@phdthesis{9920,
abstract = {This work is concerned with two fascinating circuit quantum electrodynamics components, the Josephson junction and the geometric superinductor, and the interesting experiments that can be done by combining the two. The Josephson junction has revolutionized the field of superconducting circuits as a non-linear dissipation-less circuit element and is used in almost all superconducting qubit implementations since the 90s. On the other hand, the superinductor is a relatively new circuit element introduced as a key component of the fluxonium qubit in 2009. This is an inductor with characteristic impedance larger than the resistance quantum and self-resonance frequency in the GHz regime. The combination of these two elements can occur in two fundamental ways: in parallel and in series. When connected in parallel the two create the fluxonium qubit, a loop with large inductance and a rich energy spectrum reliant on quantum tunneling. On the other hand placing the two elements in series aids with the measurement of the IV curve of a single Josephson junction in a high impedance environment. In this limit theory predicts that the junction will behave as its dual element: the phase-slip junction. While the Josephson junction acts as a non-linear inductor the phase-slip junction has the behavior of a non-linear capacitance and can be used to measure new Josephson junction phenomena, namely Coulomb blockade of Cooper pairs and phase-locked Bloch oscillations. The latter experiment allows for a direct link between frequency and current which is an elusive connection in quantum metrology. This work introduces the geometric superinductor, a superconducting circuit element where the high inductance is due to the geometry rather than the material properties of the superconductor, realized from a highly miniaturized superconducting planar coil. These structures will be described and characterized as resonators and qubit inductors and progress towards the measurement of phase-locked Bloch oscillations will be presented.},
author = {Peruzzo, Matilda},
isbn = {978-3-99078-013-8},
issn = {2663-337X},
keywords = {quantum computing, superinductor, quantum metrology},
pages = {149},
publisher = {IST Austria},
title = {{Geometric superinductors and their applications in circuit quantum electrodynamics}},
doi = {10.15479/at:ista:9920},
year = {2021},
}
@phdthesis{10007,
abstract = {The present thesis is concerned with the derivation of weak-strong uniqueness principles for curvature driven interface evolution problems not satisfying a comparison principle. The specific examples being treated are two-phase Navier-Stokes flow with surface tension, modeling the evolution of two incompressible, viscous and immiscible fluids separated by a sharp interface, and multiphase mean curvature flow, which serves as an idealized model for the motion of grain boundaries in an annealing polycrystalline material. Our main results - obtained in joint works with Julian Fischer, Tim Laux and Theresa M. Simon - state that prior to the formation of geometric singularities due to topology changes, the weak solution concept of Abels (Interfaces Free Bound. 9, 2007) to two-phase Navier-Stokes flow with surface tension and the weak solution concept of Laux and Otto (Calc. Var. Partial Differential Equations 55, 2016) to multiphase mean curvature flow (for networks in R^2 or double bubbles in R^3) represents the unique solution to these interface evolution problems within the class of classical solutions, respectively. To the best of the author's knowledge, for interface evolution problems not admitting a geometric comparison principle the derivation of a weak-strong uniqueness principle represented an open problem, so that the works contained in the present thesis constitute the first positive results in this direction. The key ingredient of our approach consists of the introduction of a novel concept of relative entropies for a class of curvature driven interface evolution problems, for which the associated energy contains an interfacial contribution being proportional to the surface area of the evolving (network of) interface(s). The interfacial part of the relative entropy gives sufficient control on the interface error between a weak and a classical solution, and its time evolution can be computed, at least in principle, for any energy dissipating weak solution concept. A resulting stability estimate for the relative entropy essentially entails the above mentioned weak-strong uniqueness principles. The present thesis contains a detailed introduction to our relative entropy approach, which in particular highlights potential applications to other problems in curvature driven interface evolution not treated in this thesis.},
author = {Hensel, Sebastian},
issn = {2663-337X},
pages = {300},
publisher = {IST Austria},
title = {{Curvature driven interface evolution: Uniqueness properties of weak solution concepts}},
doi = {10.15479/at:ista:10007},
year = {2021},
}
@phdthesis{9992,
abstract = {Blood – this is what animals use to heal wounds fast and efficient. Plants do not have blood circulation and their cells cannot move. However, plants have evolved remarkable capacities to regenerate tissues and organs preventing further damage. In my PhD research, I studied the wound healing in the Arabidopsis root. I used a UV laser to ablate single cells in the root tip and observed the consequent wound healing. Interestingly, the inner adjacent cells induced a
division plane switch and subsequently adopted the cell type of the killed cell to replace it. We termed this form of wound healing “restorative divisions”. This initial observation triggered the questions of my PhD studies: How and why do cells orient their division planes, how do they feel the wound and why does this happen only in inner adjacent cells.
