--- _id: '12521' abstract: - lang: eng text: Differentiated X chromosomes are expected to have higher rates of adaptive divergence than autosomes, if new beneficial mutations are recessive (the “faster-X effect”), largely because these mutations are immediately exposed to selection in males. The evolution of X chromosomes after they stop recombining in males, but before they become hemizygous, has not been well explored theoretically. We use the diffusion approximation to infer substitution rates of beneficial and deleterious mutations under such a scenario. Our results show that selection is less efficient on diploid X loci than on autosomal and hemizygous X loci under a wide range of parameters. This “slower-X” effect is stronger for genes affecting primarily (or only) male fitness, and for sexually antagonistic genes. These unusual dynamics suggest that some of the peculiar features of X chromosomes, such as the differential accumulation of genes with sex-specific functions, may start arising earlier than previously appreciated. acknowledgement: We thank the Vicoso and Barton groups and ISTA Scientific Computing Unit. We also thank two anonymous reviewers for their valuable comments. This work was supported by the European Research Council under the European Union’s Horizon 2020 research and innovation program (grant agreements no. 715257 and no. 716117). article_number: qrac004 article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Andrea full_name: Mrnjavac, Andrea id: 353FAC84-AE61-11E9-8BFC-00D3E5697425 last_name: Mrnjavac - first_name: Kseniia full_name: Khudiakova, Kseniia id: 4E6DC800-AE37-11E9-AC72-31CAE5697425 last_name: Khudiakova orcid: 0000-0002-6246-1465 - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Beatriz full_name: Vicoso, Beatriz id: 49E1C5C6-F248-11E8-B48F-1D18A9856A87 last_name: Vicoso orcid: 0000-0002-4579-8306 citation: ama: 'Mrnjavac A, Khudiakova K, Barton NH, Vicoso B. Slower-X: Reduced efficiency of selection in the early stages of X chromosome evolution. Evolution Letters. 2023;7(1). doi:10.1093/evlett/qrac004' apa: 'Mrnjavac, A., Khudiakova, K., Barton, N. H., & Vicoso, B. (2023). Slower-X: Reduced efficiency of selection in the early stages of X chromosome evolution. Evolution Letters. Oxford University Press. https://doi.org/10.1093/evlett/qrac004' chicago: 'Mrnjavac, Andrea, Kseniia Khudiakova, Nicholas H Barton, and Beatriz Vicoso. “Slower-X: Reduced Efficiency of Selection in the Early Stages of X Chromosome Evolution.” Evolution Letters. Oxford University Press, 2023. https://doi.org/10.1093/evlett/qrac004.' ieee: 'A. Mrnjavac, K. Khudiakova, N. H. Barton, and B. Vicoso, “Slower-X: Reduced efficiency of selection in the early stages of X chromosome evolution,” Evolution Letters, vol. 7, no. 1. Oxford University Press, 2023.' ista: 'Mrnjavac A, Khudiakova K, Barton NH, Vicoso B. 2023. Slower-X: Reduced efficiency of selection in the early stages of X chromosome evolution. Evolution Letters. 7(1), qrac004.' mla: 'Mrnjavac, Andrea, et al. “Slower-X: Reduced Efficiency of Selection in the Early Stages of X Chromosome Evolution.” Evolution Letters, vol. 7, no. 1, qrac004, Oxford University Press, 2023, doi:10.1093/evlett/qrac004.' short: A. Mrnjavac, K. Khudiakova, N.H. Barton, B. Vicoso, Evolution Letters 7 (2023). date_created: 2023-02-06T13:59:12Z date_published: 2023-02-01T00:00:00Z date_updated: 2023-08-16T11:44:32Z day: '01' ddc: - '570' department: - _id: GradSch - _id: BeVi doi: 10.1093/evlett/qrac004 ec_funded: 1 external_id: isi: - '001021692200001' pmid: - '37065438' file: - access_level: open_access checksum: a240a041cb9b9b7c8ba93a4706674a3f content_type: application/pdf creator: dernst date_created: 2023-08-16T11:43:33Z date_updated: 2023-08-16T11:43:33Z file_id: '14068' file_name: 2023_EvLetters_Mrnjavac.pdf file_size: 2592189 relation: main_file success: 1 file_date_updated: 2023-08-16T11:43:33Z has_accepted_license: '1' intvolume: ' 7' isi: 1 issue: '1' keyword: - Genetics - Ecology - Evolution - Behavior and Systematics language: - iso: eng month: '02' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 256E75B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '716117' name: Optimal Transport and Stochastic Dynamics - _id: 250BDE62-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715257' name: