--- _id: '13117' abstract: - lang: eng text: The ability to control the direction of scattered light is crucial to provide flexibility and scalability for a wide range of on-chip applications, such as integrated photonics, quantum information processing, and nonlinear optics. Tunable directionality can be achieved by applying external magnetic fields that modify optical selection rules, by using nonlinear effects, or interactions with vibrations. However, these approaches are less suitable to control microwave photon propagation inside integrated superconducting quantum devices. Here, we demonstrate on-demand tunable directional scattering based on two periodically modulated transmon qubits coupled to a transmission line at a fixed distance. By changing the relative phase between the modulation tones, we realize unidirectional forward or backward photon scattering. Such an in-situ switchable mirror represents a versatile tool for intra- and inter-chip microwave photonic processors. In the future, a lattice of qubits can be used to realize topological circuits that exhibit strong nonreciprocity or chirality. acknowledged_ssus: - _id: M-Shop - _id: NanoFab acknowledgement: The authors thank W.D. Oliver for discussions, L. Drmic and P. Zielinski for software development, and the MIBA workshop and the IST nanofabrication facility for technical support. This work was supported by the Austrian Science Fund (FWF) through BeyondC (F7105) and IST Austria. E.R. is the recipient of a DOC fellowship of the Austrian Academy of Sciences at IST Austria. J.M.F. and M.Z. acknowledge support from the European Research Council under grant agreement No 758053 (ERC StG QUNNECT) and a NOMIS foundation research grant. The work of A.N.P. and A.V.P. has been supported by the Russian Science Foundation under the grant No 20-12-00194. article_number: '2998' article_processing_charge: No article_type: original author: - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Alexander V. full_name: Poshakinskiy, Alexander V. last_name: Poshakinskiy - first_name: Riya full_name: Sett, Riya id: 2E6D040E-F248-11E8-B48F-1D18A9856A87 last_name: Sett - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Alexander N. full_name: Poddubny, Alexander N. last_name: Poddubny - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Redchenko E, Poshakinskiy AV, Sett R, Zemlicka M, Poddubny AN, Fink JM. Tunable directional photon scattering from a pair of superconducting qubits. Nature Communications. 2023;14. doi:10.1038/s41467-023-38761-6 apa: Redchenko, E., Poshakinskiy, A. V., Sett, R., Zemlicka, M., Poddubny, A. N., & Fink, J. M. (2023). Tunable directional photon scattering from a pair of superconducting qubits. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-38761-6 chicago: Redchenko, Elena, Alexander V. Poshakinskiy, Riya Sett, Martin Zemlicka, Alexander N. Poddubny, and Johannes M Fink. “Tunable Directional Photon Scattering from a Pair of Superconducting Qubits.” Nature Communications. Springer Nature, 2023. https://doi.org/10.1038/s41467-023-38761-6. ieee: E. Redchenko, A. V. Poshakinskiy, R. Sett, M. Zemlicka, A. N. Poddubny, and J. M. Fink, “Tunable directional photon scattering from a pair of superconducting qubits,” Nature Communications, vol. 14. Springer Nature, 2023. ista: Redchenko E, Poshakinskiy AV, Sett R, Zemlicka M, Poddubny AN, Fink JM. 2023. Tunable directional photon scattering from a pair of superconducting qubits. Nature Communications. 14, 2998. mla: Redchenko, Elena, et al. “Tunable Directional Photon Scattering from a Pair of Superconducting Qubits.” Nature Communications, vol. 14, 2998, Springer Nature, 2023, doi:10.1038/s41467-023-38761-6. short: E. Redchenko, A.V. Poshakinskiy, R. Sett, M. Zemlicka, A.N. Poddubny, J.M. Fink, Nature Communications 14 (2023). date_created: 2023-06-04T22:01:02Z date_published: 2023-05-24T00:00:00Z date_updated: 2023-08-02T06:10:26Z day: '24' ddc: - '530' department: - _id: JoFi doi: 10.1038/s41467-023-38761-6 ec_funded: 1 external_id: arxiv: - '2205.03293' isi: - '001001099700002' file: - access_level: open_access checksum: a857df40f0882859c48a1ff1e2001ec2 content_type: application/pdf creator: dernst date_created: 2023-06-06T07:31:20Z date_updated: 2023-06-06T07:31:20Z file_id: '13123' file_name: 2023_NaturePhysics_Redchenko.pdf file_size: 1654389 relation: main_file success: 1 file_date_updated: 2023-06-06T07:31:20Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '05' oa: 1 oa_version: Published Version project: - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 26B354CA-B435-11E9-9278-68D0E5697425 name: Controllable Collective States of Superconducting Qubit Ensembles - _id: eb9b30ac-77a9-11ec-83b8-871f581d53d2 name: Protected states of quantum matter publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '13124' relation: research_data status: public scopus_import: '1' status: public title: Tunable directional photon scattering from a pair of superconducting qubits tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2023' ... --- _id: '13106' abstract: - lang: eng text: Quantum entanglement is a key resource in currently developed quantum technologies. Sharing this fragile property between superconducting microwave circuits and optical or atomic systems would enable new functionalities, but this has been hindered by an energy scale mismatch of >104 and the resulting mutually imposed loss and noise. In this work, we created and verified entanglement between microwave and optical fields in a millikelvin environment. Using an optically pulsed superconducting electro-optical device, we show entanglement between propagating microwave and optical fields in the continuous variable domain. This achievement not only paves the way for entanglement between superconducting circuits and telecom wavelength light, but also has wide-ranging implications for hybrid quantum networks in the context of modularization, scaling, sensing, and cross-platform verification. acknowledgement: This work was supported by the European Research Council (grant no. 758053, ERC StG QUNNECT) and the European Union’s Horizon 2020 Research and Innovation Program (grant no. 899354, FETopen SuperQuLAN). L.Q. acknowledges generous support from the ISTFELLOW program. W.H. is the recipient of an ISTplus postdoctoral fellowship with funding from the European Union’s Horizon 2020 Research and Innovation Program (Marie Sklodowska-Curie grant no. 754411). G.A. is the recipient of a DOC fellowship of the Austrian Academy of Sciences at IST Austria. J.M.F. acknowledges support from the Austrian Science Fund (FWF) through BeyondC (grant no. F7105) and the European Union’s Horizon 2020 Research and Innovation Program (grant no. 862644, FETopen QUARTET). article_processing_charge: No article_type: original author: - first_name: Rishabh full_name: Sahu, Rishabh id: 47D26E34-F248-11E8-B48F-1D18A9856A87 last_name: Sahu orcid: 0000-0001-6264-2162 - first_name: Liu full_name: Qiu, Liu id: 45e99c0d-1eb1-11eb-9b96-ed8ab2983cac last_name: Qiu orcid: 0000-0003-4345-4267 - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold - first_name: Y. full_name: Minoguchi, Y. last_name: Minoguchi - first_name: P. full_name: Rabl, P. last_name: Rabl - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Sahu R, Qiu L, Hease WJ, et al. Entangling microwaves with light. Science. 2023;380(6646):718-721. doi:10.1126/science.adg3812 apa: Sahu, R., Qiu, L., Hease, W. J., Arnold, G. M., Minoguchi, Y., Rabl, P., & Fink, J. M. (2023). Entangling microwaves with light. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.adg3812 chicago: Sahu, Rishabh, Liu Qiu, William J Hease, Georg M Arnold, Y. Minoguchi, P. Rabl, and Johannes M Fink. “Entangling Microwaves with Light.” Science. American Association for the Advancement of Science, 2023. https://doi.org/10.1126/science.adg3812. ieee: R. Sahu et al., “Entangling microwaves with light,” Science, vol. 380, no. 6646. American Association for the Advancement of Science, pp. 718–721, 2023. ista: Sahu R, Qiu L, Hease WJ, Arnold GM, Minoguchi Y, Rabl P, Fink JM. 2023. Entangling microwaves with light. Science. 380(6646), 718–721. mla: Sahu, Rishabh, et al. “Entangling Microwaves with Light.” Science, vol. 380, no. 6646, American Association for the Advancement of Science, 2023, pp. 718–21, doi:10.1126/science.adg3812. short: R. Sahu, L. Qiu, W.J. Hease, G.M. Arnold, Y. Minoguchi, P. Rabl, J.M. Fink, Science 380 (2023) 718–721. date_created: 2023-05-31T11:39:24Z date_published: 2023-05-18T00:00:00Z date_updated: 2023-08-02T06:08:57Z day: '18' department: - _id: JoFi doi: 10.1126/science.adg3812 ec_funded: 1 external_id: arxiv: - '2301.03315' isi: - '000996515200004' intvolume: ' 380' isi: 1 issue: '6646' keyword: - Multidisciplinary language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2301.03315 month: '05' oa: 1 oa_version: Preprint page: 718-721 project: - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 9B868D20-BA93-11EA-9121-9846C619BF3A call_identifier: H2020 grant_number: '899354' name: Quantum Local Area Networks with Superconducting Qubits - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits - _id: 237CBA6C-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862644' name: Quantum readout techniques and technologies - _id: 2671EB66-B435-11E9-9278-68D0E5697425 name: Coherent on-chip conversion of superconducting qubit signals from microwaves to optical frequencies publication: Science publication_identifier: eissn: - 1095-9203 issn: - 0036-8075 publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' related_material: link: - description: News on ISTA Website relation: press_release url: https://ista.ac.at/en/news/wiring-up-quantum-circuits-with-light/ record: - id: '13122' relation: research_data status: public status: public title: Entangling microwaves with light type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 380 year: '2023' ... --- _id: '13124' abstract: - lang: eng text: This dataset comprises all data shown in the figures of the submitted article "Tunable directional photon scattering from a pair of superconducting qubits" at arXiv:2205.03293. Additional raw data are available from the corresponding author on reasonable request. article_processing_charge: No author: - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Alexander full_name: Poshakinskiy, Alexander last_name: Poshakinskiy - first_name: Riya full_name: Sett, Riya id: 2E6D040E-F248-11E8-B48F-1D18A9856A87 last_name: Sett - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Alexander full_name: Poddubny, Alexander last_name: Poddubny - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Redchenko E, Poshakinskiy A, Sett R, Zemlicka M, Poddubny A, Fink JM. Tunable directional photon scattering from a pair of superconducting qubits. 