstract: - lang: eng text: "Social insects are a common model to study disease dynamics in social animals. Even though pathogens should thrive in social insect colonies as the hosts engage in frequent social interactions, are closely related and live in a pathogen-rich environment, disease outbreaks are rare. This is because social insects have evolved mechanisms to keep pathogens at bay – and fight disease as a collective. Social insect colonies are often viewed as “superorganisms” with division of labor between reproductive “germ-like” queens and males and “somatic” workers, which together form an interdependent reproductive unit that parallels a multicellular body. Superorganisms possess a “social immune system” that comprises of collective disease defenses performed by the workers - summarized as “social immunity”. In social groups immunization (reduced susceptibility to a parasite upon secondary exposure to the same parasite) can e.g. be triggered by social interactions (“social immunization”). Social immunization can be caused by (i) asymptomatic low-level infections that are acquired during caregiving to a contagious individual that can give an immune boost, which can induce protection upon later encounter with the same pathogen (active immunization) or (ii) by transfer of immune effectors between individuals (passive immunization).\r\nIn the second chapter, I built up on a study that I co-authored that found that low-level infections can not only be protective, but also be costly and make the host more susceptible to detrimental superinfections after contact to a very dissimilar pathogen. I here now tested different degrees of phylogenetically-distant fungal strains of M. brunneum and M. robertsii in L. neglectus and can describe the occurrence of cross-protection of social immunization if the first and second pathogen are from the same level. Interestingly, low-level infections only provided protection when the first strain was less virulent than the second strain and elicited higher immune gene expression.\r\nIn the third and fourth chapters, I expanded on the role of social immunity in sexual selection, a so far unstudied field. I used the fungus Metarhizium robertsii and the ant Cardiocondyla obscurior as a model, as in this species mating occurs in the presence of workers and can be studied under laboratory conditions. Before males mate with virgin queens in the nest they engage in fierce combat over the access to their mating partners.\r\nFirst, I focused on male-male competition in the third chapter and found that fighting with a contagious male is costly as it can lead to contamination of the rival, but that workers can decrease the risk of disease contraction by performing sanitary care.\r\nIn the fourth chapter, I studied the effect of fungal infection on survival and mating success of sexuals (freshly emerged queens and males) and found that worker-performed sanitary care can buffer the negative effect that a pathogenic contagion would have on sexuals by spore removal from the exposed individuals. When social immunity was prevented and queens could contract spores from their mating partner, very low dosages led to negative consequences: their lifespan was reduced and they produced fewer offspring with poor immunocompetence compared to healthy queens. Interestingly, cohabitation with a late-stage infected male where no spore transfer was possible had a positive effect on offspring immunity – male offspring of mothers that apparently perceived an infected partner in their vicinity reacted more sensitively to fungal challenge than male offspring without paternal pathogen history." acknowledged_ssus: - _id: LifeSc alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Sina full_name: Metzler, Sina id: 48204546-F248-11E8-B48F-1D18A9856A87 last_name: Metzler orcid: 0000-0002-9547-2494 citation: ama: Metzler S. Pathogen-mediated sexual selection and immunization in ant colonies. 2022. doi:10.15479/AT:ISTA:10727 apa: Metzler, S. (2022). Pathogen-mediated sexual selection and immunization in ant colonies. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:10727 chicago: Metzler, Sina. “Pathogen-Mediated Sexual Selection and Immunization in Ant Colonies.” Institute of Science and Technology Austria, 2022. https://doi.org/10.15479/AT:ISTA:10727. ieee: S. Metzler, “Pathogen-mediated sexual selection and immunization in ant colonies,” Institute of Science and Technology Austria, 2022. ista: Metzler S. 2022. Pathogen-mediated sexual selection and immunization in ant colonies. Institute of Science and Technology Austria. mla: Metzler, Sina. Pathogen-Mediated Sexual Selection and Immunization in Ant Colonies. Institute of Science and Technology Austria, 2022, doi:10.15479/AT:ISTA:10727. short: S. Metzler, Pathogen-Mediated Sexual Selection and Immunization in Ant Colonies, Institute of Science and Technology Austria, 2022. date_created: 2022-02-04T15:45:12Z date_published: 2022-02-07T00:00:00Z date_updated: 2023-09-07T13:43:23Z day: '07' ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: SyCr doi: 10.15479/AT:ISTA:10727 ec_funded: 1 file: - access_level: closed checksum: 47ba18bb270dd6cc266e0a3f7c69d0e4 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: smetzler date_created: 2022-02-04T15:36:12Z date_updated: 2023-02-03T23:30:03Z embargo_to: open_access file_id: '10728' file_name: Thesis_Sina_Metzler.docx file_size: 6757886 relation: source_file - access_level: open_access checksum: f3ec07d5d6b20ae6e46bfeedebce9027 content_type: application/pdf creator: smetzler date_created: 2022-02-04T15:36:43Z date_updated: 2023-02-03T23:30:03Z embargo: 2023-02-02 file_id: '10730' file_name: Thesis_Sina_Metzler_A2.pdf file_size: 6314921 relation: main_file - access_level: open_access checksum: dedd14b7be7a75d63018dbfc68dd8113 content_type: application/pdf creator: smetzler date_created: 2022-02-07T10:35:02Z date_updated: 2023-02-04T23:30:03Z embargo: 2023-02-02 file_id: '10742' file_name: Thesis_Sina_Metzler_print.pdf file_size: 6882557 relation: main_file file_date_updated: 2023-02-04T23:30:03Z has_accepted_license: '1' language: - iso: eng month: '02' oa: 1 oa_version: Published