TY - THES
AB - Many security definitions come in two flavors: a stronger “adaptive” flavor, where the adversary can arbitrarily make various choices during the course of the attack, and a weaker “selective” flavor where the adversary must commit to some or all of their choices a-priori. For example, in the context of identity-based encryption, selective security requires the adversary to decide on the identity of the attacked party at the very beginning of the game whereas adaptive security allows the attacker to first see the master public key and some secret keys before making this choice. Often, it appears to be much easier to achieve selective security than it is to achieve adaptive security. A series of several recent works shows how to cleverly achieve adaptive security in several such scenarios including generalized selective decryption [Pan07][FJP15], constrained PRFs [FKPR14], and Yao’s garbled circuits [JW16]. Although the above works expressed vague intuition that they share a common technique, the connection was never made precise. In this work we present a new framework (published at Crypto ’17 [JKK+17a]) that connects all of these works and allows us to present them in a unified and simplified fashion. Having the framework in place, we show how to achieve adaptive security for proxy re-encryption schemes (published at PKC ’19 [FKKP19]) and provide the first adaptive security proofs for continuous group key agreement protocols (published at S&P ’21 [KPW+21]). Questioning optimality of our framework, we then show that currently used proof techniques cannot lead to significantly better security guarantees for "graph-building" games (published at TCC ’21 [KKPW21a]). These games cover generalized selective decryption, as well as the security of prominent constructions for constrained PRFs, continuous group key agreement, and proxy re-encryption. Finally, we revisit the adaptive security of Yao’s garbled circuits and extend the analysis of Jafargholi and Wichs in two directions: While they prove adaptive security only for a modified construction with increased online complexity, we provide the first positive results for the original construction by Yao (published at TCC ’21 [KKP21a]). On the negative side, we prove that the results of Jafargholi and Wichs are essentially optimal by showing that no black-box reduction can provide a significantly better security bound (published at Crypto ’21 [KKPW21c]).
AU - Klein, Karen
ID - 10035
SN - 2663-337X
TI - On the adaptive security of graph-based games
ER -
TY - THES
AB - A search problem lies in the complexity class FNP if a solution to the given instance of the problem can be verified efficiently. The complexity class TFNP consists of all search problems in FNP that are total in the sense that a solution is guaranteed to exist. TFNP contains a host of interesting problems from fields such as algorithmic game theory, computational topology, number theory and combinatorics. Since TFNP is a semantic class, it is unlikely to have a complete problem. Instead, one studies its syntactic subclasses which are defined based on the combinatorial principle used to argue totality. Of particular interest is the subclass PPAD, which contains important problems
like computing Nash equilibrium for bimatrix games and computational counterparts of several fixed-point theorems as complete. In the thesis, we undertake the study of averagecase hardness of TFNP, and in particular its subclass PPAD.
Almost nothing was known about average-case hardness of PPAD before a series of recent results showed how to achieve it using a cryptographic primitive called program obfuscation.
However, it is currently not known how to construct program obfuscation from standard cryptographic assumptions. Therefore, it is desirable to relax the assumption under which average-case hardness of PPAD can be shown. In the thesis we take a step in this direction. First, we show that assuming the (average-case) hardness of a numbertheoretic
problem related to factoring of integers, which we call Iterated-Squaring, PPAD is hard-on-average in the random-oracle model. Then we strengthen this result to show that the average-case hardness of PPAD reduces to the (adaptive) soundness of the Fiat-Shamir Transform, a well-known technique used to compile a public-coin interactive protocol into a non-interactive one. As a corollary, we obtain average-case hardness for PPAD in the random-oracle model assuming the worst-case hardness of #SAT. Moreover, the above results can all be strengthened to obtain average-case hardness for the class CLS ⊆ PPAD.
Our main technical contribution is constructing incrementally-verifiable procedures for computing Iterated-Squaring and #SAT. By incrementally-verifiable, we mean that every intermediate state of the computation includes a proof of its correctness, and the proof can be updated and verified in polynomial time. Previous constructions of such procedures relied on strong, non-standard assumptions. Instead, we introduce a technique called recursive proof-merging to obtain the same from weaker assumptions.
AU - Kamath Hosdurg, Chethan
ID - 7896
TI - On the average-case hardness of total search problems
ER -
TY - THES
AB - A proof system is a protocol between a prover and a verifier over a common input in which an honest prover convinces the verifier of the validity of true statements. Motivated by the success of decentralized cryptocurrencies, exemplified by Bitcoin, the focus of this thesis will be on proof systems which found applications in some sustainable alternatives to Bitcoin, such as the Spacemint and Chia cryptocurrencies. In particular, we focus on proofs of space and proofs of sequential work.
Proofs of space (PoSpace) were suggested as more ecological, economical, and egalitarian alternative to the energy-wasteful proof-of-work mining of Bitcoin. However, the state-of-the-art constructions of PoSpace are based on sophisticated graph pebbling lower bounds, and are therefore complex. Moreover, when these PoSpace are used in cryptocurrencies like Spacemint, miners can only start mining after ensuring that a commitment to their space is already added in a special transaction to the blockchain. Proofs of sequential work (PoSW) are proof systems in which a prover, upon receiving a statement x and a time parameter T, computes a proof which convinces the verifier that T time units had passed since x was received. Whereas Spacemint assumes synchrony to retain some interesting Bitcoin dynamics, Chia requires PoSW with unique proofs, i.e., PoSW in which it is hard to come up with more than one accepting proof for any true statement. In this thesis we construct simple and practically-efficient PoSpace and PoSW. When using our PoSpace in cryptocurrencies, miners can start mining on the fly, like in Bitcoin, and unlike current constructions of PoSW, which either achieve efficient verification of sequential work, or faster-than-recomputing verification of correctness of proofs, but not both at the same time, ours achieve the best of these two worlds.
AU - Abusalah, Hamza M
ID - 83
TI - Proof systems for sustainable decentralized cryptocurrencies
ER -