Prevalence and Influence of Sexual Antagonism on Genome Evolution publication: Evolution Letters publication_identifier: issn: - 2056-3744 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: 'Slower-X: Reduced efficiency of selection in the early stages of X chromosome evolution' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 7 year: '2023' ... --- _id: '14732' abstract: - lang: eng text: 'Fragmented landscapes pose a significant threat to the persistence of species as they are highly susceptible to heightened risk of extinction due to the combined effects of genetic and demographic factors such as genetic drift and demographic stochasticity. This paper explores the intricate interplay between genetic load and extinction risk within metapopulations with a focus on understanding the impact of eco-evolutionary feedback mechanisms. We distinguish between two models of selection: soft selection, characterised by subpopulations maintaining carrying capacity despite load, and hard selection, where load can significantly affect population size. Within the soft selection framework, we investigate the impact of gene flow on genetic load at a single locus, while also considering the effect of selection strength and dominance coefficient. We subsequently build on this to examine how gene flow influences both population size and load under hard selection as well as identify critical thresholds for metapopulation persistence. Our analysis employs the diffusion, semi-deterministic and effective migration approximations. Our findings reveal that under soft selection, even modest levels of migration can significantly alleviate the burden of load. In sharp contrast, with hard selection, a much higher degree of gene flow is required to mitigate load and prevent the collapse of the metapopulation. Overall, this study sheds light into the crucial role migration plays in shaping the dynamics of genetic load and extinction risk in fragmented landscapes, offering valuable insights for conservation strategies and the preservation of diversity in a changing world.' article_processing_charge: No author: - first_name: Oluwafunmilola O full_name: Olusanya, Oluwafunmilola O id: 41AD96DC-F248-11E8-B48F-1D18A9856A87 last_name: Olusanya orcid: 0000-0003-1971-8314 - first_name: Kseniia full_name: Khudiakova, Kseniia id: 4E6DC800-AE37-11E9-AC72-31CAE5697425 last_name: Khudiakova orcid: 0000-0002-6246-1465 - first_name: Himani full_name: Sachdeva, Himani id: 42377A0A-F248-11E8-B48F-1D18A9856A87 last_name: Sachdeva citation: ama: Olusanya OO, Khudiakova K, Sachdeva H. Genetic load, eco-evolutionary feedback and extinction in a metapopulation. bioRxiv. doi:10.1101/2023.12.02.569702 apa: Olusanya, O. O., Khudiakova, K., & Sachdeva, H. (n.d.). Genetic load, eco-evolutionary feedback and extinction in a metapopulation. bioRxiv. https://doi.org/10.1101/2023.12.02.569702 chicago: Olusanya, Oluwafunmilola O, Kseniia Khudiakova, and Himani Sachdeva. “Genetic Load, Eco-Evolutionary Feedback and Extinction in a Metapopulation.” BioRxiv, n.d. https://doi.org/10.1101/2023.12.02.569702. ieee: O. O. Olusanya, K. Khudiakova, and H. Sachdeva, “Genetic load, eco-evolutionary feedback and extinction in a metapopulation,” bioRxiv. . ista: Olusanya OO, Khudiakova K, Sachdeva H. Genetic load, eco-evolutionary feedback and extinction in a metapopulation. bioRxiv, 10.1101/2023.12.02.569702. mla: Olusanya, Oluwafunmilola O., et al. “Genetic Load, Eco-Evolutionary Feedback and Extinction in a Metapopulation.” BioRxiv, doi:10.1101/2023.12.02.569702. short: O.O. Olusanya, K. Khudiakova, H. Sachdeva, BioRxiv (n.d.). date_created: 2024-01-04T09:35:54Z date_published: 2023-12-04T00:00:00Z date_updated: 2024-01-26T12:00:53Z day: '04' department: - _id: NiBa - _id: JaMa doi: 10.1101/2023.12.02.569702 language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/10.1101/2023.12.02.569702v1 month: '12' oa: 1 oa_version: Preprint project: - _id: c08d3278-5a5b-11eb-8a69-fdb09b55f4b8 grant_number: P32896 name: Causes and consequences of population fragmentation - _id: 34d33d68-11ca-11ed-8bc3-ec13763c0ca8 grant_number: '26293' name: The impact of deleterious mutations on small populations - _id: 34c872fe-11ca-11ed-8bc3-8534b82131e6 grant_number: '26380' name: Polygenic Adaptation in a Metapopulation publication: bioRxiv