--- _id: '12875' abstract: - lang: eng text: The superior colliculus (SC) in the mammalian midbrain is essential for multisensory integration and is composed of a rich diversity of excitatory and inhibitory neurons and glia. However, the developmental principles directing the generation of SC cell-type diversity are not understood. Here, we pursued systematic cell lineage tracing in silico and in vivo, preserving full spatial information, using genetic mosaic analysis with double markers (MADM)-based clonal analysis with single-cell sequencing (MADM-CloneSeq). The analysis of clonally related cell lineages revealed that radial glial progenitors (RGPs) in SC are exceptionally multipotent. Individual resident RGPs have the capacity to produce all excitatory and inhibitory SC neuron types, even at the stage of terminal division. While individual clonal units show no pre-defined cellular composition, the establishment of appropriate relative proportions of distinct neuronal types occurs in a PTEN-dependent manner. Collectively, our findings provide an inaugural framework at the single-RGP/-cell level of the mammalian SC ontogeny. acknowledged_ssus: - _id: Bio - _id: M-Shop - _id: LifeSc - _id: PreCl acknowledgement: "We thank Liqun Luo for his continued support, for providing essential resources for generating Fzd10-CreER mice which were generated in his laboratory, and for comments on the manuscript; W. Zhong for providing Nestin-Cre transgenic mouse line for this study; A. Heger for mouse colony management; R. Beattie and T. Asenov for designing and producing components of acute slice recovery chamber for MADM-CloneSeq experiments; and K. Leopold, J. Rodarte and N. Amberg for initial experiments, technical support and/or assistance. This study was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by the Imaging & Optics Facility (IOF), Laboratory Support Facility (LSF), Miba Machine Shop, and Pre-clinical Facility (PCF). G.C. received funding from European Commission (IST plus postdoctoral fellowship). This work was supported by ISTA institutional\r\nfunds; the Austrian Science Fund Special Research Programmes (FWF SFB F78 Neuro Stem Modulation) to S.H. " article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Giselle T full_name: Cheung, Giselle T id: 471195F6-F248-11E8-B48F-1D18A9856A87 last_name: Cheung orcid: 0000-0001-8457-2572 - first_name: Florian full_name: Pauler, Florian id: 48EA0138-F248-11E8-B48F-1D18A9856A87 last_name: Pauler orcid: 0000-0002-7462-0048 - first_name: Peter full_name: Koppensteiner, Peter id: 3B8B25A8-F248-11E8-B48F-1D18A9856A87 last_name: Koppensteiner orcid: 0000-0002-3509-1948 - first_name: Thomas full_name: Krausgruber, Thomas last_name: Krausgruber - first_name: Carmen full_name: Streicher, Carmen id: 36BCB99C-F248-11E8-B48F-1D18A9856A87 last_name: Streicher - first_name: Martin full_name: Schrammel, Martin id: f13e7cae-e8bd-11ed-841a-96dedf69f46d last_name: Schrammel - first_name: Natalie Y full_name: Özgen, Natalie Y id: e68ece33-f6e0-11ea-865d-ae1031dcc090 last_name: Özgen - first_name: Alexis full_name: Ivec, Alexis id: 1d144691-e8be-11ed-9b33-bdd3077fad4c last_name: Ivec - first_name: Christoph full_name: Bock, Christoph last_name: Bock - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 citation: ama: Cheung GT, Pauler F, Koppensteiner P, et al. Multipotent progenitors instruct ontogeny of the superior colliculus. Neuron. 2024;112(2):230-246.e11. doi:10.1016/j.neuron.2023.11.009 apa: Cheung, G. T., Pauler, F., Koppensteiner, P., Krausgruber, T., Streicher, C., Schrammel, M., … Hippenmeyer, S. (2024). Multipotent progenitors instruct ontogeny of the superior colliculus. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2023.11.009 chicago: Cheung, Giselle T, Florian Pauler, Peter Koppensteiner, Thomas Krausgruber, Carmen Streicher, Martin Schrammel, Natalie Y Özgen, et al. “Multipotent Progenitors Instruct Ontogeny of the Superior Colliculus.” Neuron. Elsevier, 2024. https://doi.org/10.1016/j.neuron.2023.11.009. ieee: G. T. Cheung et al., “Multipotent progenitors instruct ontogeny of the superior colliculus,” Neuron, vol. 112, no. 2. Elsevier, p. 230–246.e11, 2024. ista: Cheung GT, Pauler F, Koppensteiner P, Krausgruber T, Streicher C, Schrammel M, Özgen NY, Ivec A, Bock C, Shigemoto R, Hippenmeyer S. 2024. Multipotent progenitors instruct ontogeny of the superior colliculus. Neuron. 