Version project: - _id: 2649B4DE-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '771402' name: Epidemics in ant societies on a chip publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 title: Pathogen-mediated sexual selection and immunization in ant colonies type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2022' ... --- _id: '11879' abstract: - lang: eng text: "As the overall global mean surface temperature is increasing due to climate change, plant\r\nadaptation to those stressful conditions is of utmost importance for their survival. Plants are\r\nsessile organisms, thus to compensate for their lack of mobility, they evolved a variety of\r\nmechanisms enabling them to flexibly adjust their physiological, growth and developmental\r\nprocesses to fluctuating temperatures and to survive in harsh environments. While these unique\r\nadaptation abilities provide an important evolutionary advantage, overall modulation of plant\r\ngrowth and developmental program due to non-optimal temperature negatively affects biomass\r\nproduction, crop productivity or sensitivity to pathogens. Thus, understanding molecular\r\nprocesses underlying plant adaptation to increased temperature can provide important\r\nresources for breeding strategies to ensure sufficient agricultural food production.\r\nAn increase in ambient temperature by a few degrees leads to profound changes in organ growth\r\nincluding enhanced hypocotyl elongation, expansion of petioles, hyponastic growth of leaves and\r\ncotyledons, collectively named thermomorphogenesis (Casal & Balasubramanian, 2019). Auxin,\r\none of the best-studied growth hormones, plays an essential role in this process by direct\r\nactivation of transcriptional and non-transcriptional processes resulting in elongation growth\r\n(Majda & Robert, 2018).To modulate hypocotyl growth in response to high ambient temperature\r\n(hAT), auxin needs to be redistributed accordingly. PINs, auxin efflux transporters, are key\r\ncomponents of the polar auxin transport (PAT) machinery, which controls the amount and\r\ndirection of auxin translocated in the plant tissues and organs(Adamowski & Friml, 2015). Hence,\r\nPIN-mediated transport is tightly linked with thermo-morphogenesis, and interference with PAT\r\nthrough either chemical or genetic means dramatically affecting the adaptive responses to hAT.\r\nIntriguingly, despite the key role of PIN mediated transport in growth response to hAT, whether\r\nand how PINs at the level of expression adapt to fluctuation in temperature is scarcely\r\nunderstood.\r\nWith genetic, molecular and advanced bio-imaging approaches, we demonstrate the role of PIN\r\nauxin transporters in the regulation of hypocotyl growth in response to hAT. We show that via\r\nadjustment of PIN3, PIN4 and PIN7 expression in cotyledons and hypocotyls, auxin distribution is modulated thereby determining elongation pattern of epidermal cells at hAT. Furthermore, we\r\nidentified three Zinc-Finger (ZF) transcription factors as novel molecular components of the\r\nthermo-regulatory network, which through negative regulation of PIN transcription adjust the\r\ntransport of auxin at hAT. Our results suggest that the ZF-PIN module might be a part of the\r\nnegative feedback loop attenuating the activity of the thermo-sensing pathway to restrain\r\nexaggerated growth and developmental responses to hAT." acknowledged_ssus: - _id: Bio - _id: LifeSc - _id: SSU acknowledgement: I would like to acknowledge ISTA and all the people from the Scientific Service Units and at ISTA, in particular Dorota Jaworska for excellent technical and scientific support as well as ÖAW for funding my research for over 3 years (DOC ÖAW Fellowship PR1022OEAW02). alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Christina full_name: Artner, Christina id: 45DF286A-F248-11E8-B48F-1D18A9856A87 last_name: Artner citation: ama: Artner C. Modulation of auxin transport via ZF proteins adjust plant response to high ambient temperature. 2022. doi:10.15479/at:ista:11879 apa: Artner, C. (2022). Modulation of auxin transport via ZF proteins adjust plant response to high ambient temperature. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:11879 chicago: Artner, Christina. “Modulation of Auxin Transport via ZF Proteins Adjust Plant Response to High Ambient Temperature.” Institute of Science and Technology Austria, 2022. https://doi.org/10.15479/at:ista:11879. ieee: C. Artner, “Modulation of auxin transport via ZF proteins adjust plant response to high ambient temperature,” Institute of Science and Technology Austria, 2022. ista: Artner C. 2022. Modulation of auxin transport via ZF proteins adjust plant response to high ambient temperature. Institute of Science and Technology Austria. mla: Artner, Christina. Modulation of Auxin Transport via ZF Proteins Adjust Plant Response to High Ambient Temperature. Institute of Science and Technology Austria, 2022, doi:10.15479/at:ista:11879. short: C. Artner, Modulation of Auxin Transport via ZF Proteins Adjust Plant Response to High Ambient Temperature, Institute of Science and Technology Austria, 2022. date_created: 2022-08-17T07:58:53Z date_published: 2022-08-17T00:00:00Z date_updated: 2023-09-09T22:30:04Z day: '17' ddc: - '580' degree_awarded: PhD department: - _id: GradSch - _id: EvBe doi: 10.15479/at:ista:11879 file: - access_level: open_access checksum: a2c2fdc28002538840490bfa6a08b2cb content_type: application/pdf creator: cartner date_created: 2022-08-17T12:08:49Z date_updated: 2023-09-09T22:30:03Z embargo: 2023-09-08 file_id: '11907' file_name: ChristinaArtner_PhD_Thesis_2022.pdf file_size: 11113608 relation: main_file - access_level: closed checksum: 66b461c074b815fbe63481b3f46a9f43 content_type: application/octet-stream creator: cartner date_created: 2022-08-17T12:08:59Z date_updated: 2023-09-09T22:30:03Z embargo_to: open_access file_id: '11908' file_name: ChristinaArtner_PhD_Thesis_2022.7z file_size: 19097730 relation: source_file file_date_updated: 2023-09-09T22:30:03Z has_accepted_license: '1' keyword: - high ambient temperature - auxin - PINs - Zinc-Finger proteins - thermomorphogenesis - stress language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: '128' project: - _id: 2685A872-B435-11E9-9278-68D0E5697425 name: Hormonal regulation of plant adaptive responses to environmental signals publication_identifier: isbn: - 978-3-99078-022-0 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 title: Modulation of auxin transport via ZF proteins adjust plant response to high ambient temperature type: dissertation user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2022' ... --- _id: '11393' abstract: - lang: eng text: "AMPA receptors (AMPARs) mediate fast excitatory neurotransmission and their role is\r\nimplicated in complex processes such as learning and memory and various neurological\r\ndiseases. These receptors are composed of different subunits and the subunit composition can\r\naffect channel properties, receptor trafficking and interaction with other associated proteins.