publication_status: submitted related_material: record: - id: '14711' relation: dissertation_contains status: public status: public title: Genetic load, eco-evolutionary feedback and extinction in a metapopulation tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: preprint user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '11447' abstract: - lang: eng text: Empirical essays of fitness landscapes suggest that they may be rugged, that is having multiple fitness peaks. Such fitness landscapes, those that have multiple peaks, necessarily have special local structures, called reciprocal sign epistasis (Poelwijk et al. in J Theor Biol 272:141–144, 2011). Here, we investigate the quantitative relationship between the number of fitness peaks and the number of reciprocal sign epistatic interactions. Previously, it has been shown (Poelwijk et al. in J Theor Biol 272:141–144, 2011) that pairwise reciprocal sign epistasis is a necessary but not sufficient condition for the existence of multiple peaks. Applying discrete Morse theory, which to our knowledge has never been used in this context, we extend this result by giving the minimal number of reciprocal sign epistatic interactions required to create a given number of peaks. acknowledgement: We are grateful to Herbert Edelsbrunner and Jeferson Zapata for helpful discussions. Open access funding provided by Austrian Science Fund (FWF). Partially supported by the ERC Consolidator (771209–CharFL) and the FWF Austrian Science Fund (I5127-B) grants to FAK. article_number: '74' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Raimundo J full_name: Saona Urmeneta, Raimundo J id: BD1DF4C4-D767-11E9-B658-BC13E6697425 last_name: Saona Urmeneta orcid: 0000-0001-5103-038X - first_name: Fyodor full_name: Kondrashov, Fyodor id: 44FDEF62-F248-11E8-B48F-1D18A9856A87 last_name: Kondrashov orcid: 0000-0001-8243-4694 - first_name: Kseniia full_name: Khudiakova, Kseniia id: 4E6DC800-AE37-11E9-AC72-31CAE5697425 last_name: Khudiakova orcid: 0000-0002-6246-1465 citation: ama: Saona Urmeneta RJ, Kondrashov F, Khudiakova K. Relation between the number of peaks and the number of reciprocal sign epistatic interactions. Bulletin of Mathematical Biology. 2022;84(8). doi:10.1007/s11538-022-01029-z apa: Saona Urmeneta, R. J., Kondrashov, F., & Khudiakova, K. (2022). Relation between the number of peaks and the number of reciprocal sign epistatic interactions. Bulletin of Mathematical Biology. Springer Nature. https://doi.org/10.1007/s11538-022-01029-z chicago: Saona Urmeneta, Raimundo J, Fyodor Kondrashov, and Kseniia Khudiakova. “Relation between the Number of Peaks and the Number of Reciprocal Sign Epistatic Interactions.” Bulletin of Mathematical Biology. Springer Nature, 2022. https://doi.org/10.1007/s11538-022-01029-z. ieee: R. J. Saona Urmeneta, F. Kondrashov, and K. Khudiakova, “Relation between the number of peaks and the number of reciprocal sign epistatic interactions,” Bulletin of Mathematical Biology, vol. 84, no. 8. Springer Nature, 2022. ista: Saona Urmeneta RJ, Kondrashov F, Khudiakova K. 2022. Relation between the number of peaks and the number of reciprocal sign epistatic interactions. Bulletin of Mathematical Biology. 84(8), 74. mla: Saona Urmeneta, Raimundo J., et al. “Relation between the Number of Peaks and the Number of Reciprocal Sign Epistatic Interactions.” Bulletin of Mathematical Biology, vol. 84, no. 8, 74, Springer Nature, 2022, doi:10.1007/s11538-022-01029-z. short: R.J. Saona Urmeneta, F. Kondrashov, K. Khudiakova, Bulletin of Mathematical Biology 84 (2022). date_created: 2022-06-17T16:16:15Z date_published: 2022-06-17T00:00:00Z date_updated: 2023-08-03T07:20:53Z day: '17' ddc: - '510' - '570' department: - _id: GradSch - _id: NiBa - _id: JaMa doi: 10.1007/s11538-022-01029-z ec_funded: 1 external_id: isi: - '000812509800001' file: - access_level: open_access checksum: 05a1fe7d10914a00c2bca9b447993a65 content_type: application/pdf creator: dernst date_created: 2022-06-20T07:51:32Z date_updated: 2022-06-20T07:51:32Z file_id: '11455' file_name: 2022_BulletinMathBiology_Saona.pdf file_size: 463025 relation: main_file success: 1 file_date_updated: 2022-06-20T07:51:32Z has_accepted_license: '1' intvolume: ' 84' isi: 1 issue: '8' keyword: - Computational Theory and Mathematics - General Agricultural and Biological Sciences - Pharmacology - General Environmental Science - General Biochemistry - Genetics and Molecular Biology - General Mathematics - Immunology - General Neuroscience language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 26580278-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '771209' name: Characterizing the fitness landscape on population and global scales - _id: c098eddd-5a5b-11eb-8a69-abe27170a68f grant_number: I05127 name: Evolutionary analysis of gene regulation publication: Bulletin of Mathematical Biology publication_identifier: eissn: - 1522-9602 issn: - 0092-8240 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1007/s11538-022-01118-z scopus_import: '1' status: public title: Relation between the number of peaks and the number of reciprocal sign epistatic interactions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 84 year: '2022' ... --- _id: '9387' abstract: - lang: eng text: We report the complete analysis of a deterministic model of deleterious mutations and negative selection against them at two haploid loci without recombination. As long as mutation is a weaker force than selection, mutant alleles remain rare at the only stable equilibrium, and otherwise, a variety of dynamics are possible. If the mutation-free genotype is absent, generally the only stable equilibrium is the one that corresponds to fixation of the mutant allele at the locus where it is less deleterious. This result suggests that fixation of a deleterious allele that follows a click of the Muller’s ratchet is governed by natural selection, instead of random drift. acknowledgement: This work was supported by the Russian Science Foundation grant N 16-14-10173. article_number: '110729' article_processing_charge: No article_type: original author: - first_name: Kseniia full_name: Khudiakova, Kseniia id: 4E6DC800-AE37-11E9-AC72-31CAE5697425 last_name: Khudiakova orcid: 0000-0002-6246-1465 - first_name: Tatiana Yu. full_name: Neretina, Tatiana Yu. last_name: Neretina - first_name: Alexey S. full_name: Kondrashov, Alexey S. last_name: Kondrashov citation: ama: Khudiakova K, Neretina TY, Kondrashov AS. Two linked loci under mutation-selection balance and Muller’s ratchet. Journal of Theoretical Biology. 2021;524. doi:10.1016/j.jtbi.2021.110729 apa: Khudiakova, K., Neretina, T. Y., & Kondrashov, A. S. (2021). Two linked loci under mutation-selection balance and Muller’s ratchet. Journal of Theoretical Biology. Elsevier . https://doi.org/10.1016/j.jtbi.2021.110729 chicago: Khudiakova, Kseniia, Tatiana Yu. Neretina, and Alexey S. Kondrashov. “Two Linked Loci under Mutation-Selection Balance and Muller’s Ratchet.” Journal of Theoretical Biology. Elsevier , 2021. https://doi.org/10.1016/j.jtbi.2021.110729. ieee: K. Khudiakova, T. Y. Neretina, and A. S. Kondrashov, “Two linked loci under mutation-selection balance and Muller’s ratchet,” Journal of Theoretical Biology, vol. 524. Elsevier , 2021. ista: Khudiakova K, Neretina TY, Kondrashov AS. 2021. Two linked loci under mutation-selection balance and Muller’s ratchet. Journal of Theoretical Biology. 524, 110729. mla: Khudiakova, Kseniia, et al. “Two Linked Loci under Mutation-Selection Balance and Muller’s Ratchet.” Journal of Theoretical Biology, vol. 524, 110729, Elsevier , 2021, doi:10.1016/j.jtbi.2021.110729. short: K. Khudiakova, T.Y. Neretina, A.S. Kondrashov, Journal of Theoretical Biology 524 (2021). date_created: 2021-05-12T05:58:42Z date_published: 2021-04-24T00:00:00Z date_updated: 2023-08-08T13:32:40Z day: '24' department: - _id: GradSch doi: 10.1016/j.jtbi.2021.110729 external_id: isi: - '000659161500002' intvolume: ' 524' isi: 1 keyword: - General Biochemistry - Genetics and Molecular Biology - Modelling and Simulation - Statistics and Probability - General Immunology and Microbiology - Applied Mathematics - General Agricultural and Biological Sciences - General Medicine language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/10.1101/477489v1 month: '04' oa: 1 oa_version: Preprint publication: Journal of Theoretical Biology publication_identifier: issn: - 0022-5193 publication_status: published publisher: 'Elsevier ' quality_controlled: '1' status: public title: Two linked loci under mutation-selection balance and Muller’s ratchet type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 524 year: '2021' ...