TY - JOUR AB - We study the time evolution of the Nelson model in a mean-field limit in which N nonrelativistic bosons weakly couple (with respect to the particle number) to a positive or zero mass quantized scalar field. Our main result is the derivation of the Bogoliubov dynamics and higher-order corrections. More precisely, we prove the convergence of the approximate wave function to the many-body wave function in norm, with a convergence rate proportional to the number of corrections taken into account in the approximation. We prove an analogous result for the unitary propagator. As an application, we derive a simple system of partial differential equations describing the time evolution of the first- and second-order approximations to the one-particle reduced density matrices of the particles and the quantum field, respectively. AU - Falconi, Marco AU - Leopold, Nikolai K AU - Mitrouskas, David Johannes AU - Petrat, Sören P ID - 12430 IS - 4 JF - Reviews in Mathematical Physics SN - 0129-055X TI - Bogoliubov dynamics and higher-order corrections for the regularized Nelson model VL - 35 ER - TY - JOUR AB - We consider the large polaron described by the Fröhlich Hamiltonian and study its energy-momentum relation defined as the lowest possible energy as a function of the total momentum. Using a suitable family of trial states, we derive an optimal parabolic upper bound for the energy-momentum relation in the limit of strong coupling. The upper bound consists of a momentum independent term that agrees with the predicted two-term expansion for the ground state energy of the strongly coupled polaron at rest and a term that is quadratic in the momentum with coefficient given by the inverse of twice the classical effective mass introduced by Landau and Pekar. AU - Mitrouskas, David Johannes AU - Mysliwy, Krzysztof AU - Seiringer, Robert ID - 13178 JF - Forum of Mathematics TI - Optimal parabolic upper bound for the energy-momentum relation of a strongly coupled polaron VL - 11 ER - TY - JOUR AB - For the Fröhlich model of the large polaron, we prove that the ground state energy as a function of the total momentum has a unique global minimum at momentum zero. This implies the non-existence of a ground state of the translation invariant Fröhlich Hamiltonian and thus excludes the possibility of a localization transition at finite coupling. AU - Lampart, Jonas AU - Mitrouskas, David Johannes AU - Mysliwy, Krzysztof ID - 14192 IS - 3 JF - Mathematical Physics, Analysis and Geometry KW - Geometry and Topology KW - Mathematical Physics SN - 1385-0172 TI - On the global minimum of the energy–momentum relation for the polaron VL - 26 ER - TY - JOUR AB - We consider N trapped bosons in the mean-field limit with coupling constant λN = 1/(N − 1). The ground state of such systems exhibits Bose–Einstein condensation. We prove that the probability of finding ℓ particles outside the condensate wave function decays exponentially in ℓ. AU - Mitrouskas, David Johannes AU - Pickl, Peter ID - 14715 IS - 12 JF - Journal of Mathematical Physics SN - 0022-2488 TI - Exponential decay of the number of excitations in the weakly interacting Bose gas VL - 64 ER - TY - JOUR AB - Abstract We study the spectrum of the Fröhlich Hamiltonian for the polaron at fixed total momentum. We prove the existence of excited eigenvalues between the ground state energy and the essential spectrum at strong coupling. In fact, our main result shows that the number of excited energy bands diverges in the strong coupling limit. To prove this we derive upper bounds for the min-max values of the corresponding fiber Hamiltonians and compare them with the bottom of the essential spectrum, a lower bound on which was recently obtained by Brooks and Seiringer (Comm. Math. Phys. 404:1 (2023), 287–337). The upper bounds are given in terms of the ground state energy band shifted by momentum-independent excitation energies determined by an effective Hamiltonian of Bogoliubov type. AU - Mitrouskas, David Johannes AU - Seiringer, Robert ID - 14854 IS - 4 JF - Pure and Applied Analysis KW - General Medicine SN - 2578-5885 TI - Ubiquity of bound states for the strongly coupled polaron VL - 5 ER - TY - JOUR AB - We consider the Fröhlich Hamiltonian in a mean-field limit where many bosonic particles weakly couple to the quantized phonon field. For large particle numbers and a suitably small coupling, we show that the dynamics of the system is approximately described by the Landau–Pekar equations. These describe a Bose–Einstein condensate interacting with a classical polarization field, whose dynamics is effected by the condensate, i.e., the back-reaction of the phonons that are created by the particles during the time evolution is of leading order. AU - Leopold, Nikolai K AU - Mitrouskas, David Johannes AU - Seiringer, Robert ID - 9246 JF - Archive for Rational Mechanics and Analysis SN - 00039527 TI - Derivation of the Landau–Pekar equations in a many-body mean-field limit VL - 240 ER - TY - JOUR AB - We revise a previous result about the Fröhlich dynamics in the strong coupling limit obtained in Griesemer (Rev Math Phys 29(10):1750030, 2017). In the latter it was shown that the Fröhlich time evolution applied to the initial state φ0⊗ξα, where φ0 is the electron ground state of the Pekar energy functional and ξα the associated coherent state of the phonons, can be approximated by a global phase for times small compared to α2. In the present note we prove that a similar approximation holds for t=O(α2) if one includes a nontrivial effective dynamics for the phonons that is generated by an operator proportional to α−2 and quadratic in creation and annihilation operators. Our result implies that the electron ground state remains close to its initial state for times of order α2, while the phonon fluctuations around the coherent state ξα can be described by a time-dependent Bogoliubov transformation. AU - Mitrouskas, David Johannes ID - 9333 JF - Letters in Mathematical Physics SN - 03779017 TI - A note on the Fröhlich dynamics in the strong coupling limit VL - 111 ER - TY - JOUR AB - We consider the Fröhlich Hamiltonian with large coupling constant α. For initial data of Pekar product form with coherent phonon field and with the electron minimizing the corresponding energy, we provide a norm approximation of the evolution, valid up to times of order α2. The approximation is given in terms of a Pekar product state, evolved through the Landau-Pekar equations, corrected by a Bogoliubov dynamics taking quantum fluctuations into account. This allows us to show that the Landau-Pekar equations approximately describe the evolution of the electron- and one-phonon reduced density matrices under the Fröhlich dynamics up to times of order α2. AU - Leopold, Nikolai K AU - Mitrouskas, David Johannes AU - Rademacher, Simone Anna Elvira AU - Schlein, Benjamin AU - Seiringer, Robert ID - 14889 IS - 4 JF - Pure and Applied Analysis SN - 2578-5893 TI - Landau–Pekar equations and quantum fluctuations for the dynamics of a strongly coupled polaron VL - 3 ER -