\r\nUsing the high sensitivity SDS-digested freeze-fracture replica labeling (SDS-FRL) for\r\nelectron microscopy I investigated the number, density, and localization of AMPAR subunits,\r\nGluA1, GluA2, GluA3, and GluA1-3 (panAMPA) in pyramidal cells in the CA1 area of mouse\r\nhippocampus. I have found that the immunogold labeling for all of these subunits in the\r\npostsynaptic sites was highest in stratum radiatum and lowest in stratum lacunosummoleculare. The labeling density for the all subunits in the extrasynaptic sites showed a gradual\r\nincrease from the pyramidal cell soma towards the distal part of stratum radiatum. The densities\r\nof extrasynaptic GluA1, GluA2 and panAMPA labeling reached 10-15% of synaptic densities,\r\nwhile the ratio of extrasynaptic labeling for GluA3 was significantly lower compared than those\r\nfor other subunits. The labeling patterns for GluA1, GluA2 and GluA1-3 are similar and their\r\ndensities were higher in the periphery than center of synapses. In contrast, the GluA3-\r\ncontaining receptors were more centrally localized compared to the GluA1- and GluA2-\r\ncontaining receptors.\r\nThe hippocampus plays a central role in learning and memory. Contextual learning has been\r\nshown to require the delivery of AMPA receptors to CA1 synapses in the dorsal hippocampus.\r\nHowever, proximodistal heterogeneity of this plasticity and particular contribution of different\r\nAMPA receptor subunits are not fully understood. By combining inhibitory avoidance task, a\r\nhippocampus-dependent contextual fear-learning paradigm, with SDS-FRL, I have revealed an\r\nincrease in synaptic density specific to GluA1-containing AMPA receptors in the CA1 area.\r\nThe intrasynaptic distribution of GluA1 also changed from the periphery to center-preferred\r\npattern. Furthermore, this synaptic plasticity was evident selectively in stratum radiatum but\r\nnot stratum oriens, and in the CA1 subregion proximal but not distal to CA2. These findings\r\nfurther contribute to our understanding of how specific hippocampal subregions and AMPA\r\nreceptor subunits are involved in physiological learning.\r\nAlthough the immunolabeling results above shed light on subunit-specific plasticity in\r\nAMPAR distribution, no tools to visualize and study the subunit composition at the single\r\nchannel level in situ have been available. Electron microscopy with conventional immunogold\r\nlabeling approaches has limitations in the single channel analysis because of the large size of\r\nantibodies and steric hindrance hampering multiple subunit labeling of single channels. I\r\nmanaged to develop a new chemical labeling system using a short peptide tag and small\r\nsynthetic probes, which form specific covalent bond with a cysteine residue in the tag fused to\r\nproteins of interest (reactive tag system). I additionally made substantial progress into adapting\r\nthis system for AMPA receptor subunits." acknowledged_ssus: - _id: EM-Fac alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Marijo full_name: Jevtic, Marijo id: 4BE3BC94-F248-11E8-B48F-1D18A9856A87 last_name: Jevtic citation: ama: Jevtic M. Contextual fear learning induced changes in AMPA receptor subtypes along the proximodistal axis in dorsal hippocampus. 2022. doi:10.15479/at:ista:11393 apa: Jevtic, M. (2022). Contextual fear learning induced changes in AMPA receptor subtypes along the proximodistal axis in dorsal hippocampus. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:11393 chicago: Jevtic, Marijo. “Contextual Fear Learning Induced Changes in AMPA Receptor Subtypes along the Proximodistal Axis in Dorsal Hippocampus.” Institute of Science and Technology Austria, 2022. https://doi.org/10.15479/at:ista:11393. ieee: M. Jevtic, “Contextual fear learning induced changes in AMPA receptor subtypes along the proximodistal axis in dorsal hippocampus,” Institute of Science and Technology Austria, 2022. ista: Jevtic M. 2022. Contextual fear learning induced changes in AMPA receptor subtypes along the proximodistal axis in dorsal hippocampus. Institute of Science and Technology Austria. mla: Jevtic, Marijo. Contextual Fear Learning Induced Changes in AMPA Receptor Subtypes along the Proximodistal Axis in Dorsal Hippocampus. Institute of Science and Technology Austria, 2022, doi:10.15479/at:ista:11393. short: M. Jevtic, Contextual Fear Learning Induced Changes in AMPA Receptor Subtypes along the Proximodistal Axis in Dorsal Hippocampus, Institute of Science and Technology Austria, 2022. date_created: 2022-05-17T08:57:41Z date_published: 2022-05-16T00:00:00Z date_updated: 2023-09-07T14:53:44Z day: '16' ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: RySh doi: 10.15479/at:ista:11393 file: - access_level: closed checksum: 8fc695d88020d70d231dad0e9f10b138 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: cchlebak date_created: 2022-05-17T09:08:06Z date_updated: 2023-05-17T22:30:03Z embargo_to: open_access file_id: '11395' file_name: MJ thesis.docx file_size: 56427603 relation: source_file - access_level: open_access checksum: c1dd20a1aece521b3500607b00e463d6 content_type: application/pdf creator: cchlebak date_created: 2022-05-17T12:09:25Z date_updated: 2023-05-17T22:30:03Z embargo: 2023-05-16 file_id: '11397' file_name: MJ_thesis_PDFA.pdf