2023. doi:10.5281/ZENODO.7858567 apa: Redchenko, E., Poshakinskiy, A., Sett, R., Zemlicka, M., Poddubny, A., & Fink, J. M. (2023). Tunable directional photon scattering from a pair of superconducting qubits. Zenodo. https://doi.org/10.5281/ZENODO.7858567 chicago: Redchenko, Elena, Alexander Poshakinskiy, Riya Sett, Martin Zemlicka, Alexander Poddubny, and Johannes M Fink. “Tunable Directional Photon Scattering from a Pair of Superconducting Qubits.” Zenodo, 2023. https://doi.org/10.5281/ZENODO.7858567. ieee: E. Redchenko, A. Poshakinskiy, R. Sett, M. Zemlicka, A. Poddubny, and J. M. Fink, “Tunable directional photon scattering from a pair of superconducting qubits.” Zenodo, 2023. ista: Redchenko E, Poshakinskiy A, Sett R, Zemlicka M, Poddubny A, Fink JM. 2023. Tunable directional photon scattering from a pair of superconducting qubits, Zenodo, 10.5281/ZENODO.7858567. mla: Redchenko, Elena, et al. Tunable Directional Photon Scattering from a Pair of Superconducting Qubits. Zenodo, 2023, doi:10.5281/ZENODO.7858567. short: E. Redchenko, A. Poshakinskiy, R. Sett, M. Zemlicka, A. Poddubny, J.M. Fink, (2023). date_created: 2023-06-06T07:36:50Z date_published: 2023-04-28T00:00:00Z date_updated: 2023-08-02T06:10:25Z day: '28' ddc: - '530' department: - _id: JoFi doi: 10.5281/ZENODO.7858567 main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.7858567 month: '04' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '13117' relation: used_in_publication status: public status: public title: Tunable directional photon scattering from a pair of superconducting qubits tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '13200' abstract: - lang: eng text: Recent quantum technologies have established precise quantum control of various microscopic systems using electromagnetic waves. Interfaces based on cryogenic cavity electro-optic systems are particularly promising, due to the direct interaction between microwave and optical fields in the quantum regime. Quantum optical control of superconducting microwave circuits has been precluded so far due to the weak electro-optical coupling as well as quasi-particles induced by the pump laser. Here we report the coherent control of a superconducting microwave cavity using laser pulses in a multimode electro-optical device at millikelvin temperature with near-unity cooperativity. Both the stationary and instantaneous responses of the microwave and optical modes comply with the coherent electro-optical interaction, and reveal only minuscule amount of excess back-action with an unanticipated time delay. Our demonstration enables wide ranges of applications beyond quantum transductions, from squeezing and quantum non-demolition measurements of microwave fields, to entanglement generation and hybrid quantum networks. acknowledgement: This work was supported by the European Research Council under grant agreement no. 758053 (ERC StG QUNNECT), the European Union’s Horizon 2020 research and innovation program under grant agreement no. 899354 (FETopen SuperQuLAN), and the Austrian Science Fund (FWF) through BeyondC (F7105). L.Q. acknowledges generous support from the ISTFELLOW programme. W.H. is the recipient of an ISTplus postdoctoral fellowship with funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 754411. G.A. is the recipient of a DOC fellowship of the Austrian Academy of Sciences at IST Austria. article_number: '3784' article_processing_charge: No article_type: original author: - first_name: Liu full_name: Qiu, Liu id: 45e99c0d-1eb1-11eb-9b96-ed8ab2983cac last_name: Qiu orcid: 0000-0003-4345-4267 - first_name: Rishabh full_name: Sahu, Rishabh id: 47D26E34-F248-11E8-B48F-1D18A9856A87 last_name: Sahu orcid: 0000-0001-6264-2162 - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease orcid: 0000-0001-9868-2166 - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold orcid: 0000-0003-1397-7876 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Qiu L, Sahu R, Hease WJ, Arnold GM, Fink JM. Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action. Nature Communications. 2023;14. doi:10.1038/s41467-023-39493-3 apa: Qiu, L., Sahu, R., Hease, W. J., Arnold, G. M., & Fink, J. M. (2023). Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action. Nature Communications. Nature Research. https://doi.org/10.1038/s41467-023-39493-3 chicago: Qiu, Liu, Rishabh Sahu, William J Hease, Georg M Arnold, and Johannes M Fink. “Coherent Optical Control of a Superconducting Microwave Cavity via Electro-Optical Dynamical Back-Action.” Nature Communications. Nature Research, 2023. https://doi.org/10.1038/s41467-023-39493-3. ieee: L. Qiu, R. Sahu, W. J. Hease, G. M. Arnold, and J. M. Fink, “Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action,” Nature Communications, vol. 14. Nature Research, 2023. ista: Qiu L, Sahu R, Hease WJ, Arnold GM, Fink JM. 2023. Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action. Nature Communications. 14, 3784. mla: Qiu, Liu, et al. “Coherent Optical Control of a Superconducting Microwave Cavity via Electro-Optical Dynamical Back-Action.” Nature Communications, vol. 14, 3784, Nature Research, 2023, doi:10.1038/s41467-023-39493-3. short: L. Qiu, R. Sahu, W.J. Hease, G.M. Arnold, J.M. Fink, Nature Communications 14 (2023). date_created: 2023-07-09T22:01:11Z date_published: 2023-06-24T00:00:00Z date_updated: 2023-10-17T11:46:12Z day: '24' ddc: - '000' department: - _id: JoFi doi: 10.1038/s41467-023-39493-3 ec_funded: 1 external_id: arxiv: - '2210.12443' isi: - '001018100800002' pmid: - '37355691' file: - access_level: open_access checksum: ec7ccd2c08f90d59cab302fd0d7776a4 content_type: application/pdf creator: alisjak date_created: 2023-07-10T10:10:54Z date_updated: 2023-07-10T10:10:54Z file_id: '13206' file_name: 2023_NatureComms_Qiu.pdf file_size: 1349134 relation: main_file success: 1 file_date_updated: 2023-07-10T10:10:54Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 9B868D20-BA93-11EA-9121-9846C619BF3A call_identifier: H2020 grant_number: '899354' name: Quantum Local Area Networks with Superconducting Qubits - _id: bdb108fd-d553-11ed-ba76-83dc74a9864f name: QUANTUM INFORMATION SYSTEMS BEYOND CLASSICAL CAPABILITIES / P5- Integration of Superconducting Quantum Circuits - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 2671EB66-B435-11E9-9278-68D0E5697425 name: Coherent on-chip conversion of superconducting qubit signals from microwaves to optical frequencies publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Nature Research quality_controlled: '1' scopus_import: '1' status: public title: Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2023' ... --- _id: '14517' abstract: - lang: eng text: 'State-of-the-art transmon qubits rely on large capacitors, which systematically improve their coherence due to reduced surface-loss participation. However, this approach increases both the footprint and the parasitic cross-coupling and is ultimately limited by radiation losses—a potential roadblock for scaling up quantum processors to millions of qubits. In this work we present transmon qubits with sizes as low as 36 × 39 µm2 with 100-nm-wide vacuum-gap capacitors that are micromachined from commercial silicon-on-insulator wafers and shadow evaporated with aluminum. We achieve a vacuum participation ratio up to 99.6% in an in-plane design that is compatible with standard coplanar circuits. Qubit relaxationtime measurements for small gaps with high zero-point electric field variance of up to 22 V/m reveal a double exponential decay indicating comparably strong qubit interaction with long-lived two-level systems. The exceptionally high selectivity of up to 20 dB to the superconductor-vacuum interface allows us to precisely back out the sub-single-photon dielectric loss tangent of aluminum oxide previously exposed to ambient conditions. In terms of future scaling potential, we achieve a ratio of qubit quality factor to a footprint area equal to 20 µm−2, which is comparable with the highest T1 devices relying on larger geometries, a value that could improve substantially for lower surface-loss superconductors. ' acknowledged_ssus: - _id: NanoFab acknowledgement: "This work was supported by the Austrian Science Fund (FWF) through BeyondC (F7105), the European Research Council under Grant Agreement No. 758053 (ERC StG QUNNECT) and a NOMIS foundation research grant. M.Z. was the recipient of a SAIA scholarship, E.R. of\r\na DOC fellowship of the Austrian Academy of Sciences, and M.P. of a Pöttinger scholarship at IST Austria. S.B. acknowledges support from Marie Skłodowska Curie Program No. 707438 (MSC-IF SUPEREOM). J.M.F. acknowledges support from the Horizon Europe Program HORIZON-CL4-2022-QUANTUM-01-SGA via Project No. 101113946 OpenSuperQPlus100 and the ISTA Nanofabrication Facility." article_number: '044054' article_processing_charge: No article_type: original author: - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Andrea full_name: Trioni, Andrea id: 42F71B44-F248-11E8-B48F-1D18A9856A87 last_name: Trioni - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: 'Zemlicka M, Redchenko E, Peruzzo M, et al. Compact vacuum-gap transmon qubits: Selective and sensitive probes for superconductor surface losses. Physical Review Applied. 2023;20(4). doi:10.1103/PhysRevApplied.20.044054' apa: 'Zemlicka, M., Redchenko, E., Peruzzo, M., Hassani, F., Trioni, A., Barzanjeh, S., & Fink, J. M. (2023). Compact vacuum-gap transmon qubits: Selective and sensitive probes for superconductor surface losses. Physical Review Applied. American Physical Society. https://doi.org/10.1103/PhysRevApplied.20.044054' chicago: 'Zemlicka, Martin, Elena Redchenko, Matilda Peruzzo, Farid Hassani, Andrea Trioni, Shabir Barzanjeh, and Johannes M Fink. “Compact Vacuum-Gap Transmon Qubits: Selective and Sensitive Probes for Superconductor Surface Losses.” Physical Review Applied. American Physical Society, 2023. https://doi.org/10.1103/PhysRevApplied.20.044054.' ieee: 'M. Zemlicka et al., “Compact vacuum-gap transmon qubits: Selective and sensitive probes for superconductor surface losses,” Physical Review Applied, vol. 20, no. 4. American Physical Society, 2023.' ista: 'Zemlicka M, Redchenko E, Peruzzo M, Hassani F, Trioni A, Barzanjeh S, Fink JM. 2023. Compact vacuum-gap transmon qubits: Selective and sensitive probes for superconductor surface losses. Physical Review Applied. 