TY - JOUR AB - We study the time evolution of the Nelson model in a mean-field limit in which N nonrelativistic bosons weakly couple (with respect to the particle number) to a positive or zero mass quantized scalar field. Our main result is the derivation of the Bogoliubov dynamics and higher-order corrections. More precisely, we prove the convergence of the approximate wave function to the many-body wave function in norm, with a convergence rate proportional to the number of corrections taken into account in the approximation. We prove an analogous result for the unitary propagator. As an application, we derive a simple system of partial differential equations describing the time evolution of the first- and second-order approximations to the one-particle reduced density matrices of the particles and the quantum field, respectively. AU - Falconi, Marco AU - Leopold, Nikolai K AU - Mitrouskas, David Johannes AU - Petrat, Sören P ID - 12430 IS - 4 JF - Reviews in Mathematical Physics SN - 0129-055X TI - Bogoliubov dynamics and higher-order corrections for the regularized Nelson model VL - 35 ER - TY - JOUR AB - We consider the Fröhlich Hamiltonian in a mean-field limit where many bosonic particles weakly couple to the quantized phonon field. For large particle numbers and a suitably small coupling, we show that the dynamics of the system is approximately described by the Landau–Pekar equations. These describe a Bose–Einstein condensate interacting with a classical polarization field, whose dynamics is effected by the condensate, i.e., the back-reaction of the phonons that are created by the particles during the time evolution is of leading order. AU - Leopold, Nikolai K AU - Mitrouskas, David Johannes AU - Seiringer, Robert ID - 9246 JF - Archive for Rational Mechanics and Analysis SN - 00039527 TI - Derivation of the Landau–Pekar equations in a many-body mean-field limit VL - 240 ER - TY - JOUR AB - We prove an adiabatic theorem for the Landau–Pekar equations. This allows us to derive new results on the accuracy of their use as effective equations for the time evolution generated by the Fröhlich Hamiltonian with large coupling constant α. In particular, we show that the time evolution of Pekar product states with coherent phonon field and the electron being trapped by the phonons is well approximated by the Landau–Pekar equations until times short compared to α2. AU - Leopold, Nikolai K AU - Rademacher, Simone Anna Elvira AU - Schlein, Benjamin AU - Seiringer, Robert ID - 10738 IS - 7 JF - Analysis and PDE SN - 2157-5045 TI - The Landau–Pekar equations: Adiabatic theorem and accuracy VL - 14 ER - TY - JOUR AB - We consider the Fröhlich Hamiltonian with large coupling constant α. For initial data of Pekar product form with coherent phonon field and with the electron minimizing the corresponding energy, we provide a norm approximation of the evolution, valid up to times of order α2. The approximation is given in terms of a Pekar product state, evolved through the Landau-Pekar equations, corrected by a Bogoliubov dynamics taking quantum fluctuations into account. This allows us to show that the Landau-Pekar equations approximately describe the evolution of the electron- and one-phonon reduced density matrices under the Fröhlich dynamics up to times of order α2. AU - Leopold, Nikolai K AU - Mitrouskas, David Johannes AU - Rademacher, Simone Anna Elvira AU - Schlein, Benjamin AU - Seiringer, Robert ID - 14889 IS - 4 JF - Pure and Applied Analysis SN - 2578-5893 TI - Landau–Pekar equations and quantum fluctuations for the dynamics of a strongly coupled polaron VL - 3 ER - TY - JOUR AB - We consider the Nelson model with ultraviolet cutoff, which describes the interaction between non-relativistic particles and a positive or zero mass quantized scalar field. We take the non-relativistic particles to obey Fermi statistics and discuss the time evolution in a mean-field limit of many fermions. In this case, the limit is known to be also a semiclassical limit. We prove convergence in terms of reduced density matrices of the many-body state to a tensor product of a Slater determinant with semiclassical structure and a coherent state, which evolve according to a fermionic version of the Schrödinger–Klein–Gordon equations. AU - Leopold, Nikolai K AU - Petrat, Sören P ID - 6788 IS - 10 JF - Annales Henri Poincare SN - 1424-0637 TI - Mean-field dynamics for the Nelson model with fermions VL - 20 ER - TY - JOUR AB - We present microscopic derivations of the defocusing two-dimensional cubic nonlinear Schrödinger equation and the Gross–Pitaevskii equation starting froman interacting N-particle system of bosons. We consider the interaction potential to be given either by Wβ(x)=N−1+2βW(Nβx), for any β>0, or to be given by VN(x)=e2NV(eNx), for some spherical symmetric, nonnegative and compactly supported W,V∈L∞(R2,R). In both cases we prove the convergence of the reduced density corresponding to the exact time evolution to the projector onto the solution of the corresponding nonlinear Schrödinger equation in trace norm. For the latter potential VN we show that it is crucial to take the microscopic structure of the condensate into account in order to obtain the correct dynamics. AU - Jeblick, Maximilian AU - Leopold, Nikolai K AU - Pickl, Peter ID - 7100 IS - 1 JF - Communications in Mathematical Physics SN - 0010-3616 TI - Derivation of the time dependent Gross–Pitaevskii equation in two dimensions VL - 372 ER - TY - CONF AB - We report on a novel strategy to derive mean-field limits of quantum mechanical systems in which a large number of particles weakly couple to a second-quantized radiation field. The technique combines the method of counting and the coherent state approach to study the growth of the correlations among the particles and in the radiation field. As an instructional example, we derive the Schrödinger–Klein–Gordon system of equations from the Nelson model with ultraviolet cutoff and possibly massless scalar field. In particular, we prove the convergence of the reduced density matrices (of the nonrelativistic particles and the field bosons) associated with the exact time evolution to the projectors onto the solutions of the Schrödinger–Klein–Gordon equations in trace norm. Furthermore, we derive explicit bounds on the rate of convergence of the one-particle reduced density matrix of the nonrelativistic particles in Sobolev norm. AU - Leopold, Nikolai K AU - Pickl, Peter ID - 11 TI - Mean-field limits of particles in interaction with quantised radiation fields VL - 270 ER - TY - JOUR AB - We study a quantum impurity possessing both translational and internal rotational degrees of freedom interacting with a bosonic bath. Such a system corresponds to a “rotating polaron,” which can be used to model, e.g., a rotating molecule immersed in an ultracold Bose gas or superfluid helium. We derive the Hamiltonian of the rotating polaron and study its spectrum in the weak- and strong-coupling regimes using a combination of variational, diagrammatic, and mean-field approaches. We reveal how the coupling between linear and angular momenta affects stable quasiparticle states, and demonstrate that internal rotation leads to an enhanced self-localization in the translational degrees of freedom. AU - Yakaboylu, Enderalp AU - Midya, Bikashkali AU - Deuchert, Andreas AU - Leopold, Nikolai K AU - Lemeshko, Mikhail ID - 5983 IS - 22 JF - Physical Review B SN - 2469-9950 TI - Theory of the rotating polaron: Spectrum and self-localization VL - 98 ER -