file_size: 4351981 relation: main_file file_date_updated: 2023-05-17T22:30:03Z has_accepted_license: '1' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: '108' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7391' relation: part_of_dissertation status: public status: public supervisor: - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 title: Contextual fear learning induced changes in AMPA receptor subtypes along the proximodistal axis in dorsal hippocampus type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2022' ... --- _id: '12366' abstract: - lang: eng text: "Recent substantial advances in the feld of superconducting circuits have shown its\r\npotential as a leading platform for future quantum computing. In contrast to classical\r\ncomputers based on bits that are represented by a single binary value, 0 or 1, quantum\r\nbits (or qubits) can be in a superposition of both. Thus, quantum computers can store\r\nand handle more information at the same time and a quantum advantage has already\r\nbeen demonstrated for two types of computational tasks. Rapid progress in academic\r\nand industry labs accelerates the development of superconducting processors which may\r\nsoon fnd applications in complex computations, chemical simulations, cryptography, and\r\noptimization. Now that these machines are scaled up to tackle such problems the questions\r\nof qubit interconnects and networks becomes very relevant. How to route signals on-chip\r\nbetween diferent processor components? What is the most efcient way to entangle\r\nqubits? And how to then send and process entangled signals between distant cryostats\r\nhosting superconducting processors?\r\nIn this thesis, we are looking for solutions to these problems by studying the collective\r\nbehavior of superconducting qubit ensembles. We frst demonstrate on-demand tunable\r\ndirectional scattering of microwave photons from a pair of qubits in a waveguide. Such a\r\ndevice can route microwave photons on-chip with a high diode efciency. Then we focus\r\non studying ultra-strong coupling regimes between light (microwave photons) and matter\r\n(superconducting qubits), a regime that could be promising for extremely fast multi-qubit\r\nentanglement generation. Finally, we show coherent pulse storage and periodic revivals\r\nin a fve qubit ensemble strongly coupled to a resonator. Such a reconfgurable storage\r\ndevice could be used as part of a quantum repeater that is needed for longer-distance\r\nquantum communication.\r\nThe achieved high degree of control over multi-qubit ensembles highlights not only the\r\nbeautiful physics of circuit quantum electrodynamics, it also represents the frst step\r\ntoward new quantum simulation and communication methods, and certain techniques\r\nmay also fnd applications in future superconducting quantum computing hardware.\r\n" acknowledged_ssus: - _id: NanoFab - _id: M-Shop - _id: EM-Fac alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko citation: ama: Redchenko E. Controllable states of superconducting Qubit ensembles. 2022. doi:10.15479/at:ista:12132 apa: Redchenko, E. (2022). Controllable states of superconducting Qubit ensembles. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12132 chicago: Redchenko, Elena. “Controllable States of Superconducting Qubit Ensembles.” Institute of Science and Technology Austria, 2022. https://doi.org/10.15479/at:ista:12132. ieee: E. Redchenko, “Controllable states of superconducting Qubit ensembles,” Institute of Science and Technology Austria, 2022. ista: Redchenko E. 2022. Controllable states of superconducting Qubit ensembles. Institute of Science and Technology Austria. mla: Redchenko, Elena. Controllable States of Superconducting Qubit Ensembles. Institute of Science and Technology Austria, 2022, doi:10.15479/at:ista:12132. short: E. Redchenko, Controllable States of Superconducting Qubit Ensembles, Institute of Science and Technology Austria, 2022. date_created: 2023-01-25T09:17:02Z date_published: 2022-09-26T00:00:00Z date_updated: 2023-05-26T09:29:07Z day: '26' ddc: - '530' degree_awarded: PhD department: - _id: GradSch - _id: JoFi doi: 10.15479/at:ista:12132 ec_funded: 1 file: - access_level: open_access checksum: 39eabb1e006b41335f17f3b29af09648 content_type: application/pdf creator: cchlebak date_created: 2023-01-25T09:41:49Z date_updated: 2023-01-26T23:30:44Z embargo: 2022-12-28 file_id: '12367' file_name: Final_Thesis_ES_Redchenko.pdf file_size: 56076868 relation: main_file file_date_updated: 2023-01-26T23:30:44Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '168' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 237CBA6C-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862644' name: Quantum readout techniques and technologies publication_identifier: isbn: - 978-3-99078-024-4 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X title: Controllable states of superconducting Qubit ensembles type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2022' ... --- _id: '11932' abstract: - lang: eng text: "The ability to form and retrieve memories is central to survival. In mammals, the hippocampus\r\nis a brain region essential to the acquisition and consolidation of new memories. It is also\r\ninvolved in keeping track of one’s position in space and aids navigation. Although this\r\nspace-memory has been a source of contradiction, evidence supports the view that the role of\r\nthe hippocampus in navigation is memory, thanks to the formation of cognitive maps. First\r\nintroduced by Tolman in 1948, cognitive maps are generally used to organize experiences in\r\nmemory; however, the detailed mechanisms by which these maps are formed and stored are not\r\nyet agreed upon. Some influential theories describe this process as involving three fundamental\r\nsteps: initial encoding by the hippocampus, interactions between the hippocampus and other\r\ncortical areas, and long-term extra-hippocampal consolidation. In this thesis, I will show how\r\nthe investigation of cognitive maps of space helped to shed light on each of these three memory\r\nprocesses.