20(4), 044054.' mla: 'Zemlicka, Martin, et al. “Compact Vacuum-Gap Transmon Qubits: Selective and Sensitive Probes for Superconductor Surface Losses.” Physical Review Applied, vol. 20, no. 4, 044054, American Physical Society, 2023, doi:10.1103/PhysRevApplied.20.044054.' short: M. Zemlicka, E. Redchenko, M. Peruzzo, F. Hassani, A. Trioni, S. Barzanjeh, J.M. Fink, Physical Review Applied 20 (2023). date_created: 2023-11-12T23:00:55Z date_published: 2023-10-20T00:00:00Z date_updated: 2023-11-13T09:22:47Z day: '20' department: - _id: JoFi doi: 10.1103/PhysRevApplied.20.044054 ec_funded: 1 external_id: arxiv: - '2206.14104' intvolume: ' 20' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2206.14104 month: '10' oa: 1 oa_version: Preprint project: - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: eb9b30ac-77a9-11ec-83b8-871f581d53d2 name: Protected states of quantum matter - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics SUPEREOM' - _id: bdb7cfc1-d553-11ed-ba76-d2eaab167738 grant_number: '101080139' name: Open Superconducting Quantum Computers (OpenSuperQPlus) publication: Physical Review Applied publication_identifier: eissn: - 2331-7019 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: record: - id: '14520' relation: research_data status: public scopus_import: '1' status: public title: 'Compact vacuum-gap transmon qubits: Selective and sensitive probes for superconductor surface losses' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 20 year: '2023' ... --- _id: '13227' abstract: - lang: eng text: Currently available quantum processors are dominated by noise, which severely limits their applicability and motivates the search for new physical qubit encodings. In this work, we introduce the inductively shunted transmon, a weakly flux-tunable superconducting qubit that offers charge offset protection for all levels and a 20-fold reduction in flux dispersion compared to the state-of-the-art resulting in a constant coherence over a full flux quantum. The parabolic confinement provided by the inductive shunt as well as the linearity of the geometric superinductor facilitates a high-power readout that resolves quantum jumps with a fidelity and QND-ness of >90% and without the need for a Josephson parametric amplifier. Moreover, the device reveals quantum tunneling physics between the two prepared fluxon ground states with a measured average decay time of up to 3.5 h. In the future, fast time-domain control of the transition matrix elements could offer a new path forward to also achieve full qubit control in the decay-protected fluxon basis. acknowledged_ssus: - _id: M-Shop - _id: NanoFab acknowledgement: The authors thank J. Koch for discussions and support with the scQubits python package, I. Rozhansky and A. Poddubny for important insights into photon-assisted tunneling, S. Barzanjeh and G. Arnold for theory, E. Redchenko, S. Pepic, the MIBA workshop and the IST nanofabrication facility for technical contributions, as well as L. Drmic, P. Zielinski and R. Sett for software development. We acknowledge the prompt support of Quantum Machines to implement active state preparation with their OPX+. This work was supported by a NOMIS foundation research grant (J.F.), the Austrian Science Fund (FWF) through BeyondC F7105 (J.F.) and IST Austria. article_number: '3968' article_processing_charge: No article_type: original author: - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Lucky full_name: Kapoor, Lucky id: 84b9700b-15b2-11ec-abd3-831089e67615 last_name: Kapoor - first_name: Andrea full_name: Trioni, Andrea id: 42F71B44-F248-11E8-B48F-1D18A9856A87 last_name: Trioni - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Hassani F, Peruzzo M, Kapoor L, Trioni A, Zemlicka M, Fink JM. Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours. Nature Communications. 2023;14. doi:10.1038/s41467-023-39656-2 apa: Hassani, F., Peruzzo, M., Kapoor, L., Trioni, A., Zemlicka, M., & Fink, J. M. (2023). Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-39656-2 chicago: Hassani, Farid, Matilda Peruzzo, Lucky Kapoor, Andrea Trioni, Martin Zemlicka, and Johannes M Fink. “Inductively Shunted Transmons Exhibit Noise Insensitive Plasmon States and a Fluxon Decay Exceeding 3 Hours.” Nature Communications. Springer Nature, 2023. https://doi.org/10.1038/s41467-023-39656-2. ieee: F. Hassani, M. Peruzzo, L. Kapoor, A. Trioni, M. Zemlicka, and J. M. Fink, “Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours,” Nature Communications, vol. 14. Springer Nature, 2023. ista: Hassani F, Peruzzo M, Kapoor L, Trioni A, Zemlicka M, Fink JM. 2023. Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours. Nature Communications. 14, 3968. mla: Hassani, Farid, et al. “Inductively Shunted Transmons Exhibit Noise Insensitive Plasmon States and a Fluxon Decay Exceeding 3 Hours.” Nature Communications, vol. 14, 3968, Springer Nature, 2023, doi:10.1038/s41467-023-39656-2. short: F. Hassani, M. Peruzzo, L. Kapoor, A. Trioni, M. Zemlicka, J.M. Fink, Nature Communications 14 (2023). date_created: 2023-07-16T22:01:08Z date_published: 2023-07-05T00:00:00Z date_updated: 2023-12-13T11:32:25Z day: '05' ddc: - '530' department: - _id: JoFi doi: 10.1038/s41467-023-39656-2 external_id: isi: - '001024729900009' pmid: - '37407570' file: - access_level: open_access checksum: a85773b5fe23516f60f7d5d31b55c200 content_type: application/pdf creator: dernst date_created: 2023-07-18T08:43:07Z date_updated: 2023-07-18T08:43:07Z file_id: '13248' file_name: 2023_NatureComm_Hassani.pdf file_size: 2899592 relation: main_file success: 1 file_date_updated: 2023-07-18T08:43:07Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits - _id: 2622978C-B435-11E9-9278-68D0E5697425 name: Hybrid Semiconductor - Superconductor Quantum Devices publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2023' ... --- _id: '14872' abstract: - lang: eng text: We entangled microwave and optical photons for the first time as verified by a measured two-mode vacuum squeezing of 0.7 dB. This electro-optic entanglement is the key resource needed to connect cryogenic quantum circuits. article_number: LM1F.3 article_processing_charge: No author: - first_name: Rishabh full_name: Sahu, Rishabh id: 47D26E34-F248-11E8-B48F-1D18A9856A87 last_name: Sahu orcid: 0000-0001-6264-2162 - first_name: Liu full_name: Qiu, Liu last_name: Qiu - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease orcid: 0000-0001-9868-2166 - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold orcid: 0000-0003-1397-7876 - first_name: Yuri full_name: Minoguchi, Yuri last_name: Minoguchi - first_name: Peter full_name: Rabl, Peter last_name: Rabl - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: 'Sahu R, Qiu L, Hease WJ, et al. Entangling microwaves and telecom wavelength light. In: Frontiers in Optics + Laser Science 2023. Optica Publishing Group; 2023. doi:10.1364/ls.2023.lm1f.3' apa: 'Sahu, R., Qiu, L., Hease, W. J., Arnold, G. M., Minoguchi, Y., Rabl, P., & Fink, J. M. (2023). Entangling microwaves and telecom wavelength light. In Frontiers in Optics + Laser Science 2023. Tacoma, WA, United States: Optica Publishing Group. https://doi.org/10.1364/ls.2023.lm1f.3' chicago: Sahu, Rishabh, Liu Qiu, William J Hease, Georg M Arnold, Yuri Minoguchi, Peter Rabl, and Johannes M Fink. “Entangling Microwaves and Telecom Wavelength Light.” In Frontiers in Optics + Laser Science 2023. Optica Publishing Group, 2023. https://doi.org/10.1364/ls.2023.lm1f.3. ieee: R. Sahu et al., “Entangling microwaves and telecom wavelength light,” in Frontiers in Optics + Laser Science 2023, Tacoma, WA, United States, 2023. ista: Sahu R, Qiu L, Hease WJ, Arnold GM, Minoguchi Y, Rabl P, Fink JM. 2023. Entangling microwaves and telecom wavelength light. Frontiers in Optics + Laser Science 2023. Laser Science, LM1F.3. mla: Sahu, Rishabh, et al. “Entangling Microwaves and Telecom Wavelength Light.” Frontiers in Optics + Laser Science 2023, LM1F.3, Optica Publishing Group, 2023, doi:10.1364/ls.2023.lm1f.3. short: R. Sahu, L. Qiu, W.J. Hease, G.M. Arnold, Y. Minoguchi, P. Rabl, J.M. Fink, in:, Frontiers in Optics + Laser Science 2023, Optica Publishing Group, 2023. conference: end_date: 2023-10-12 location: Tacoma, WA, United States name: Laser Science start_date: 2023-10-09 date_created: 2024-01-22T12:29:41Z date_published: 2023-10-01T00:00:00Z date_updated: 2024-01-24T08:43:28Z day: '01' department: - _id: JoFi doi: 10.1364/ls.2023.lm1f.3 language: - iso: eng month: '10' oa_version: None publication: Frontiers in Optics + Laser Science 2023 publication_identifier: isbn: - '9781957171296' publication_status: published publisher: Optica Publishing Group quality_controlled: '1' status: public title: Entangling microwaves and telecom wavelength light type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14032' abstract: - lang: eng text: Arrays of Josephson junctions are governed by a competition between superconductivity and repulsive Coulomb interactions, and are expected to exhibit diverging low-temperature resistance when interactions exceed a critical level. Here we report a study of the transport and microwave response of Josephson arrays with interactions exceeding this level. Contrary to expectations, we observe that the array resistance drops dramatically as the temperature is decreased—reminiscent of superconducting behaviour—and then saturates at low temperature. Applying a magnetic field, we eventually observe a transition to a highly resistive regime. These observations can be understood within a theoretical picture that accounts for the effect of thermal fluctuations on the insulating phase. On the basis of the agreement between experiment and theory, we suggest that apparent superconductivity in our Josephson arrays arises from melting the zero-temperature insulator. acknowledged_ssus: - _id: M-Shop - _id: NanoFab acknowledgement: We thank D. Haviland, J. Pekola, C. Ciuti, A. Bubis and A. Shnirman for helpful feedback on the paper. This research was supported by the Scientific Service Units of IST Austria through resources provided by the MIBA Machine Shop and the Nanofabrication Facility. Work supported by the Austrian FWF grant P33692-N (S.M., J.S. and A.P.H.), the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754411 (J.S.) and a NOMIS foundation research grant (J.M.F. and A.P.H.). article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Soham full_name: Mukhopadhyay, Soham id: FDE60288-A89D-11E9-947F-1AF6E5697425 last_name: Mukhopadhyay - first_name: Jorden L full_name: Senior, Jorden L id: 5479D234-2D30-11EA-89CC-40953DDC885E last_name: Senior orcid: 0000-0002-0672-9295 - first_name: Jaime full_name: Saez Mollejo, Jaime id: e0390f72-f6e0-11ea-865d-862393336714 last_name: Saez Mollejo - first_name: Denise full_name: Puglia, Denise id: 4D495994-AE37-11E9-AC72-31CAE5697425 last_name: Puglia orcid: 0000-0003-1144-2763 - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: Andrew P full_name: Higginbotham, Andrew P id: 4AD6785A-F248-11E8-B48F-1D18A9856A87 last_name: Higginbotham orcid: 0000-0003-2607-2363 citation: ama: Mukhopadhyay S, Senior JL, Saez Mollejo J, et al. Superconductivity from a melted insulator in Josephson junction arrays. Nature Physics. 