@article{12913, abstract = {The coexistence of gate-tunable superconducting, magnetic and topological orders in magic-angle twisted bilayer graphene provides opportunities for the creation of hybrid Josephson junctions. Here we report the fabrication of gate-defined symmetry-broken Josephson junctions in magic-angle twisted bilayer graphene, where the weak link is gate-tuned close to the correlated insulator state with a moiré filling factor of υ = −2. We observe a phase-shifted and asymmetric Fraunhofer pattern with a pronounced magnetic hysteresis. Our theoretical calculations of the junction weak link—with valley polarization and orbital magnetization—explain most of these unconventional features. The effects persist up to the critical temperature of 3.5 K, with magnetic hysteresis observed below 800 mK. We show how the combination of magnetization and its current-induced magnetization switching allows us to realise a programmable zero-field superconducting diode. Our results represent a major advance towards the creation of future superconducting quantum electronic devices.}, author = {Díez-Mérida, J. and Díez-Carlón, A. and Yang, S. Y. and Xie, Y. M. and Gao, X. J. and Senior, Jorden L and Watanabe, K. and Taniguchi, T. and Lu, X. and Higginbotham, Andrew P and Law, K. T. and Efetov, Dmitri K.}, issn = {2041-1723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene}}, doi = {10.1038/s41467-023-38005-7}, volume = {14}, year = {2023}, } @article{14032, abstract = {Arrays of Josephson junctions are governed by a competition between superconductivity and repulsive Coulomb interactions, and are expected to exhibit diverging low-temperature resistance when interactions exceed a critical level. Here we report a study of the transport and microwave response of Josephson arrays with interactions exceeding this level. Contrary to expectations, we observe that the array resistance drops dramatically as the temperature is decreased—reminiscent of superconducting behaviour—and then saturates at low temperature. Applying a magnetic field, we eventually observe a transition to a highly resistive regime. These observations can be understood within a theoretical picture that accounts for the effect of thermal fluctuations on the insulating phase. On the basis of the agreement between experiment and theory, we suggest that apparent superconductivity in our Josephson arrays arises from melting the zero-temperature insulator.}, author = {Mukhopadhyay, Soham and Senior, Jorden L and Saez Mollejo, Jaime and Puglia, Denise and Zemlicka, Martin and Fink, Johannes M and Higginbotham, Andrew P}, issn = {1745-2481}, journal = {Nature Physics}, keywords = {General Physics and Astronomy}, pages = {1630--1635}, publisher = {Springer Nature}, title = {{Superconductivity from a melted insulator in Josephson junction arrays}}, doi = {10.1038/s41567-023-02161-w}, volume = {19}, year = {2023}, } @article{10851, abstract = {Superconductor-semiconductor hybrid devices are at the heart of several proposed approaches to quantum information processing, but their basic properties remain to be understood. We embed a twodimensional Al-InAs hybrid system in a resonant microwave circuit, probing the breakdown of superconductivity due to an applied magnetic field. We find a fingerprint from the two-component nature of the hybrid system, and quantitatively compare with a theory that includes the contribution of intraband p±ip pairing in the InAs, as well as the emergence of Bogoliubov-Fermi surfaces due to magnetic field. Separately resolving the Al and InAs contributions allows us to determine the carrier density and mobility in the InAs.}, author = {Phan, Duc T and Senior, Jorden L and Ghazaryan, Areg and Hatefipour, M. and Strickland, W. M. and Shabani, J. and Serbyn, Maksym and Higginbotham, Andrew P}, issn = {1079-7114}, journal = {Physical Review Letters}, keywords = {General Physics and Astronomy}, number = {10}, publisher = {American Physical Society}, title = {{Detecting induced p±ip pairing at the Al-InAs interface with a quantum microwave circuit}}, doi = {10.1103/physrevlett.128.107701}, volume = {128}, year = {2022}, } @unpublished{10029, abstract = {Superconductor-semiconductor hybrids are platforms for realizing effective p-wave superconductivity. Spin-orbit coupling, combined with the proximity effect, causes the two-dimensional semiconductor to inherit p±ip intraband pairing, and application of magnetic field can then result in transitions to the normal state, partial Bogoliubov Fermi surfaces, or topological phases with Majorana modes. Experimentally probing the hybrid superconductor-semiconductor interface is challenging due to the shunting effect of the conventional superconductor. Consequently, the nature of induced pairing remains an open question. Here, we use the circuit quantum electrodynamics architecture to probe induced superconductivity in a two dimensional Al-InAs hybrid system. We observe a strong suppression of superfluid density and enhanced dissipation driven by magnetic field, which cannot be accounted for by the depairing theory of an s-wave superconductor. These observations are explained by a picture of independent intraband p±ip superconductors giving way to partial Bogoliubov Fermi surfaces, and allow for the first characterization of key properties of the hybrid superconducting system.}, author = {Phan, Duc T and Senior, Jorden L and Ghazaryan, Areg and Hatefipour, M. and Strickland, W. M. and Shabani, J. and Serbyn, Maksym and Higginbotham, Andrew P}, booktitle = {arXiv}, title = {{Breakdown of induced p±ip pairing in a superconductor-semiconductor hybrid}}, year = {2021}, } @article{7530, abstract = {In developing technologies based on superconducting quantum circuits, the need to control and route heating is a significant challenge in the experimental realisation and operation of these devices. One of the more ubiquitous devices in the current quantum computing toolbox is the transmon-type superconducting quantum bit, embedded in a resonator-based architecture. In the study of heat transport in superconducting circuits, a versatile and sensitive thermometer is based on studying the tunnelling characteristics of superconducting probes weakly coupled to a normal-metal island. Here we show that by integrating superconducting quantum bit coupled to two superconducting resonators at different frequencies, each resonator terminated (and thermally populated) by such a mesoscopic thin film metal island, one can experimentally observe magnetic flux-tunable photonic heat rectification between 0 and 10%.}, author = {Senior, Jorden L and Gubaydullin, Azat and Karimi, Bayan and Peltonen, Joonas T. and Ankerhold, Joachim and Pekola, Jukka P.}, issn = {2399-3650}, journal = {Communications Physics}, number = {1}, publisher = {Springer Nature}, title = {{Heat rectification via a superconducting artificial atom}}, doi = {10.1038/s42005-020-0307-5}, volume = {3}, year = {2020}, }