\r\nThe first study included in this thesis deals with the initial encoding of spatial memories in\r\nthe hippocampus. Much is known about encoding at the level of single cells, but less about\r\ntheir co-activity or joint contribution to the encoding of novel spatial information. I will\r\ndescribe the structure of an interaction network that allows for efficient encoding of noisy\r\nspatial information during the first exploration of a novel environment.\r\nThe second study describes the interactions between the hippocampus and the prefrontal\r\ncortex (PFC), two areas directly and indirectly connected. It is known that the PFC, in concert\r\nwith the hippocampus, is involved in various processes, including memory storage and spatial\r\nnavigation. Nonetheless, the detailed mechanisms by which PFC receives information from the\r\nhippocampus are not clear. I will show how a transient improvement in theta phase locking of\r\nPFC cells enables interactions of cell pairs across the two regions.\r\nThe third study describes the learning of behaviorally-relevant spatial locations in the hippocampus and the medial entorhinal cortex. I will show how the accumulation of firing around\r\ngoal locations, a correlate of learning, can shed light on the transition from short- to long-term\r\nspatial memories and the speed of consolidation in different brain areas.\r\nThe studies included in this thesis represent the main scientific contributions of my Ph.D. They\r\ninvolve statistical analyses and models of neural responses of cells in different brain areas of\r\nrats executing spatial tasks. I will conclude the thesis by discussing the impact of the findings\r\non principles of memory formation and retention, including the mechanisms, the speed, and\r\nthe duration of these processes." acknowledgement: I acknowledge the support from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 665385. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Michele full_name: Nardin, Michele id: 30BD0376-F248-11E8-B48F-1D18A9856A87 last_name: Nardin orcid: 0000-0001-8849-6570 citation: ama: Nardin M. On the encoding, transfer, and consolidation of spatial memories. 2022. doi:10.15479/at:ista:11932 apa: Nardin, M. (2022). On the encoding, transfer, and consolidation of spatial memories. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:11932 chicago: Nardin, Michele. “On the Encoding, Transfer, and Consolidation of Spatial Memories.” Institute of Science and Technology Austria, 2022. https://doi.org/10.15479/at:ista:11932. ieee: M. Nardin, “On the encoding, transfer, and consolidation of spatial memories,” Institute of Science and Technology Austria, 2022. ista: Nardin M. 2022. On the encoding, transfer, and consolidation of spatial memories. Institute of Science and Technology Austria. mla: Nardin, Michele. On the Encoding, Transfer, and Consolidation of Spatial Memories. Institute of Science and Technology Austria, 2022, doi:10.15479/at:ista:11932. short: M. Nardin, On the Encoding, Transfer, and Consolidation of Spatial Memories, Institute of Science and Technology Austria, 2022. date_created: 2022-08-19T08:52:30Z date_published: 2022-08-19T00:00:00Z date_updated: 2023-09-05T12:02:14Z day: '19' ddc: - '573' degree_awarded: PhD department: - _id: GradSch - _id: JoCs doi: 10.15479/at:ista:11932 ec_funded: 1 file: - access_level: closed checksum: 2dbb70c74aaa3b64c1f463e943baf09c content_type: application/zip creator: mnardin date_created: 2022-08-19T16:31:34Z date_updated: 2023-06-20T22:30:04Z embargo_to: open_access file_id: '11935' file_name: Michele Nardin, Ph.D. Thesis - ISTA (1).zip file_size: 13515457 relation: source_file - access_level: open_access checksum: 0ec94035ea35a47a9f589ed168e60b48 content_type: application/pdf creator: mnardin date_created: 2022-08-22T09:43:50Z date_updated: 2023-06-20T22:30:04Z embargo: 2023-06-19 file_id: '11941' file_name: Michele_Nardin_Phd_Thesis_PDFA.pdf file_size: 9906458 relation: main_file file_date_updated: 2023-06-20T22:30:04Z has_accepted_license: '1' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: '136' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '10077' relation: part_of_dissertation status: public - id: '6194' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 title: On the encoding, transfer, and consolidation of spatial memories type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2022' ... --- _id: '12378' abstract: - lang: eng text: "Environmental cues influence the highly dynamic morphology of microglia. Strategies to \r\ncharacterize these changes usually involve user-selected morphometric features, which \r\npreclude the identification of a spectrum of context-dependent morphological phenotypes. \r\nHere, we develop MorphOMICs, a topological data analysis approach, which enables semi\x02automatic mapping of microglial morphology into an atlas of cue-dependent phenotypes,\r\novercomes feature-selection bias and minimizes biological variability. \r\nFirst, with MorphOMICs we derive the morphological spectrum of microglia across seven \r\nbrain regions during postnatal development and in two distinct Alzheimer’s disease \r\ndegeneration mouse models. We uncover region-specific and sexually dimorphic\r\nmorphological trajectories, with females showing an earlier morphological shift than males in \r\nthe degenerating brain. Overall, we demonstrate that both long primary- and short terminal \r\nprocesses provide distinct insights to morphological phenotypes. Moreover, using machine \r\nlearning to map novel condition on the spectrum, we observe that microglia morphologies \r\nreflect a dose-dependent adaptation upon ketamine anesthesia and do not recover to control \r\nmorphologies.\r\nNext, we took advantage of MorphOMICs to build a high-resolution and layer-specific map of \r\nmicroglial morphological spectrum in the retina, covering postnatal development and rd10 \r\ndegeneration. Here, following photoreceptor death, microglia assume an early development\x02like morphology. Finally, we map microglial morphology following optic nerve crush on the \r\nretinal spectrum and observe a layer- and sex-dependent response. \r\nOverall, MorphOMICs opens a new perspective to analyze microglial morphology across \r\nmultiple conditions, and provides a novel tool to characterize microglial morphology beyond \r\nthe traditionally dichotomized view of microglia." acknowledged_ssus: - _id: PreCl - _id: Bio - _id: ScienComp alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Gloria full_name: Colombo, Gloria id: 3483CF6C-F248-11E8-B48F-1D18A9856A87 last_name: Colombo orcid: 0000-0001-9434-8902 citation: ama: Colombo G. MorphOMICs, a tool for mapping microglial morphology, reveals brain region- and sex-dependent phenotypes. 