For answering these questions, I used a quite simple experimental setup: 5 day - old seedlings were stained with propidium iodide to visualize cell walls and dead cells; ablation was carried out using a special laser cutter and a confocal microscope. Adaptation of the novel vertical microscope system made it possible to observe wounds in real time. This revealed that restorative divisions occur at increased frequency compared to normal divisions. Additionally,
the major plant hormone auxin accumulates in wound adjacent cells and drives the expression of the wound-stress responsive transcription factor ERF115. Using this as a marker gene for wound responses, we found that an important part of wound signalling is the sensing of the collapse of the ablated cell. The collapse causes a radical pressure drop, which results in strong tissue deformations. These deformations manifest in an invasion of the now free spot specifically by the inner adjacent cells within seconds, probably because of higher pressure of the inner tissues. Long-term imaging revealed that those deformed cells continuously expand towards the wound hole and that this is crucial for the restorative division. These wound-expanding cells exhibit an abnormal, biphasic polarity of microtubule arrays
before the division. Experiments inhibiting cell expansion suggest that it is the biphasic stretching that induces those MT arrays. Adapting the micromanipulator aspiration system from animal scientists at our institute confirmed the hypothesis that stretching influences microtubule stability. In conclusion, this shows that microtubules react to tissue deformation
and this facilitates the observed division plane switch. This puts mechanical cues and tensions at the most prominent position for explaining the growth and wound healing properties of plants. Hence, it shines light onto the importance of understanding mechanical signal transduction. },
author = {Hörmayer, Lukas},
issn = {2663-337X},
pages = {168},
publisher = {IST Austria},
title = {{Wound healing in the Arabidopsis root meristem}},
doi = {10.15479/at:ista:9992},
year = {2021},
}
@phdthesis{7996,
abstract = {Quantum computation enables the execution of algorithms that have exponential complexity. This might open the path towards the synthesis of new materials or medical drugs, optimization of transport or financial strategies etc., intractable on even the fastest classical computers. A quantum computer consists of interconnected two level quantum systems, called qubits, that satisfy DiVincezo’s criteria. Worldwide, there are ongoing efforts to find the qubit architecture which will unite quantum error correction compatible single and two qubit fidelities, long distance qubit to qubit coupling and
calability. Superconducting qubits have gone the furthest in this race, demonstrating an algorithm running on 53 coupled qubits, but still the fidelities are not even close to those required for realizing a single logical qubit. emiconductor qubits offer extremely good characteristics, but they are currently investigated across different platforms. Uniting those good characteristics into a single platform might be a big step towards the quantum computer realization.
Here we describe the implementation of a hole spin qubit hosted in a Ge hut wire double quantum dot. The high and tunable spin-orbit coupling together with a heavy hole state character is expected to allow fast spin manipulation and long coherence times. Furthermore large lever arms, for hut wire devices, should allow good coupling to superconducting resonators enabling efficient long distance spin to spin coupling and a sensitive gate reflectometry spin readout. The developed cryogenic setup (printed circuit board sample holders, filtering, high-frequency wiring) enabled us to perform low temperature spin dynamics experiments. Indeed, we measured the fastest single spin qubit Rabi frequencies reported so far, reaching 140 MHz, while the dephasing times of 130 ns oppose the long decoherence predictions. In order to further investigate this, a double quantum dot gate was connected directly to a lumped element
resonator which enabled gate reflectometry readout. The vanishing inter-dot transition signal, for increasing external magnetic field, revealed the spin nature of the measured quantity.},
author = {Kukucka, Josip},
issn = {2663-337X},
pages = {178},
publisher = {IST Austria},
title = {{Implementation of a hole spin qubit in Ge hut wires and dispersive spin sensing}},
doi = {10.15479/AT:ISTA:7996},
year = {2020},
}
@phdthesis{8032,
abstract = {Algorithms in computational 3-manifold topology typically take a triangulation as an input and return topological information about the underlying 3-manifold. However, extracting the desired information from a triangulation (e.g., evaluating an invariant) is often computationally very expensive. In recent years this complexity barrier has been successfully tackled in some cases by importing ideas from the theory of parameterized algorithms into the realm of 3-manifolds. Various computationally hard problems were shown to be efficiently solvable for input triangulations that are sufficiently “tree-like.”
In this thesis we focus on the key combinatorial parameter in the above context: we consider the treewidth of a compact, orientable 3-manifold, i.e., the smallest treewidth of the dual graph of any triangulation thereof. By building on the work of Scharlemann–Thompson and Scharlemann–Schultens–Saito on generalized Heegaard splittings, and on the work of Jaco–Rubinstein on layered triangulations, we establish quantitative relations between the treewidth and classical topological invariants of a 3-manifold. In particular, among other results, we show that the treewidth of a closed, orientable, irreducible, non-Haken 3-manifold is always within a constant factor of its Heegaard genus.},
author = {Huszár, Kristóf},
isbn = {978-3-99078-006-0},
issn = {2663-337X},
pages = {xviii+120},
publisher = {IST Austria},
title = {{Combinatorial width parameters for 3-dimensional manifolds}},
doi = {10.15479/AT:ISTA:8032},
year = {2020},
}