2023;19:1630-1635. doi:10.1038/s41567-023-02161-w apa: Mukhopadhyay, S., Senior, J. L., Saez Mollejo, J., Puglia, D., Zemlicka, M., Fink, J. M., & Higginbotham, A. P. (2023). Superconductivity from a melted insulator in Josephson junction arrays. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-023-02161-w chicago: Mukhopadhyay, Soham, Jorden L Senior, Jaime Saez Mollejo, Denise Puglia, Martin Zemlicka, Johannes M Fink, and Andrew P Higginbotham. “Superconductivity from a Melted Insulator in Josephson Junction Arrays.” Nature Physics. Springer Nature, 2023. https://doi.org/10.1038/s41567-023-02161-w. ieee: S. Mukhopadhyay et al., “Superconductivity from a melted insulator in Josephson junction arrays,” Nature Physics, vol. 19. Springer Nature, pp. 1630–1635, 2023. ista: Mukhopadhyay S, Senior JL, Saez Mollejo J, Puglia D, Zemlicka M, Fink JM, Higginbotham AP. 2023. Superconductivity from a melted insulator in Josephson junction arrays. Nature Physics. 19, 1630–1635. mla: Mukhopadhyay, Soham, et al. “Superconductivity from a Melted Insulator in Josephson Junction Arrays.” Nature Physics, vol. 19, Springer Nature, 2023, pp. 1630–35, doi:10.1038/s41567-023-02161-w. short: S. Mukhopadhyay, J.L. Senior, J. Saez Mollejo, D. Puglia, M. Zemlicka, J.M. Fink, A.P. Higginbotham, Nature Physics 19 (2023) 1630–1635. date_created: 2023-08-11T07:41:17Z date_published: 2023-11-01T00:00:00Z date_updated: 2024-01-29T11:27:49Z day: '01' ddc: - '530' department: - _id: GradSch - _id: AnHi - _id: JoFi doi: 10.1038/s41567-023-02161-w ec_funded: 1 external_id: isi: - '001054563800006' file: - access_level: open_access checksum: 1fc86d71bfbf836e221c1e925343adc5 content_type: application/pdf creator: dernst date_created: 2024-01-29T11:25:38Z date_updated: 2024-01-29T11:25:38Z file_id: '14899' file_name: 2023_NaturePhysics_Mukhopadhyay.pdf file_size: 1977706 relation: main_file success: 1 file_date_updated: 2024-01-29T11:25:38Z has_accepted_license: '1' intvolume: ' 19' isi: 1 keyword: - General Physics and Astronomy language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 1630-1635 project: - _id: 0aa3608a-070f-11eb-9043-e9cd8a2bd931 grant_number: P33692 name: Cavity electromechanics across a quantum phase transition - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: eb9b30ac-77a9-11ec-83b8-871f581d53d2 name: Protected states of quantum matter - _id: bd5b4ec5-d553-11ed-ba76-a6eedb083344 name: Protected states of quantum matter publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Superconductivity from a melted insulator in Josephson junction arrays tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 19 year: '2023' ... --- _id: '12088' abstract: - lang: eng text: We present a quantum-enabled microwave-telecom interface with bidirectional conversion efficiencies up to 15% and added input noise quanta as low as 0.16. Moreover, we observe evidence for electro-optic laser cooling and vacuum amplification. article_number: FW4D.4 article_processing_charge: No author: - first_name: Rishabh full_name: Sahu, Rishabh id: 47D26E34-F248-11E8-B48F-1D18A9856A87 last_name: Sahu orcid: 0000-0001-6264-2162 - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold - first_name: Liu full_name: Qiu, Liu id: 45e99c0d-1eb1-11eb-9b96-ed8ab2983cac last_name: Qiu orcid: 0000-0003-4345-4267 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: 'Sahu R, Hease WJ, Rueda Sanchez AR, Arnold GM, Qiu L, Fink JM. Realizing a quantum-enabled interconnect between microwave and telecom light. In: Conference on Lasers and Electro-Optics. Optica Publishing Group; 2022. doi:10.1364/CLEO_QELS.2022.FW4D.4' apa: 'Sahu, R., Hease, W. J., Rueda Sanchez, A. R., Arnold, G. M., Qiu, L., & Fink, J. M. (2022). Realizing a quantum-enabled interconnect between microwave and telecom light. In Conference on Lasers and Electro-Optics. San Jose, CA, United States: Optica Publishing Group. https://doi.org/10.1364/CLEO_QELS.2022.FW4D.4' chicago: Sahu, Rishabh, William J Hease, Alfredo R Rueda Sanchez, Georg M Arnold, Liu Qiu, and Johannes M Fink. “Realizing a Quantum-Enabled Interconnect between Microwave and Telecom Light.” In Conference on Lasers and Electro-Optics. Optica Publishing Group, 2022. https://doi.org/10.1364/CLEO_QELS.2022.FW4D.4. ieee: R. Sahu, W. J. Hease, A. R. Rueda Sanchez, G. M. Arnold, L. Qiu, and J. M. Fink, “Realizing a quantum-enabled interconnect between microwave and telecom light,” in Conference on Lasers and Electro-Optics, San Jose, CA, United States, 2022. ista: 'Sahu R, Hease WJ, Rueda Sanchez AR, Arnold GM, Qiu L, Fink JM. 2022. Realizing a quantum-enabled interconnect between microwave and telecom light. Conference on Lasers and Electro-Optics. CLEO: QELS Fundamental Science, FW4D.4.' mla: Sahu, Rishabh, et al. “Realizing a Quantum-Enabled Interconnect between Microwave and Telecom Light.” Conference on Lasers and Electro-Optics, FW4D.4, Optica Publishing Group, 2022, doi:10.1364/CLEO_QELS.2022.FW4D.4. short: R. Sahu, W.J. Hease, A.R. Rueda Sanchez, G.M. Arnold, L. Qiu, J.M. Fink, in:, Conference on Lasers and Electro-Optics, Optica Publishing Group, 2022. conference: end_date: 2022-05-20 location: San Jose, CA, United States name: 'CLEO: QELS Fundamental Science' start_date: 2022-05-15 date_created: 2022-09-11T22:01:58Z date_published: 2022-05-01T00:00:00Z date_updated: 2023-02-13T09:06:10Z day: '01' department: - _id: JoFi doi: 10.1364/CLEO_QELS.2022.FW4D.4 language: - iso: eng month: '05' oa_version: None publication: Conference on Lasers and Electro-Optics publication_identifier: isbn: - '9781557528209' publication_status: published publisher: Optica Publishing Group quality_controlled: '1' scopus_import: '1' status: public title: Realizing a quantum-enabled interconnect between microwave and telecom light type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2022' ... --- _id: '10924' abstract: - lang: eng text: Solid-state microwave systems offer strong interactions for fast quantum logic and sensing but photons at telecom wavelength are the ideal choice for high-density low-loss quantum interconnects. A general-purpose interface that can make use of single photon effects requires < 1 input noise quanta, which has remained elusive due to either low efficiency or pump induced heating. Here we demonstrate coherent electro-optic modulation on nanosecond-timescales with only 0.16+0.02−0.01 microwave input noise photons with a total bidirectional transduction efficiency of 8.7% (or up to 15% with 0.41+0.02−0.02), as required for near-term heralded quantum network protocols. The use of short and high-power optical pump pulses also enables near-unity cooperativity of the electro-optic interaction leading to an internal pure conversion efficiency of up to 99.5%. Together with the low mode occupancy this provides evidence for electro-optic laser cooling and vacuum amplification as predicted a decade ago. acknowledged_ssus: - _id: M-Shop acknowledgement: "The authors thank S. Wald and F. Diorico for their help with optical filtering, O. Hosten\r\nand M. Aspelmeyer for equipment, H.G.L. Schwefel for materials and discussions, L.\r\nDrmic and P. Zielinski for software support, and the MIBA workshop at IST Austria for\r\nmachining the microwave cavity. This work was supported by the European Research\r\nCouncil under grant agreement no. 758053 (ERC StG QUNNECT) and the European\r\nUnion’s Horizon 2020 research and innovation program under grant agreement no.\r\n899354 (FETopen SuperQuLAN). W.H. is the recipient of an ISTplus postdoctoral fellowship\r\nwith funding from the European Union’s Horizon 2020 research and innovation\r\nprogram under the Marie Skłodowska-Curie grant agreement no. 754411. G.A. is the\r\nrecipient of a DOC fellowship of the Austrian Academy of Sciences at IST Austria. J.M.F.\r\nacknowledges support from the Austrian Science Fund (FWF) through BeyondC (F7105)\r\nand the European Union’s Horizon 2020 research and innovation programs under grant\r\nagreement no. 862644 (FETopen QUARTET)." article_number: '1276' article_processing_charge: No article_type: original author: - first_name: Rishabh full_name: Sahu, Rishabh id: 47D26E34-F248-11E8-B48F-1D18A9856A87 last_name: Sahu orcid: 0000-0001-6264-2162 - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold - first_name: Liu full_name: Qiu, Liu id: 45e99c0d-1eb1-11eb-9b96-ed8ab2983cac last_name: Qiu orcid: 0000-0003-4345-4267 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Sahu R, Hease WJ, Rueda Sanchez AR, Arnold GM, Qiu L, Fink JM. Quantum-enabled operation of a microwave-optical interface. Nature Communications. 2022;13. doi:10.1038/s41467-022-28924-2 apa: Sahu, R., Hease, W. J., Rueda Sanchez, A. R., Arnold, G. M., Qiu, L., & Fink, J. M. (2022). Quantum-enabled operation of a microwave-optical interface. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-022-28924-2 chicago: Sahu, Rishabh, William J Hease, Alfredo R Rueda Sanchez, Georg M Arnold, Liu Qiu, and Johannes M Fink. “Quantum-Enabled Operation of a Microwave-Optical Interface.” Nature Communications. Springer Nature, 2022. https://doi.org/10.1038/s41467-022-28924-2. ieee: R. Sahu, W. J. Hease, A. R. Rueda Sanchez, G. M. Arnold, L. Qiu, and J. M. Fink, “Quantum-enabled operation of a microwave-optical interface,” Nature Communications, vol. 13. Springer Nature, 2022. ista: Sahu R, Hease WJ, Rueda Sanchez AR, Arnold GM, Qiu L, Fink JM. 2022. Quantum-enabled operation of a microwave-optical interface. Nature Communications. 