2022. doi:10.15479/at:ista:12378 apa: Colombo, G. (2022). MorphOMICs, a tool for mapping microglial morphology, reveals brain region- and sex-dependent phenotypes. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12378 chicago: Colombo, Gloria. “MorphOMICs, a Tool for Mapping Microglial Morphology, Reveals Brain Region- and Sex-Dependent Phenotypes.” Institute of Science and Technology Austria, 2022. https://doi.org/10.15479/at:ista:12378. ieee: G. Colombo, “MorphOMICs, a tool for mapping microglial morphology, reveals brain region- and sex-dependent phenotypes,” Institute of Science and Technology Austria, 2022. ista: Colombo G. 2022. MorphOMICs, a tool for mapping microglial morphology, reveals brain region- and sex-dependent phenotypes. Institute of Science and Technology Austria. mla: Colombo, Gloria. MorphOMICs, a Tool for Mapping Microglial Morphology, Reveals Brain Region- and Sex-Dependent Phenotypes. Institute of Science and Technology Austria, 2022, doi:10.15479/at:ista:12378. short: G. Colombo, MorphOMICs, a Tool for Mapping Microglial Morphology, Reveals Brain Region- and Sex-Dependent Phenotypes, Institute of Science and Technology Austria, 2022. date_created: 2023-01-25T14:27:43Z date_published: 2022-11-11T00:00:00Z date_updated: 2023-08-04T09:40:37Z day: '11' ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: SaSi doi: 10.15479/at:ista:12378 ec_funded: 1 file: - access_level: closed checksum: 8cd3ddfe9b53381dcf086023d8d8893a content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: cchlebak date_created: 2023-01-25T14:31:32Z date_updated: 2023-04-12T22:30:03Z embargo_to: open_access file_id: '12379' file_name: Gloria_Colombo_Thesis.docx file_size: 23890382 relation: source_file - access_level: open_access checksum: 8af4319c18b516e8758e9a6cb02b103b content_type: application/pdf creator: cchlebak date_created: 2023-01-25T14:31:36Z date_updated: 2023-04-12T22:30:03Z embargo: 2023-04-11 file_id: '12380' file_name: Gloria_Colombo_Thesis.pdf file_size: 13802421 relation: main_file file_date_updated: 2023-04-12T22:30:03Z has_accepted_license: '1' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '11' oa: 1 oa_version: Published Version page: '142' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '12244' relation: part_of_dissertation status: public status: public supervisor: - first_name: Sandra full_name: Siegert, Sandra id: 36ACD32E-F248-11E8-B48F-1D18A9856A87 last_name: Siegert orcid: 0000-0001-8635-0877 title: MorphOMICs, a tool for mapping microglial morphology, reveals brain region- and sex-dependent phenotypes tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2022' ... --- _id: '11388' abstract: - lang: eng text: "In evolve and resequence experiments, a population is sequenced, subjected to selection and\r\nthen sequenced again, so that genetic changes before and after selection can be observed at\r\nthe genetic level. Here, I use these studies to better understand the genetic basis of complex\r\ntraits - traits which depend on more than a few genes.\r\nIn the first chapter, I discuss the first evolve and resequence experiment, in which a population\r\nof mice, the so-called \"Longshanks\" mice, were selected for tibia length while their body mass\r\nwas kept constant. The full pedigree is known. We observed a selection response on all\r\nchromosomes and used the infinitesimal model with linkage, a model which assumes an infinite\r\nnumber of genes with infinitesimally small effect sizes, as a null model. Results implied a very\r\npolygenic basis with a few loci of major effect standing out and changing in parallel. There\r\nwas large variability between the different chromosomes in this study, probably due to LD.\r\nIn chapter two, I go on to discuss the impact of LD, on the variability in an allele-frequency\r\nbased summary statistic, giving an equation based on the initial allele frequencies, average\r\npairwise LD, and the first four moments of the haplotype block copy number distribution. I\r\ndescribe this distribution by referring back to the founder generation. I then demonstrate\r\nhow to infer selection via a maximum likelihood scheme on the example of a single locus and\r\ndiscuss how to extend this to more realistic scenarios.\r\nIn chapter three, I discuss the second evolve and resequence experiment, in which a small\r\npopulation of Drosophila melanogaster was selected for increased pupal case size over 6\r\ngenerations. The experiment was highly replicated with 27 lines selected within family and a\r\nknown pedigree. We observed a phenotypic selection response of over one standard deviation.\r\nI describe the patterns in allele frequency data, including allele frequency changes and patterns\r\nof heterozygosity, and give ideas for future work." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Stefanie full_name: Belohlavy, Stefanie id: 43FE426A-F248-11E8-B48F-1D18A9856A87 last_name: Belohlavy orcid: 0000-0002-9849-498X citation: ama: Belohlavy S. The genetic basis of complex traits studied via analysis of evolve and resequence experiments. 2022. doi:10.15479/at:ista:11388 apa: Belohlavy, S. (2022). The genetic basis of complex traits studied via analysis of evolve and resequence experiments. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:11388 chicago: Belohlavy, Stefanie. “The Genetic Basis of Complex Traits Studied via Analysis of Evolve and Resequence Experiments.” Institute of Science and Technology Austria, 2022. https://doi.org/10.15479/at:ista:11388. ieee: S. Belohlavy, “The genetic basis of complex traits studied via analysis of evolve and resequence experiments,” Institute of Science and Technology Austria, 2022. ista: Belohlavy S. 2022. The genetic basis of complex traits studied via analysis of evolve and resequence experiments. Institute of Science and Technology Austria. mla: Belohlavy, Stefanie. The Genetic Basis of Complex Traits Studied via Analysis of Evolve and Resequence Experiments. Institute of Science and Technology Austria, 2022, doi:10.15479/at:ista:11388. short: S. Belohlavy, The Genetic Basis of Complex Traits Studied via Analysis of Evolve and Resequence Experiments, Institute of Science and Technology Austria, 2022. date_created: 2022-05-16T16:49:18Z date_published: 2022-05-18T00:00:00Z date_updated: 2023-08-29T06:41:51Z day: '18' ddc: - '576' degree_awarded: PhD department: - _id: GradSch - _id: NiBa doi: 10.15479/at:ista:11388 file: - access_level: open_access checksum: 4d75e6a619df7e8a9d6e840aee182380 content_type: application/pdf creator: sbelohla date_created: 2022-05-19T13:03:13Z date_updated: 2023-05-20T22:30:03Z embargo: 2023-05-19 file_id: '11398' file_name: thesis_sb_final_pdfa.pdf file_size: 8247240 relation: main_file - access_level: closed checksum: 7a5d8b6dd0ca00784f860075b0a7d8f0 content_type: application/x-zip-compressed creator: sbelohla date_created: 2022-05-19T13:07:47Z date_updated: 2023-05-20T22:30:03Z embargo_to: open_access file_id: '11399' file_name: thesis_sb_final.zip file_size: 7094 relation: source_file file_date_updated: 2023-05-20T22:30:03Z has_accepted_license: '1' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: '98' publication_identifier: isbn: - 978-3-99078-018-3 publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '6713' relation: part_of_dissertation status: public status: public supervisor: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 title: The genetic basis of complex traits studied via analysis of evolve and resequence experiments tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2022' ... --- _id: '12401' abstract: - lang: eng text: "Detachment of the cancer cells from the bulk of the tumor is the first step of metastasis, which\r\nis the primary cause of cancer related deaths. It is unclear, which factors contribute to this step.\r\nRecent studies indicate a crucial role of the tumor microenvironment in malignant\r\ntransformation and metastasis. Studying cancer cell invasion and detachments quantitatively in\r\nthe context of its physiological microenvironment is technically challenging. Especially, precise\r\ncontrol of microenvironmental properties in vivo is currently not possible. Here, I studied the\r\nrole of microenvironment geometry in the invasion and detachment of cancer cells from the\r\nbulk with a simplistic and reductionist approach. In this approach, I engineered microfluidic\r\ndevices to mimic a pseudo 3D extracellular matrix environment, where I was able to\r\nquantitatively tune the geometrical configuration of the microenvironment and follow tumor\r\ncells with fluorescence live imaging. To aid quantitative analysis I developed a widely applicable\r\nsoftware application to automatically analyze and visualize particle tracking data.\r\nQuantitative analysis of tumor cell invasion in isotropic and anisotropic microenvironments\r\nshowed that heterogeneity in the microenvironment promotes faster invasion and more\r\nfrequent detachment of cells. These observations correlated with overall higher speed of cells at\r\nthe edge of the bulk of the cells. In heterogeneous microenvironments cells preferentially\r\npassed through larger pores, thus invading areas of least resistance and generating finger-like\r\ninvasive structures. The detachments occurred mostly at the tips of these structures.\r\nTo investigate the potential mechanism, we established a two dimensional model to simulate\r\nactive Brownian particles representing the cell nuclei dynamics. These simulations backed our in\r\nvitro observations without the need of precise fitting the simulation parameters. Our model\r\nsuggests the importance of the pore heterogeneity in the direction perpendicular to the\r\norientation of bias field (lateral heterogeneity), which causes the interface roughening." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Saren full_name: Tasciyan, Saren id: 4323B49C-F248-11E8-B48F-1D18A9856A87 last_name: Tasciyan orcid: 0000-0003-1671-393X citation: ama: Tasciyan S. Role of microenvironment heterogeneity in cancer cell invasion. 2022. doi:10.15479/at:ista:12401 apa: Tasciyan, S. (2022). Role of microenvironment heterogeneity in cancer cell invasion. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12401 chicago: Tasciyan, Saren. “Role of Microenvironment Heterogeneity in Cancer Cell Invasion.” Institute of Science and Technology Austria, 2022. https://doi.org/10.15479/at:ista:12401. ieee: S. Tasciyan, “Role of microenvironment heterogeneity in cancer cell invasion,” Institute of Science and Technology Austria, 2022. ista: Tasciyan S. 2022. Role of microenvironment heterogeneity in cancer cell invasion. Institute of Science and Technology Austria. mla: Tasciyan, Saren. Role of Microenvironment Heterogeneity in Cancer Cell Invasion. Institute of Science and Technology Austria, 2022, doi:10.15479/at:ista:12401. short: S. Tasciyan, Role of Microenvironment Heterogeneity in Cancer Cell Invasion, Institute of Science and Technology Austria, 2022. date_created: 2023-01-26T11:55:16Z date_published: 2022-12-22T00:00:00Z date_updated: 2023-12-21T23:30:04Z day: '22' ddc: - '610' degree_awarded: PhD department: - _id: GradSch - _id: MiSi doi: 10.15479/at:ista:12401 file: - access_level: open_access checksum: cc4a2b4a7e3c4ee8ef7f2dbf909b12bd content_type: application/pdf creator: cchlebak date_created: 2023-01-26T11:58:14Z date_updated: 2023-12-21T23:30:03Z embargo: 2023-12-20 file_id: '12402' file_name: PhD-Thesis_Saren Tasciyan_formatted_aftercrash_fixed_600dpi_95pc_final_PDFA3b.pdf file_size: 42059787 relation: main_file - access_level: closed checksum: f1b4ca98b8ab0cb043b1830971e9bd9c content_type: application/x-zip-compressed creator: cchlebak date_created: 2023-01-26T12:00:10Z date_updated: 2023-12-21T23:30:03Z embargo_to: open_access file_id: '12403' file_name: Source Files - Saren Tasciyan - PhD