@article{12495, abstract = {Fairness-aware learning aims at constructing classifiers that not only make accurate predictions, but also do not discriminate against specific groups. It is a fast-growing area of machine learning with far-reaching societal impact. However, existing fair learning methods are vulnerable to accidental or malicious artifacts in the training data, which can cause them to unknowingly produce unfair classifiers. In this work we address the problem of fair learning from unreliable training data in the robust multisource setting, where the available training data comes from multiple sources, a fraction of which might not be representative of the true data distribution. We introduce FLEA, a filtering-based algorithm that identifies and suppresses those data sources that would have a negative impact on fairness or accuracy if they were used for training. As such, FLEA is not a replacement of prior fairness-aware learning methods but rather an augmentation that makes any of them robust against unreliable training data. We show the effectiveness of our approach by a diverse range of experiments on multiple datasets. Additionally, we prove formally that –given enough data– FLEA protects the learner against corruptions as long as the fraction of affected data sources is less than half. Our source code and documentation are available at https://github.com/ISTAustria-CVML/FLEA.}, author = {Iofinova, Eugenia B and Konstantinov, Nikola H and Lampert, Christoph}, issn = {2835-8856}, journal = {Transactions on Machine Learning Research}, publisher = {ML Research Press}, title = {{FLEA: Provably robust fair multisource learning from unreliable training data}}, year = {2022}, } @article{10802, abstract = {Addressing fairness concerns about machine learning models is a crucial step towards their long-term adoption in real-world automated systems. While many approaches have been developed for training fair models from data, little is known about the robustness of these methods to data corruption. In this work we consider fairness-aware learning under worst-case data manipulations. We show that an adversary can in some situations force any learner to return an overly biased classifier, regardless of the sample size and with or without degrading accuracy, and that the strength of the excess bias increases for learning problems with underrepresented protected groups in the data. We also prove that our hardness results are tight up to constant factors. To this end, we study two natural learning algorithms that optimize for both accuracy and fairness and show that these algorithms enjoy guarantees that are order-optimal in terms of the corruption ratio and the protected groups frequencies in the large data limit.}, author = {Konstantinov, Nikola H and Lampert, Christoph}, issn = {1533-7928}, journal = {Journal of Machine Learning Research}, keywords = {Fairness, robustness, data poisoning, trustworthy machine learning, PAC learning}, pages = {1--60}, publisher = {ML Research Press}, title = {{Fairness-aware PAC learning from corrupted data}}, volume = {23}, year = {2022}, } @inproceedings{13241, abstract = {Addressing fairness concerns about machine learning models is a crucial step towards their long-term adoption in real-world automated systems. Many approaches for training fair models from data have been developed and an implicit assumption about such algorithms is that they are able to recover a fair model, despite potential historical biases in the data. In this work we show a number of impossibility results that indicate that there is no learning algorithm that can recover a fair model when a proportion of the dataset is subject to arbitrary manipulations. Specifically, we prove that there are situations in which an adversary can force any learner to return a biased classifier, with or without degrading accuracy, and that the strength of this bias increases for learning problems with underrepresented protected groups in the data. Our results emphasize on the importance of studying further data corruption models of various strength and of establishing stricter data collection practices for fairness-aware learning.