13, 1276. mla: Sahu, Rishabh, et al. “Quantum-Enabled Operation of a Microwave-Optical Interface.” Nature Communications, vol. 13, 1276, Springer Nature, 2022, doi:10.1038/s41467-022-28924-2. short: R. Sahu, W.J. Hease, A.R. Rueda Sanchez, G.M. Arnold, L. Qiu, J.M. Fink, Nature Communications 13 (2022). date_created: 2022-03-27T22:01:45Z date_published: 2022-03-11T00:00:00Z date_updated: 2023-08-03T06:21:11Z day: '11' ddc: - '530' department: - _id: JoFi doi: 10.1038/s41467-022-28924-2 ec_funded: 1 external_id: arxiv: - '2107.08303' isi: - '000767892300013' file: - access_level: open_access checksum: 7c5176db7b8e2ed18a4e0c5aca70a72c content_type: application/pdf creator: dernst date_created: 2022-03-28T08:02:12Z date_updated: 2022-03-28T08:02:12Z file_id: '10929' file_name: 2022_NatureCommunications_Sahu.pdf file_size: 1167492 relation: main_file success: 1 file_date_updated: 2022-03-28T08:02:12Z has_accepted_license: '1' intvolume: ' 13' isi: 1 language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 9B868D20-BA93-11EA-9121-9846C619BF3A call_identifier: H2020 grant_number: '899354' name: Quantum Local Area Networks with Superconducting Qubits - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits - _id: 237CBA6C-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862644' name: Quantum readout techniques and technologies publication: Nature Communications publication_identifier: eissn: - '20411723' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '12900' relation: dissertation_contains status: public - id: '13175' relation: dissertation_contains status: public scopus_import: '1' status: public title: Quantum-enabled operation of a microwave-optical interface tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13 year: '2022' ... --- _id: '10940' abstract: - lang: eng text: 'Magnetic-field-resilient superconducting circuits enable sensing applications and hybrid quantum computing architectures involving spin or topological qubits and electromechanical elements, as well as studying flux noise and quasiparticle loss. We investigate the effect of in-plane magnetic fields up to 1 T on the spectrum and coherence times of thin-film three-dimensional aluminum transmons. Using a copper cavity, unaffected by strong magnetic fields, we can probe solely the effect of magnetic fields on the transmons. We present data on a single-junction and a superconducting-quantum-interference-device (SQUID) transmon that are cooled down in the same cavity. As expected, the transmon frequencies decrease with increasing field, due to suppression of the superconducting gap and a geometric Fraunhofer-like contribution. Nevertheless, the thin-film transmons show strong magnetic field resilience: both transmons display microsecond coherence up to at least 0.65 T, and T1 remains above 1μs over the entire measurable range. SQUID spectroscopy is feasible up to 1 T, the limit of our magnet. We conclude that thin-film aluminum Josephson junctions are suitable hardware for superconducting circuits in the high-magnetic-field regime.' acknowledgement: "We would like to thank Ida Milow for her internship in the laboratory and contributions to our code base. We thank T. Zent and L. Hamdan for technical assistance, and D. Fan for help with setting up the aluminum evaporator. We thank A. Salari, M. Rößler, S. Barzanjeh, M. Zemlicka, F. Hassani, and M. Peruzzo for contributions in the early stages of the experiments. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 741121) and was also funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under CRC 1238 – 277146847 (Subproject B01), as well as under Germany’s Excellence Strategy – Cluster of Excellence Matter and Light for Quantum Computing (ML4Q), EXC 2004/1\r\n– 390534769." article_number: '034032' article_processing_charge: No article_type: original author: - first_name: J. full_name: Krause, J. last_name: Krause - first_name: C. full_name: Dickel, C. last_name: Dickel - first_name: E. full_name: Vaal, E. last_name: Vaal - first_name: M. full_name: Vielmetter, M. last_name: Vielmetter - first_name: J. full_name: Feng, J. last_name: Feng - first_name: R. full_name: Bounds, R. last_name: Bounds - first_name: G. full_name: Catelani, G. last_name: Catelani - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: Yoichi full_name: Ando, Yoichi last_name: Ando citation: ama: Krause J, Dickel C, Vaal E, et al. Magnetic field resilience of three-dimensional transmons with thin-film Al/AlOx/Al Josephson junctions approaching 1 T. Physical Review Applied. 2022;17(3). doi:10.1103/PhysRevApplied.17.034032 apa: Krause, J., Dickel, C., Vaal, E., Vielmetter, M., Feng, J., Bounds, R., … Ando, Y. (2022). Magnetic field resilience of three-dimensional transmons with thin-film Al/AlOx/Al Josephson junctions approaching 1 T. Physical Review Applied. American Physical Society. https://doi.org/10.1103/PhysRevApplied.17.034032 chicago: Krause, J., C. Dickel, E. Vaal, M. Vielmetter, J. Feng, R. Bounds, G. Catelani, Johannes M Fink, and Yoichi Ando. “Magnetic Field Resilience of Three-Dimensional Transmons with Thin-Film Al/AlOx/Al Josephson Junctions Approaching 1 T.” Physical Review Applied. American Physical Society, 2022. https://doi.org/10.1103/PhysRevApplied.17.034032. ieee: J. Krause et al., “Magnetic field resilience of three-dimensional transmons with thin-film Al/AlOx/Al Josephson junctions approaching 1 T,” Physical Review Applied, vol. 17, no. 3. American Physical Society, 2022. ista: Krause J, Dickel C, Vaal E, Vielmetter M, Feng J, Bounds R, Catelani G, Fink JM, Ando Y. 2022. Magnetic field resilience of three-dimensional transmons with thin-film Al/AlOx/Al Josephson junctions approaching 1 T. Physical Review Applied. 17(3), 034032. mla: Krause, J., et al. “Magnetic Field Resilience of Three-Dimensional Transmons with Thin-Film Al/AlOx/Al Josephson Junctions Approaching 1 T.” Physical Review Applied, vol. 17, no. 3, 034032, American Physical Society, 2022, doi:10.1103/PhysRevApplied.17.034032. short: J. Krause, C. Dickel, E. Vaal, M. Vielmetter, J. Feng, R. Bounds, G. Catelani, J.M. Fink, Y. Ando, Physical Review Applied 17 (2022). date_created: 2022-04-03T22:01:43Z date_published: 2022-03-11T00:00:00Z date_updated: 2023-08-03T06:23:58Z day: '11' department: - _id: JoFi doi: 10.1103/PhysRevApplied.17.034032 external_id: arxiv: - '2111.01115' isi: - '000770371400003' intvolume: ' 17' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2111.01115 month: '03' oa: 1 oa_version: Preprint publication: Physical Review Applied publication_identifier: eissn: - 2331-7019 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Magnetic field resilience of three-dimensional transmons with thin-film Al/AlOx/Al Josephson junctions approaching 1 T type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 17 year: '2022' ... --- _id: '11417' abstract: - lang: eng text: "Over the past few years, the field of quantum information science has seen tremendous progress toward realizing large-scale quantum computers. With demonstrations of quantum computers outperforming classical computers for a select range of problems,1–3 we have finally entered the noisy, intermediate-scale quantum (NISQ) computing era. While the quantum computers of today are technological marvels, they are not yet error corrected, and it is unclear whether any system will scale beyond a few hundred logical qubits without significant changes to architecture and control schemes. Today's quantum systems are analogous to the ENIAC (Electronic Numerical Integrator And Computer) and EDVAC (Electronic Discrete Variable Automatic Computer) systems of the 1940s, which ran on vacuum tubes. These machines were built on a solid, nominally scalable architecture and when they were developed, nobody could have predicted the development of the transistor and the impact of the resulting semiconductor industry. Simply put, the computers of today are nothing like the early computers of the 1940s. We believe that the qubits of future fault-tolerant quantum systems will look quite different from the qubits of the NISQ machines in operation today. This Special Topic issue is devoted to new and emerging quantum systems with a focus on enabling technologies that can eventually lead to the quantum analog to the transistor. We have solicited both research4–18 and perspective articles19–21 to discuss new and emerging qubit systems with a focus on novel materials, encodings, and architectures. We are proud to present a collection that touches on a wide range of technologies including superconductors,7–13,21 semiconductors,15–17,19 and individual atomic qubits.18\r\n" acknowledgement: "We would like to thank all of the authors who contributed to\r\nthis Special Topic. We would also like to thank the editorial team at\r\nAPL including Jessica Trudeau, Emma Van Burns, Martin Weides,\r\nand Lesley Cohen." article_number: '190401' article_processing_charge: No article_type: letter_note author: - first_name: Anthony J. full_name: Sigillito, Anthony J. last_name: Sigillito - first_name: Jacob P. full_name: Covey, Jacob P. last_name: Covey - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: Karl full_name: Petersson, Karl last_name: Petersson - first_name: Stefan full_name: Preble, Stefan last_name: Preble citation: ama: 'Sigillito AJ, Covey JP, Fink JM, Petersson K, Preble S. Emerging qubit systems: Guest editorial. Applied Physics Letters. 2022;120(19). doi:10.1063/5.0097339' apa: 'Sigillito, A. J., Covey, J. P., Fink, J. M., Petersson, K., & Preble, S. (2022). Emerging qubit systems: Guest editorial. Applied Physics Letters. American Institute of Physics. https://doi.org/10.1063/5.0097339' chicago: 'Sigillito, Anthony J., Jacob P. Covey, Johannes M Fink, Karl Petersson, and Stefan Preble. “Emerging Qubit Systems: Guest Editorial.” Applied Physics Letters. American Institute of Physics, 2022. https://doi.org/10.1063/5.0097339.' ieee: 'A. J. Sigillito, J. P. Covey, J. M. Fink, K. Petersson, and S. Preble, “Emerging qubit systems: Guest editorial,” Applied Physics Letters, vol. 120, no. 19. American Institute of Physics, 2022.' ista: 'Sigillito AJ, Covey JP, Fink JM, Petersson K, Preble S. 2022. Emerging qubit systems: Guest editorial. Applied Physics Letters. 