Thesis.zip file_size: 261256696 relation: source_file file_date_updated: 2023-12-21T23:30:03Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: '105' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '679' relation: part_of_dissertation status: public - id: '10703' relation: part_of_dissertation status: public - id: '9429' relation: part_of_dissertation status: public - id: '7885' relation: part_of_dissertation status: public status: public supervisor: - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 title: Role of microenvironment heterogeneity in cancer cell invasion type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2022' ... --- _id: '11193' abstract: - lang: eng text: "The infiltration of immune cells into tissues underlies the establishment of tissue-resident\r\nmacrophages and responses to infections and tumors. However, the mechanisms immune\r\ncells utilize to collectively migrate through tissue barriers in vivo are not yet well understood.\r\nIn this thesis, I describe two mechanisms that Drosophila immune cells (hemocytes) use to\r\novercome the tissue barrier of the germband in the embryo. One strategy is the strengthening\r\nof the actin cortex through developmentally controlled transcriptional regulation induced by\r\nthe Drosophila proto-oncogene family member Dfos, which I show in Chapter 2. Dfos induces\r\nexpression of the tetraspanin TM4SF and the filamin Cher leading to higher levels of the\r\nactivated formin Dia at the cortex and increased cortical F-actin. This enhanced cortical\r\nstrength allows hemocytes to overcome the physical resistance of the surrounding tissue and\r\ntranslocate their nucleus to move forward. This mechanism affects the speed of migration\r\nwhen hemocytes face a confined environment in vivo.\r\nAnother aspect of the invasion process is the initial step of the leading hemocytes entering\r\nthe tissue, which potentially guides the follower cells. In Chapter 3, I describe a novel\r\nsubpopulation of hemocytes activated by BMP signaling prior to tissue invasion that leads\r\npenetration into the germband. Hemocytes that are deficient in BMP signaling activation\r\nshow impaired persistence at the tissue entry, while their migration speed remains\r\nunaffected.\r\nThis suggests that there might be different mechanisms controlling immune cell migration\r\nwithin the confined environment in vivo, one of these being the general ability to overcome\r\nthe resistance of the surrounding tissue and another affecting the order of hemocytes that\r\ncollectively invade the tissue in a stream of individual cells.\r\nTogether, my findings provide deeper insights into transcriptional changes in immune\r\ncells that enable efficient tissue invasion and pave the way for future studies investigating the\r\nearly colonization of tissues by macrophages in higher organisms. Moreover, they extend the\r\ncurrent view of Drosophila immune cell heterogeneity and point toward a potentially\r\nconserved role for canonical BMP signaling in specifying immune cells that lead the migration\r\nof tissue resident macrophages during embryogenesis." acknowledged_ssus: - _id: LifeSc alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Stephanie full_name: Wachner, Stephanie id: 2A95E7B0-F248-11E8-B48F-1D18A9856A87 last_name: Wachner citation: ama: Wachner S. Transcriptional regulation by Dfos and BMP-signaling support tissue invasion of Drosophila immune cells. 2022. doi:10.15479/at:ista:11193 apa: Wachner, S. (2022). Transcriptional regulation by Dfos and BMP-signaling support tissue invasion of Drosophila immune cells. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:11193 chicago: Wachner, Stephanie. “Transcriptional Regulation by Dfos and BMP-Signaling Support Tissue Invasion of Drosophila Immune Cells.” Institute of Science and Technology Austria, 2022. https://doi.org/10.15479/at:ista:11193. ieee: S. Wachner, “Transcriptional regulation by Dfos and BMP-signaling support tissue invasion of Drosophila immune cells,” Institute of Science and Technology Austria, 2022. ista: Wachner S. 2022. Transcriptional regulation by Dfos and BMP-signaling support tissue invasion of Drosophila immune cells. Institute of Science and Technology Austria. mla: Wachner, Stephanie. Transcriptional Regulation by Dfos and BMP-Signaling Support Tissue Invasion of Drosophila Immune Cells. Institute of Science and Technology Austria, 2022, doi:10.15479/at:ista:11193. short: S. Wachner, Transcriptional Regulation by Dfos and BMP-Signaling Support Tissue Invasion of Drosophila Immune Cells, Institute of Science and Technology Austria, 2022. date_created: 2022-04-20T08:59:07Z date_published: 2022-04-20T00:00:00Z date_updated: 2023-09-19T10:15:54Z day: '20' ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: DaSi doi: 10.15479/at:ista:11193 file: - access_level: open_access checksum: 999ab16884c4522486136ebc5ae8dbff content_type: application/pdf creator: cchlebak date_created: 2022-04-20T09:03:57Z date_updated: 2023-04-21T22:30:03Z embargo: 2023-04-20 file_id: '11195' file_name: Thesis_Stephanie_Wachner_20200414_formatted.pdf file_size: 8820951 relation: main_file - access_level: closed checksum: fd92b1e38d53bdf8b458213882d41383 content_type: application/x-zip-compressed creator: cchlebak date_created: 2022-04-22T12:41:00Z date_updated: 2023-04-21T22:30:03Z embargo_to: open_access file_id: '11329' file_name: Thesis_Stephanie_Wachner_20200414.zip file_size: 65864612 relation: source_file file_date_updated: 2023-04-21T22:30:03Z has_accepted_license: '1' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: '170' project: - _id: 26199CA4-B435-11E9-9278-68D0E5697425 grant_number: '24800' name: Tissue barrier penetration is crucial for immunity and metastasis publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '10614' relation: part_of_dissertation status: public - id: '544' relation: part_of_dissertation status: public status: public supervisor: - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 title: Transcriptional regulation by Dfos and BMP-signaling support tissue invasion of Drosophila immune cells tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2022' ...