}, author = {Konstantinov, Nikola H and Lampert, Christoph}, booktitle = {Proceedings of Machine Learning Research}, issn = {2640-3498}, pages = {59--83}, publisher = {ML Research Press}, title = {{On the impossibility of fairness-aware learning from corrupted data}}, volume = {171}, year = {2022}, } @phdthesis{10799, abstract = {Because of the increasing popularity of machine learning methods, it is becoming important to understand the impact of learned components on automated decision-making systems and to guarantee that their consequences are beneficial to society. In other words, it is necessary to ensure that machine learning is sufficiently trustworthy to be used in real-world applications. This thesis studies two properties of machine learning models that are highly desirable for the sake of reliability: robustness and fairness. In the first part of the thesis we study the robustness of learning algorithms to training data corruption. Previous work has shown that machine learning models are vulnerable to a range of training set issues, varying from label noise through systematic biases to worst-case data manipulations. This is an especially relevant problem from a present perspective, since modern machine learning methods are particularly data hungry and therefore practitioners often have to rely on data collected from various external sources, e.g. from the Internet, from app users or via crowdsourcing. Naturally, such sources vary greatly in the quality and reliability of the data they provide. With these considerations in mind, we study the problem of designing machine learning algorithms that are robust to corruptions in data coming from multiple sources. We show that, in contrast to the case of a single dataset with outliers, successful learning within this model is possible both theoretically and practically, even under worst-case data corruptions. The second part of this thesis deals with fairness-aware machine learning. There are multiple areas where machine learning models have shown promising results, but where careful considerations are required, in order to avoid discrimanative decisions taken by such learned components. Ensuring fairness can be particularly challenging, because real-world training datasets are expected to contain various forms of historical bias that may affect the learning process. In this thesis we show that data corruption can indeed render the problem of achieving fairness impossible, by tightly characterizing the theoretical limits of fair learning under worst-case data manipulations. However, assuming access to clean data, we also show how fairness-aware learning can be made practical in contexts beyond binary classification, in particular in the challenging learning to rank setting.}, author = {Konstantinov, Nikola H}, isbn = {978-3-99078-015-2}, issn = {2663-337X}, keywords = {robustness, fairness, machine learning, PAC learning, adversarial learning}, pages = {176}, publisher = {Institute of Science and Technology Austria}, title = {{Robustness and fairness in machine learning}}, doi = {10.15479/at:ista:10799}, year = {2022}, } @unpublished{10803, abstract = {Given the abundance of applications of ranking in recent years, addressing fairness concerns around automated ranking systems becomes necessary for increasing the trust among end-users. Previous work on fair ranking has mostly focused on application-specific fairness notions, often tailored to online advertising, and it rarely considers learning as part of the process. In this work, we show how to transfer numerous fairness notions from binary classification to a learning to rank setting. Our formalism allows us to design methods for incorporating fairness objectives with provable generalization guarantees. An extensive experimental evaluation shows that our method can improve ranking fairness substantially with no or only little loss of model quality.}, author = {Konstantinov, Nikola H and Lampert, Christoph}, booktitle = {arXiv}, title = {{Fairness through regularization for learning to rank}}, doi = {10.48550/arXiv.2102.05996}, year = {2021}, } @inproceedings{8724, abstract = {We study the problem of learning from multiple untrusted data sources, a scenario of increasing practical relevance given the recent emergence of crowdsourcing and collaborative learning paradigms. Specifically, we analyze the situation in which a learning system obtains datasets from multiple sources, some of which might be biased or even adversarially perturbed. It is known that in the single-source case, an adversary with the power to corrupt a fixed fraction of the training data can prevent PAC-learnability, that is, even in the limit of infinitely much training data, no learning system can approach the optimal test error. In this work we show that, surprisingly, the same is not true in the multi-source setting, where the adversary can arbitrarily corrupt a fixed fraction of the data sources. Our main results are a generalization bound that provides finite-sample guarantees for this learning setting, as well as corresponding lower bounds. Besides establishing PAC-learnability our results also show that in a cooperative learning setting sharing data with other parties has provable benefits, even if some participants are malicious. }, author = {Konstantinov, Nikola H and Frantar, Elias and Alistarh, Dan-Adrian and Lampert, Christoph}, booktitle = {Proceedings of the 37th International Conference on Machine Learning}, issn = {2640-3498}, location = {Online}, pages = {5416--5425}, publisher = {ML Research Press}, title = {{On the sample complexity of adversarial multi-source PAC learning}}, volume = {119}, year = {2020}, } @inproceedings{6590, abstract = {Modern machine learning methods often require more data for training than a single expert can provide. Therefore, it has become a standard procedure to collect data from external sources, e.g. via crowdsourcing. Unfortunately, the quality of these sources is not always guaranteed. As additional complications, the data might be stored in a distributed way, or might even have to remain private. In this work, we address the question of how to learn robustly in such scenarios. Studying the problem through the lens of statistical learning theory, we derive a procedure that allows for learning from all available sources, yet automatically suppresses irrelevant or corrupted data. We show by extensive experiments that our method provides significant improvements over alternative approaches from robust statistics and distributed optimization. }, author = {Konstantinov, Nikola H and Lampert, Christoph}, booktitle = {Proceedings of the 36th International Conference on Machine Learning}, location = {Long Beach, CA, USA}, pages = {3488--3498}, publisher = {ML Research Press}, title = {{Robust learning from untrusted sources}}, volume = {97}, year = {2019}, } @inproceedings{5962, abstract = {Stochastic Gradient Descent (SGD) is a fundamental algorithm in machine learning, representing the optimization backbone for training several classic models, from regression to neural networks. Given the recent practical focus on distributed machine learning, significant work has been dedicated to the convergence properties of this algorithm under the inconsistent and noisy updates arising from execution in a distributed environment. However, surprisingly, the convergence properties of this classic algorithm in the standard shared-memory model are still not well-understood. In this work, we address this gap, and provide new convergence bounds for lock-free concurrent stochastic gradient descent, executing in the classic asynchronous shared memory model, against a strong adaptive adversary. Our results give improved upper and lower bounds on the "price of asynchrony'' when executing the fundamental SGD algorithm in a concurrent setting. They show that this classic optimization tool can converge faster and with a wider range of parameters than previously known under asynchronous iterations. At the same time, we exhibit a fundamental trade-off between the maximum delay in the system and the rate at which SGD can converge, which governs the set of parameters under which this algorithm can still work efficiently.}, author = {Alistarh, Dan-Adrian and De Sa, Christopher and Konstantinov, Nikola H}, booktitle = {Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing - PODC '18}, isbn = {9781450357951}, location = {Egham, United Kingdom}, pages = {169--178}, publisher = {ACM Press}, title = {{The convergence of stochastic gradient descent in asynchronous shared memory}}, doi = {10.1145/3212734.3212763}, year = {2018}, } @inproceedings{6589, abstract = {Distributed training of massive machine learning models, in particular deep neural networks, via Stochastic Gradient Descent (SGD) is becoming commonplace. Several families of communication-reduction methods, such as quantization, large-batch methods, and gradient sparsification, have been proposed. To date, gradient sparsification methods--where each node sorts gradients by magnitude, and only communicates a subset of the components, accumulating the rest locally--are known to yield some of the largest practical gains. Such methods can reduce the amount of communication per step by up to \emph{three orders of magnitude}, while preserving model accuracy. Yet, this family of methods currently has no theoretical justification. This is the question we address in this paper. We prove that, under analytic assumptions, sparsifying gradients by magnitude with local error correction provides convergence guarantees, for both convex and non-convex smooth objectives, for data-parallel SGD. The main insight is that sparsification methods implicitly maintain bounds on the maximum impact of stale updates, thanks to selection by magnitude. Our analysis and empirical validation also reveal that these methods do require analytical conditions to converge well, justifying existing heuristics.}, author = {Alistarh, Dan-Adrian and Hoefler, Torsten and Johansson, Mikael and Konstantinov, Nikola H and Khirirat, Sarit and Renggli, Cedric}, booktitle = {Advances in Neural Information Processing Systems 31}, location = {Montreal, Canada}, pages = {5973--5983}, publisher = {Neural Information Processing Systems Foundation}, title = {{The convergence of sparsified gradient methods}}, volume = {Volume 2018}, year = {2018}, }