TY - JOUR
AB - Studies on the experimental realization of two-dimensional anyons in terms of quasiparticles have been restricted, so far, to only anyons on the plane. It is known, however, that the geometry and topology of space can have significant effects on quantum statistics for particles moving on it. Here, we have undertaken the first step toward realizing the emerging fractional statistics for particles restricted to move on the sphere instead of on the plane. We show that such a model arises naturally in the context of quantum impurity problems. In particular, we demonstrate a setup in which the lowest-energy spectrum of two linear bosonic or fermionic molecules immersed in a quantum many-particle environment can coincide with the anyonic spectrum on the sphere. This paves the way toward the experimental realization of anyons on the sphere using molecular impurities. Furthermore, since a change in the alignment of the molecules corresponds to the exchange of the particles on the sphere, such a realization reveals a novel type of exclusion principle for molecular impurities, which could also be of use as a powerful technique to measure the statistics parameter. Finally, our approach opens up a simple numerical route to investigate the spectra of many anyons on the sphere. Accordingly, we present the spectrum of two anyons on the sphere in the presence of a Dirac monopole field.
AU - Brooks, Morris
AU - Lemeshko, Mikhail
AU - Lundholm, D.
AU - Yakaboylu, Enderalp
ID - 9005
IS - 1
JF - Physical Review Letters
SN - 00319007
TI - Molecular impurities as a realization of anyons on the two-sphere
VL - 126
ER -
TY - JOUR
AB - We consider the stochastic quantization of a quartic double-well energy functional in the semiclassical regime and derive optimal asymptotics for the exponentially small splitting of the ground state energy. Our result provides an infinite-dimensional version of some sharp tunneling estimates known in finite dimensions for semiclassical Witten Laplacians in degree zero. From a stochastic point of view it proves that the L2 spectral gap of the stochastic one-dimensional Allen-Cahn equation in finite volume satisfies a Kramers-type formula in the limit of vanishing noise. We work with finite-dimensional lattice approximations and establish semiclassical estimates which are uniform in the dimension. Our key estimate shows that the constant separating the two exponentially small eigenvalues from the rest of the spectrum can be taken independently of the dimension.
AU - Brooks, Morris
AU - Di GesÃ¹, Giacomo
ID - 9348
IS - 3
JF - Journal of Functional Analysis
SN - 0022-1236
TI - Sharp tunneling estimates for a double-well model in infinite dimension
VL - 281
ER -
TY - JOUR
AB - Recently it was shown that anyons on the two-sphere naturally arise from a system of molecular impurities exchanging angular momentum with a many-particle bath (Phys. Rev. Lett. 126, 015301 (2021)). Here we further advance this approach and rigorously demonstrate that in the experimentally realized regime the lowest spectrum of two linear molecules immersed in superfluid helium corresponds to the spectrum of two anyons on the sphere. We develop the formalism within the framework of the recently experimentally observed angulon quasiparticle
AU - Brooks, Morris
AU - Lemeshko, Mikhail
AU - Lundholm, Douglas
AU - Yakaboylu, Enderalp
ID - 10585
IS - 4
JF - Atoms
KW - anyons
KW - quasiparticles
KW - Quantum Hall Effect
KW - topological states of matter
TI - Emergence of anyons on the two-sphere in molecular impurities
VL - 9
ER -