120(19), 190401.' mla: 'Sigillito, Anthony J., et al. “Emerging Qubit Systems: Guest Editorial.” Applied Physics Letters, vol. 120, no. 19, 190401, American Institute of Physics, 2022, doi:10.1063/5.0097339.' short: A.J. Sigillito, J.P. Covey, J.M. Fink, K. Petersson, S. Preble, Applied Physics Letters 120 (2022). date_created: 2022-05-29T22:01:53Z date_published: 2022-05-12T00:00:00Z date_updated: 2023-08-03T07:16:20Z day: '12' department: - _id: JoFi doi: 10.1063/5.0097339 external_id: isi: - '000796002100002' intvolume: ' 120' isi: 1 issue: '19' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1063/5.0097339 month: '05' oa: 1 oa_version: Published Version publication: Applied Physics Letters publication_identifier: issn: - 0003-6951 publication_status: published publisher: American Institute of Physics quality_controlled: '1' scopus_import: '1' status: public title: 'Emerging qubit systems: Guest editorial' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 120 year: '2022' ... --- _id: '11591' abstract: - lang: eng text: We investigate the deterministic generation and distribution of entanglement in large quantum networks by driving distant qubits with the output fields of a nondegenerate parametric amplifier. In this setting, the amplifier produces a continuous Gaussian two-mode squeezed state, which acts as a quantum-correlated reservoir for the qubits and relaxes them into a highly entangled steady state. Here we are interested in the maximal amount of entanglement and the optimal entanglement generation rates that can be achieved with this scheme under realistic conditions taking, in particular, the finite amplifier bandwidth, waveguide losses, and propagation delays into account. By combining exact numerical simulations of the full network with approximate analytic results, we predict the optimal working point for the amplifier and the corresponding qubit-qubit entanglement under various conditions. Our findings show that this passive conversion of Gaussian into discrete-variable entanglement offers a robust and experimentally very attractive approach for operating large optical, microwave, or hybrid quantum networks, for which efficient parametric amplifiers are currently developed. acknowledgement: We thank T. Mavrogordatos and D. Zhu for initial contribution on the presented topic and K. Fedorov for stimulating discussions on entangled microwave beams. This work was supported by the Austrian Science Fund (FWF) through Grant No. P32299 (PHONED) and the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 899354 (SuperQuLAN). Most of the computational results presented were obtained using the CLIP cluster [65]. article_number: '062454' article_processing_charge: No article_type: original author: - first_name: J. full_name: Agustí, J. last_name: Agustí - first_name: Y. full_name: Minoguchi, Y. last_name: Minoguchi - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: P. full_name: Rabl, P. last_name: Rabl citation: ama: Agustí J, Minoguchi Y, Fink JM, Rabl P. Long-distance distribution of qubit-qubit entanglement using Gaussian-correlated photonic beams. Physical Review A. 2022;105(6). doi:10.1103/PhysRevA.105.062454 apa: Agustí, J., Minoguchi, Y., Fink, J. M., & Rabl, P. (2022). Long-distance distribution of qubit-qubit entanglement using Gaussian-correlated photonic beams. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.105.062454 chicago: Agustí, J., Y. Minoguchi, Johannes M Fink, and P. Rabl. “Long-Distance Distribution of Qubit-Qubit Entanglement Using Gaussian-Correlated Photonic Beams.” Physical Review A. American Physical Society, 2022. https://doi.org/10.1103/PhysRevA.105.062454. ieee: J. Agustí, Y. Minoguchi, J. M. Fink, and P. Rabl, “Long-distance distribution of qubit-qubit entanglement using Gaussian-correlated photonic beams,” Physical Review A, vol. 105, no. 6. American Physical Society, 2022. ista: Agustí J, Minoguchi Y, Fink JM, Rabl P. 2022. Long-distance distribution of qubit-qubit entanglement using Gaussian-correlated photonic beams. Physical Review A. 105(6), 062454. mla: Agustí, J., et al. “Long-Distance Distribution of Qubit-Qubit Entanglement Using Gaussian-Correlated Photonic Beams.” Physical Review A, vol. 105, no. 6, 062454, American Physical Society, 2022, doi:10.1103/PhysRevA.105.062454. short: J. Agustí, Y. Minoguchi, J.M. Fink, P. Rabl, Physical Review A 105 (2022). date_created: 2022-07-17T22:01:55Z date_published: 2022-06-29T00:00:00Z date_updated: 2023-08-03T11:58:16Z day: '29' department: - _id: JoFi doi: 10.1103/PhysRevA.105.062454 ec_funded: 1 external_id: arxiv: - '2204.02993' isi: - '000824330200003' intvolume: ' 105' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: ' https://doi.org/10.48550/arXiv.2204.02993' month: '06' oa: 1 oa_version: Preprint project: - _id: 9B868D20-BA93-11EA-9121-9846C619BF3A call_identifier: H2020 grant_number: '899354' name: Quantum Local Area Networks with Superconducting Qubits publication: Physical Review A publication_identifier: eissn: - 2469-9934 issn: - 2469-9926 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Long-distance distribution of qubit-qubit entanglement using Gaussian-correlated photonic beams type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 105 year: '2022' ... --- _id: '14520' abstract: - lang: eng text: 'This dataset comprises all data shown in the figures of the submitted article "Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses" at arxiv.org/abs/2206.14104. Additional raw data are available from the corresponding author on reasonable request.' article_processing_charge: No author: - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Andrea full_name: Trioni, Andrea id: 42F71B44-F248-11E8-B48F-1D18A9856A87 last_name: Trioni - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: 'Zemlicka M, Redchenko E, Peruzzo M, et al. Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses. 2022. doi:10.5281/ZENODO.8408897' apa: 'Zemlicka, M., Redchenko, E., Peruzzo, M., Hassani, F., Trioni, A., Barzanjeh, S., & Fink, J. M. (2022). Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses. Zenodo. https://doi.org/10.5281/ZENODO.8408897' chicago: 'Zemlicka, Martin, Elena Redchenko, Matilda Peruzzo, Farid Hassani, Andrea Trioni, Shabir Barzanjeh, and Johannes M Fink. “Compact Vacuum Gap Transmon Qubits: Selective and Sensitive Probes for Superconductor Surface Losses.” Zenodo, 2022. https://doi.org/10.5281/ZENODO.8408897.' ieee: 'M. Zemlicka et al., “Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses.” Zenodo, 2022.' ista: 'Zemlicka M, Redchenko E, Peruzzo M, Hassani F, Trioni A, Barzanjeh S, Fink JM. 2022. Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses, Zenodo, 10.5281/ZENODO.8408897.' mla: 'Zemlicka, Martin, et al. Compact Vacuum Gap Transmon Qubits: Selective and Sensitive Probes for Superconductor Surface Losses. Zenodo, 2022, doi:10.5281/ZENODO.8408897.' short: M. Zemlicka, E. Redchenko, M. Peruzzo, F. Hassani, A. Trioni, S. Barzanjeh, J.M. Fink, (2022). date_created: 2023-11-13T08:09:10Z date_published: 2022-06-28T00:00:00Z date_updated: 2023-11-13T09:22:48Z day: '28' ddc: - '530' department: - _id: JoFi doi: 10.5281/ZENODO.8408897 has_accepted_license: '1' license: https://creativecommons.org/publicdomain/zero/1.0/ main_file_link: - open_access: '1' url: https://doi.org/10.5281/ZENODO.8408897 month: '06' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '14517' relation: used_in_publication status: public status: public title: 'Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses' tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2022' ... --- _id: '10645' abstract: - lang: eng text: "Superconducting qubits have emerged as a highly versatile and useful platform for quantum technological applications [1]. Bluefors and Zurich Instruments have supported the growth of this field from the 2010s onwards by providing well-engineered and reliable measurement infrastructure [2]– [6]. Having a long and stable qubit lifetime is a critical system property. Therefore, considerable effort has already gone into measuring qubit energy-relaxation timescales and their fluctuations, see Refs. [7]–[10] among others. Accurately extracting the statistics of a quantum device requires users to perform time consuming measurements. One measurement challenge is that the detection of the state-dependent\r\nresponse of a superconducting resonator due to a dispersively-coupled qubit requires an inherently low signal level. Consequently, measurements must be performed using a microwave probe that contains only a few microwave photons. Improving the signal-to-noise ratio (SNR) by using near-quantum limited parametric amplifiers as well as the use of optimized signal processing enabled by efficient room temperature instrumentation help to reduce measurement time. An empirical observation for fixed frequency transmons from recent literature is that as the energy-relaxation time \U0001D447\U0001D4471 increases, so do its natural temporal fluctuations [7], [10]. This necessitates many repeated measurements to understand the statistics (see for example, Ref. [10]). In addition, as state-of-the-art qubits increase in lifetime, longer\r\nmeasurement times are expected to obtain accurate statistics. As described below, the scaling of the widths of the qubit energy-relaxation distributions also reveal clues about the origin of the energy-relaxation." alternative_title: - Bluefors Blog article_processing_charge: No author: - first_name: Slawomir full_name: Simbierowicz, Slawomir last_name: Simbierowicz - first_name: Chunyan full_name: Shi, Chunyan last_name: Shi - first_name: Michele full_name: Collodo, Michele last_name: Collodo - first_name: Moritz full_name: Kirste, Moritz last_name: Kirste - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: Jonas full_name: Bylander, Jonas last_name: Bylander - first_name: Daniel full_name: Perez Lozano, Daniel last_name: Perez Lozano - first_name: Russell full_name: Lake, Russell last_name: Lake citation: ama: 'Simbierowicz S, Shi C, Collodo M, et al. Qubit Energy-Relaxation Statistics in the Bluefors Quantum Measurement System. Helsinki, Finland: Bluefors Oy; 2021.' apa: 'Simbierowicz, S., Shi, C., Collodo, M., Kirste, M., Hassani, F., Fink, J. M., … Lake, R. (2021). Qubit energy-relaxation statistics in the Bluefors quantum measurement system. Helsinki, Finland: Bluefors Oy.' chicago: 'Simbierowicz, Slawomir, Chunyan Shi, Michele Collodo, Moritz Kirste, Farid Hassani, Johannes M Fink, Jonas Bylander, Daniel Perez Lozano, and Russell Lake. Qubit Energy-Relaxation Statistics in the Bluefors Quantum Measurement System. Helsinki, Finland: Bluefors Oy, 2021.' ieee: 'S. Simbierowicz et al., Qubit energy-relaxation statistics in the Bluefors quantum measurement system. Helsinki, Finland: Bluefors Oy, 2021.' ista: 'Simbierowicz S, Shi C, Collodo M, Kirste M, Hassani F, Fink JM, Bylander J, Perez Lozano D, Lake R. 2021. Qubit energy-relaxation statistics in the Bluefors quantum measurement system, Helsinki, Finland: Bluefors Oy, 8p.' mla: Simbierowicz, Slawomir, et al. Qubit Energy-Relaxation Statistics in the Bluefors Quantum Measurement System. Bluefors Oy, 2021. short: S. Simbierowicz, C. Shi, M. Collodo, M. Kirste, F. Hassani, J.M. Fink, J. Bylander, D. Perez Lozano, R. Lake, Qubit Energy-Relaxation Statistics in the Bluefors Quantum Measurement System, Bluefors Oy, Helsinki, Finland, 2021. date_created: 2022-01-19T08:41:14Z date_published: 2021-06-03T00:00:00Z date_updated: 2022-01-19T09:11:39Z day: '03' department: - _id: JoFi keyword: - Application note language: - iso: eng main_file_link: - open_access: '1' url: https://bluefors.com/blog/application-note-qubit-energy-relaxation-statistics-bluefors-quantum-measurement-system/ month: '06' oa: 1 oa_version: Published Version page: '8' place: Helsinki, Finland publication_status: published publisher: Bluefors Oy quality_controlled: '1' status: public title: Qubit energy-relaxation statistics in the Bluefors quantum measurement system type: other_academic_publication user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2021' ... --- _id: '10644' abstract: - lang: eng text: The purpose of this application note is to demonstrate a working example of a superconducting qubit measurement in a Bluefors cryostat using the Keysight quantum control hardware. Our motivation is twofold. First, we provide pre-qualification data that the Bluefors cryostat, including filtering and wiring, can support long-lived qubits. Second, we demonstrate that the Keysight system (controlled using Labber) provides a straightforward solution to perform these characterization measurements. This document is intended as a brief guide for starting an experimental platform for testing superconducting qubits. The setup described here is an immediate jumping off point for a suite of applications including testing quantum logical gates, quantum optics with microwaves, or even using the qubit itself as a sensitive probe of local electromagnetic fields. Qubit measurements rely on high performance of both the physical sample environment and the measurement electronics. An overview of the cryogenic system is shown in Figure 1, and an overview of the integration between the electronics and cryostat (including wiring details) is shown in Figure 2. alternative_title: - Bluefors Blog article_processing_charge: No author: - first_name: Russell full_name: Lake, Russell last_name: Lake - first_name: Slawomir full_name: Simbierowicz, Slawomir last_name: Simbierowicz - first_name: Philip full_name: Krantz, Philip last_name: Krantz - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: 'Lake R, Simbierowicz S, Krantz P, Hassani F, Fink JM. The Bluefors Dilution Refrigerator as an Integrated Quantum Measurement System. Helsinki, Finland: Bluefors Oy; 2021.' apa: 'Lake, R., Simbierowicz, S., Krantz, P., Hassani, F., & Fink, J. M. (2021). The Bluefors dilution refrigerator as an integrated quantum measurement system. Helsinki, Finland: Bluefors Oy.' chicago: 'Lake, Russell, Slawomir Simbierowicz, Philip Krantz, Farid Hassani, and Johannes M Fink. The Bluefors Dilution Refrigerator as an Integrated Quantum Measurement System. Helsinki, Finland: Bluefors Oy, 2021.' ieee: 'R. Lake, S. Simbierowicz, P. Krantz, F. Hassani, and J. M. Fink, The Bluefors dilution refrigerator as an integrated quantum measurement system. Helsinki, Finland: Bluefors Oy, 2021.' ista: 'Lake R, Simbierowicz S, Krantz P, Hassani F, Fink JM. 2021. The Bluefors dilution refrigerator as an integrated quantum measurement system, Helsinki, Finland: Bluefors Oy, 9p.' mla: Lake, Russell, et al. The Bluefors Dilution Refrigerator as an Integrated Quantum Measurement System. Bluefors Oy, 2021. short: R. Lake, S. Simbierowicz, P. Krantz, F. Hassani, J.M. Fink, The Bluefors Dilution Refrigerator as an Integrated Quantum Measurement System, Bluefors Oy, Helsinki, Finland, 2021. date_created: 2022-01-19T08:29:57Z date_published: 2021-04-20T00:00:00Z date_updated: 2022-01-19T09:11:33Z day: '20' department: - _id: JoFi keyword: - Application note language: - iso: eng main_file_link: - open_access: '1' url: https://bluefors.com/blog/integrated-quantum-measurement-system/ month: '04' oa: 1 oa_version: Published Version page: '9' place: Helsinki, Finland publication_status: published publisher: Bluefors Oy quality_controlled: '1' status: public title: The Bluefors dilution refrigerator as an integrated quantum measurement system type: other_academic_publication user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2021' ... --- _id: '13057' abstract: - lang: eng text: 'This dataset comprises all data shown in the figures of the submitted article "Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction". Additional raw data are available from the corresponding author on reasonable request.' article_processing_charge: No author: - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Grisha full_name: Szep, Grisha last_name: Szep - first_name: Andrea full_name: Trioni, Andrea id: 42F71B44-F248-11E8-B48F-1D18A9856A87 last_name: Trioni - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: 'Peruzzo M, Hassani F, Szep G, et al. Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction. 2021. doi:10.5281/ZENODO.5592103' apa: 'Peruzzo, M., Hassani, F., Szep, G., Trioni, A., Redchenko, E., Zemlicka, M., & Fink, J. M. (2021). Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction. Zenodo. https://doi.org/10.5281/ZENODO.5592103' chicago: 'Peruzzo, Matilda, Farid Hassani, Grisha Szep, Andrea Trioni, Elena Redchenko, Martin Zemlicka, and Johannes M Fink. “Geometric Superinductance Qubits: Controlling Phase Delocalization across a Single Josephson Junction.” Zenodo, 2021. https://doi.org/10.5281/ZENODO.5592103.' ieee: 'M. Peruzzo et al., “Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction.” Zenodo, 2021.' ista: 'Peruzzo M, Hassani F, Szep G, Trioni A, Redchenko E, Zemlicka M, Fink JM. 2021. Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction, Zenodo, 10.5281/ZENODO.5592103.' mla: 'Peruzzo, Matilda, et al. Geometric Superinductance Qubits: Controlling Phase Delocalization across a Single Josephson Junction. Zenodo, 2021, doi:10.5281/ZENODO.5592103.' short: M. Peruzzo, F. Hassani, G. Szep, A. Trioni, E. Redchenko, M. Zemlicka, J.M. Fink, (2021). date_created: 2023-05-23T13:42:27Z date_published: 2021-10-22T00:00:00Z date_updated: 2023-08-11T10:44:21Z day: '22' ddc: - '530' department: - _id: JoFi doi: 10.5281/ZENODO.5592103 main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.5592104 month: '10' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '9928' relation: used_in_publication status: public status: public title: 'Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '9928' abstract: - lang: eng text: There are two elementary superconducting qubit types that derive directly from the quantum harmonic oscillator. In one, the inductor is replaced by a nonlinear Josephson junction to realize the widely used charge qubits with a compact phase variable and a discrete charge wave function. In the other, the junction is added in parallel, which gives rise to an extended phase variable, continuous wave functions, and a rich energy-level structure due to the loop topology. While the corresponding rf superconducting quantum interference device Hamiltonian was introduced as a quadratic quasi-one-dimensional potential approximation to describe the fluxonium qubit implemented with long Josephson-junction arrays, in this work we implement it directly using a linear superinductor formed by a single uninterrupted aluminum wire. We present a large variety of qubits, all stemming from the same circuit but with drastically different characteristic energy scales. This includes flux and fluxonium qubits but also the recently introduced quasicharge qubit with strongly enhanced zero-point phase fluctuations and a heavily suppressed flux dispersion. The use of a geometric inductor results in high reproducibility of the inductive energy as guaranteed by top-down lithography—a key ingredient for intrinsically protected superconducting qubits. acknowledged_ssus: - _id: NanoFab - _id: M-Shop acknowledgement: We thank W. Hughes for analytic and numerical modeling during the early stages of this work, J. Koch for discussions and support with the scqubits package, R. Sett, P. Zielinski, and L. Drmic for software development, and G. Katsaros for equipment support, as well as the MIBA workshop and the Institute of Science and Technology Austria nanofabrication facility. We thank I. Pop, S. Deleglise, and E. Flurin for discussions. This work was supported by a NOMIS Foundation research grant, the Austrian Science Fund (FWF) through BeyondC (F7105), and IST Austria. M.P. is the recipient of a Pöttinger scholarship at IST Austria. E.R. is the recipient of a DOC fellowship of the Austrian Academy of Sciences at IST Austria. article_processing_charge: No article_type: original author: - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Gregory full_name: Szep, Gregory last_name: Szep - first_name: Andrea full_name: Trioni, Andrea id: 42F71B44-F248-11E8-B48F-1D18A9856A87 last_name: Trioni - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: 'Peruzzo M, Hassani F, Szep G, et al. Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction. PRX Quantum. 2021;2(4):040341. doi:10.1103/PRXQuantum.2.040341' apa: 'Peruzzo, M., Hassani, F., Szep, G., Trioni, A., Redchenko, E., Zemlicka, M., & Fink, J. M. (2021). Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction. PRX Quantum. American Physical Society. https://doi.org/10.1103/PRXQuantum.2.040341' chicago: 'Peruzzo, Matilda, Farid Hassani, Gregory Szep, Andrea Trioni, Elena Redchenko, Martin Zemlicka, and Johannes M Fink. “Geometric Superinductance Qubits: Controlling Phase Delocalization across a Single Josephson Junction.” PRX Quantum. American Physical Society, 2021. https://doi.org/10.1103/PRXQuantum.2.040341.' ieee: 'M. Peruzzo et al., “Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction,” PRX Quantum, vol. 2, no. 4. American Physical Society, p. 040341, 2021.' ista: 'Peruzzo M, Hassani F, Szep G, Trioni A, Redchenko E, Zemlicka M, Fink JM. 2021. Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction. PRX Quantum. 2(4), 040341.' mla: 'Peruzzo, Matilda, et al. “Geometric Superinductance Qubits: Controlling Phase Delocalization across a Single Josephson Junction.” PRX Quantum, vol. 2, no. 4, American Physical Society, 2021, p. 040341, doi:10.1103/PRXQuantum.2.040341.' short: M. Peruzzo, F. Hassani, G. Szep, A. Trioni, E. Redchenko, M. Zemlicka, J.M. Fink, PRX Quantum 2 (2021) 040341. date_created: 2021-08-17T08:14:18Z date_published: 2021-11-24T00:00:00Z date_updated: 2023-09-07T13:31:22Z day: '24' ddc: - '530' department: - _id: JoFi - _id: NanoFab - _id: M-Shop doi: 10.1103/PRXQuantum.2.040341 ec_funded: 1 external_id: arxiv: - '2106.05882' isi: - '000723015100001' file: - access_level: open_access checksum: 36eb41ea43d8ca22b0efab12419e4eb2 content_type: application/pdf creator: cchlebak date_created: 2022-01-18T11:29:33Z date_updated: 2022-01-18T11:29:33Z file_id: '10641' file_name: 2021_PRXQuantum_Peruzzo.pdf file_size: 4247422 relation: main_file success: 1 file_date_updated: 2022-01-18T11:29:33Z has_accepted_license: '1' intvolume: ' 2' isi: 1 issue: '4' keyword: - quantum physics - mesoscale and nanoscale physics language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: '040341' project: - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 2622978C-B435-11E9-9278-68D0E5697425 name: Hybrid Semiconductor - Superconductor Quantum Devices publication: PRX Quantum publication_identifier: eissn: - 2691-3399 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: record: - id: '13057' relation: research_data status: public - id: '9920' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 2 year: '2021' ... --- _id: '9815' abstract: - lang: eng text: The quantum bits (qubits) on which superconducting quantum computers are based have energy scales corresponding to photons with GHz frequencies. The energy of photons in the gigahertz domain is too low to allow transmission through the noisy room-temperature environment, where the signal would be lost in thermal noise. Optical photons, on the other hand, have much higher energies, and signals can be detected using highly efficient single-photon detectors. Transduction from microwave to optical frequencies is therefore a potential enabling technology for quantum devices. However, in such a device the optical pump can be a source of thermal noise and thus degrade the fidelity; the similarity of input microwave state to the output optical state. In order to investigate the magnitude of this effect we model the sub-Kelvin thermal behavior of an electro-optic transducer based on a lithium niobate whispering gallery mode resonator. We find that there is an optimum power level for a continuous pump, whilst pulsed operation of the pump increases the fidelity of the conversion. acknowledgement: NJL is supported by the MBIE Endeavour Fund (UOOX1805) and GL is by the Julius von Haast Fellowship of New Zealand. SM acknowledges stimulating discussions with T M Jensen. article_number: '045005' article_processing_charge: Yes article_type: original author: - first_name: Sonia full_name: Mobassem, Sonia last_name: Mobassem - first_name: Nicholas J. full_name: Lambert, Nicholas J. last_name: Lambert - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: Gerd full_name: Leuchs, Gerd last_name: Leuchs - first_name: Harald G.L. full_name: Schwefel, Harald G.L. last_name: Schwefel citation: ama: Mobassem S, Lambert NJ, Rueda Sanchez AR, Fink JM, Leuchs G, Schwefel HGL. Thermal noise in electro-optic devices at cryogenic temperatures. Quantum Science and Technology. 2021;6(4). doi:10.1088/2058-9565/ac0f36 apa: Mobassem, S., Lambert, N. J., Rueda Sanchez, A. R., Fink, J. M., Leuchs, G., & Schwefel, H. G. L. (2021). Thermal noise in electro-optic devices at cryogenic temperatures. Quantum Science and Technology. IOP Publishing. https://doi.org/10.1088/2058-9565/ac0f36 chicago: Mobassem, Sonia, Nicholas J. Lambert, Alfredo R Rueda Sanchez, Johannes M Fink, Gerd Leuchs, and Harald G.L. Schwefel. “Thermal Noise in Electro-Optic Devices at Cryogenic Temperatures.” Quantum Science and Technology. IOP Publishing, 2021. https://doi.org/10.1088/2058-9565/ac0f36. ieee: S. Mobassem, N. J. Lambert, A. R. Rueda Sanchez, J. M. Fink, G. Leuchs, and H. G. L. Schwefel, “Thermal noise in electro-optic devices at cryogenic temperatures,” Quantum Science and Technology, vol. 6, no. 4. IOP Publishing, 2021. ista: Mobassem S, Lambert NJ, Rueda Sanchez AR, Fink JM, Leuchs G, Schwefel HGL. 2021. Thermal noise in electro-optic devices at cryogenic temperatures. Quantum Science and Technology. 6(4), 045005. mla: Mobassem, Sonia, et al. “Thermal Noise in Electro-Optic Devices at Cryogenic Temperatures.” Quantum Science and Technology, vol. 6, no. 4, 045005, IOP Publishing, 2021, doi:10.1088/2058-9565/ac0f36. short: S. Mobassem, N.J. Lambert, A.R. Rueda Sanchez, J.M. Fink, G. Leuchs, H.G.L. Schwefel, Quantum Science and Technology 6 (2021). date_created: 2021-08-08T22:01:25Z date_published: 2021-07-15T00:00:00Z date_updated: 2023-10-17T12:54:54Z day: '15' ddc: - '530' department: - _id: JoFi doi: 10.1088/2058-9565/ac0f36 external_id: arxiv: - '2008.08764' isi: - '000673081500001' file: - access_level: open_access checksum: b15c2c228487a75002c3b52d56f23d5c content_type: application/pdf creator: cchlebak date_created: 2021-08-09T12:23:13Z date_updated: 2021-08-09T12:23:13Z file_id: '9836' file_name: 2021_QuantumScienceTechnology_Mobassem.pdf file_size: 2366118 relation: main_file file_date_updated: 2021-08-09T12:23:13Z has_accepted_license: '1' intvolume: ' 6' isi: 1 issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Published Version publication: Quantum Science and Technology publication_identifier: eissn: - 2058-9565 publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Thermal noise in electro-optic devices at cryogenic temperatures tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2021' ... --- _id: '8038' abstract: - lang: eng text: Microelectromechanical systems and integrated photonics provide the basis for many reliable and compact circuit elements in modern communication systems. Electro-opto-mechanical devices are currently one of the leading approaches to realize ultra-sensitive, low-loss transducers for an emerging quantum information technology. Here we present an on-chip microwave frequency converter based on a planar aluminum on silicon nitride platform that is compatible with slot-mode coupled photonic crystal cavities. We show efficient frequency conversion between two propagating microwave modes mediated by the radiation pressure interaction with a metalized dielectric nanobeam oscillator. We achieve bidirectional coherent conversion with a total device efficiency of up to ~60%, a dynamic range of 2 × 10^9 photons/s and an instantaneous bandwidth of up to 1.7 kHz. A high fidelity quantum state transfer would be possible if the drive dependent output noise of currently ~14 photons s^−1 Hz^−1 is further reduced. Such a silicon nitride based transducer is in situ reconfigurable and could be used for on-chip classical and quantum signal routing and filtering, both for microwave and hybrid microwave-optical applications. article_number: '034011' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: M. full_name: Kalaee, M. last_name: Kalaee - first_name: R. full_name: Norte, R. last_name: Norte - first_name: A. full_name: Pitanti, A. last_name: Pitanti - first_name: O. full_name: Painter, O. last_name: Painter citation: ama: Fink JM, Kalaee M, Norte R, Pitanti A, Painter O. Efficient microwave frequency conversion mediated by a photonics compatible silicon nitride nanobeam oscillator. Quantum Science and Technology. 2020;5(3). doi:10.1088/2058-9565/ab8dce apa: Fink, J. M., Kalaee, M., Norte, R., Pitanti, A., & Painter, O. (2020). Efficient microwave frequency conversion mediated by a photonics compatible silicon nitride nanobeam oscillator. Quantum Science and Technology. IOP Publishing. https://doi.org/10.1088/2058-9565/ab8dce chicago: Fink, Johannes M, M. Kalaee, R. Norte, A. Pitanti, and O. Painter. “Efficient Microwave Frequency Conversion Mediated by a Photonics Compatible Silicon Nitride Nanobeam Oscillator.” Quantum Science and Technology. IOP Publishing, 2020. https://doi.org/10.1088/2058-9565/ab8dce. ieee: J. M. Fink, M. Kalaee, R. Norte, A. Pitanti, and O. Painter, “Efficient microwave frequency conversion mediated by a photonics compatible silicon nitride nanobeam oscillator,” Quantum Science and Technology, vol. 5, no. 3. IOP Publishing, 2020. ista: Fink JM, Kalaee M, Norte R, Pitanti A, Painter O. 2020. Efficient microwave frequency conversion mediated by a photonics compatible silicon nitride nanobeam oscillator. Quantum Science and Technology. 5(3), 034011. mla: Fink, Johannes M., et al. “Efficient Microwave Frequency Conversion Mediated by a Photonics Compatible Silicon Nitride Nanobeam Oscillator.” Quantum Science and Technology, vol. 5, no. 3, 034011, IOP Publishing, 2020, doi:10.1088/2058-9565/ab8dce. short: J.M. Fink, M. Kalaee, R. Norte, A. Pitanti, O. Painter, Quantum Science and Technology 5 (2020). date_created: 2020-06-29T07:59:35Z date_published: 2020-05-25T00:00:00Z date_updated: 2023-08-22T07:49:01Z day: '25' ddc: - '530' department: - _id: JoFi doi: 10.1088/2058-9565/ab8dce ec_funded: 1 external_id: isi: - '000539300800001' file: - access_level: open_access checksum: 8f25f05053f511f892ae8fa93f341e61 content_type: application/pdf creator: cziletti date_created: 2020-06-30T10:29:10Z date_updated: 2020-07-14T12:48:08Z file_id: '8072' file_name: 2020_QuantumSciTechnol_Fink.pdf file_size: 2600967 relation: main_file file_date_updated: 2020-07-14T12:48:08Z has_accepted_license: '1' intvolume: ' 5' isi: 1 issue: '3' language: - iso: eng month: '05' oa: 1 oa_version: Published Version project: - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits - _id: 257EB838-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '732894' name: Hybrid Optomechanical Technologies - _id: 2622978C-B435-11E9-9278-68D0E5697425 name: Hybrid Semiconductor - Superconductor Quantum Devices publication: Quantum Science and Technology publication_identifier: eissn: - '20589565' publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Efficient microwave frequency conversion mediated by a photonics compatible silicon nitride nanobeam oscillator tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 5 year: '2020' ...