112(2), 230–246.e11. mla: Cheung, Giselle T., et al. “Multipotent Progenitors Instruct Ontogeny of the Superior Colliculus.” Neuron, vol. 112, no. 2, Elsevier, 2024, p. 230–246.e11, doi:10.1016/j.neuron.2023.11.009. short: G.T. Cheung, F. Pauler, P. Koppensteiner, T. Krausgruber, C. Streicher, M. Schrammel, N.Y. Özgen, A. Ivec, C. Bock, R. Shigemoto, S. Hippenmeyer, Neuron 112 (2024) 230–246.e11. date_created: 2023-04-27T09:41:48Z date_published: 2024-01-17T00:00:00Z date_updated: 2024-03-05T09:43:02Z day: '17' ddc: - '570' department: - _id: SiHi - _id: RySh doi: 10.1016/j.neuron.2023.11.009 external_id: pmid: - '38096816' file: - access_level: open_access checksum: 32b3788f7085cf44a84108d8faaff3ce content_type: application/pdf creator: dernst date_created: 2024-02-06T13:56:15Z date_updated: 2024-02-06T13:56:15Z file_id: '14944' file_name: 2024_Neuron_Cheung.pdf file_size: 5942467 relation: main_file success: 1 file_date_updated: 2024-02-06T13:56:15Z has_accepted_license: '1' intvolume: ' 112' issue: '2' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '01' oa: 1 oa_version: Published Version page: 230-246.e11 pmid: 1 project: - _id: 059F6AB4-7A3F-11EA-A408-12923DDC885E grant_number: F07805 name: Molecular Mechanisms of Neural Stem Cell Lineage Progression publication: Neuron publication_identifier: issn: - 0896-6273 publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on ISTA Website relation: press_release url: https://ista.ac.at/en/news/the-pedigree-of-brain-cells/ scopus_import: '1' status: public title: Multipotent progenitors instruct ontogeny of the superior colliculus tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 112 year: '2024' ... --- _id: '15084' abstract: - lang: eng text: "GABAB receptor (GBR) activation inhibits neurotransmitter release in axon terminals in the brain, except in medial habenula (MHb) terminals, which show robust potentiation. However, mechanisms underlying this enigmatic potentiation remain elusive. Here, we report that GBR activation on MHb terminals induces an activity-dependent transition from a facilitating, tonic to a depressing, phasic neurotransmitter release mode. This transition is accompanied by a 4.1-fold increase in readily releasable vesicle pool (RRP) size and a 3.5-fold increase of docked synaptic vesicles (SVs) at the presynaptic active zone (AZ). Strikingly, the depressing phasic release exhibits looser coupling distance than the tonic release. Furthermore, the tonic and phasic release are selectively affected by deletion of synaptoporin (SPO) and Ca\r\n 2+\r\n -dependent activator protein for secretion 2 (CAPS2), respectively. SPO modulates augmentation, the short-term plasticity associated with tonic release, and CAPS2 retains the increased RRP for initial responses in phasic response trains. The cytosolic protein CAPS2 showed a SV-associated distribution similar to the vesicular transmembrane protein SPO, and they were colocalized in the same terminals. We developed the “Flash and Freeze-fracture” method, and revealed the release of SPO-associated vesicles in both tonic and phasic modes and activity-dependent recruitment of CAPS2 to the AZ during phasic release, which lasted several minutes. Overall, these results indicate that GBR activation translocates CAPS2 to the AZ along with the fusion of CAPS2-associated SVs, contributing to persistency of the RRP increase. Thus, we identified structural and molecular mechanisms underlying tonic and phasic neurotransmitter release and their transition by GBR activation in MHb terminals." acknowledged_ssus: - _id: M-Shop - _id: PreCl - _id: EM-Fac acknowledgement: We thank Erwin Neher and Ipe Ninan for critical comments on the manuscript. This project has received funding from the European Research Council (ERC) and European Commission, under the European Union’s Horizon 2020 research and innovation program (ERC grant agreement no. 694539 to R.S. and the Marie Skłodowska-Curie grant agreement no. 665385 to C.Ö.). This study was supported by the Cooperative Study Program of Center for Animal Resources and Collaborative Study of NINS. We thank Kohgaku Eguchi for statistical analysis, Yu Kasugai for additional EM imaging, Robert Beattie for the design of the slice recovery chamber for Flash and Freeze experiments, Todor Asenov from the ISTA machine shop for custom part preparations for high-pressure freezing, the ISTA preclinical facility for animal caretaking, and the ISTA EM facilities for technical support. article_number: e2301449121 article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Peter full_name: Koppensteiner, Peter id: 3B8B25A8-F248-11E8-B48F-1D18A9856A87 last_name: Koppensteiner orcid: 0000-0002-3509-1948 - first_name: Pradeep full_name: Bhandari, Pradeep id: 45EDD1BC-F248-11E8-B48F-1D18A9856A87 last_name: Bhandari orcid: 0000-0003-0863-4481 - first_name: Hüseyin C full_name: Önal, Hüseyin C id: 4659D740-F248-11E8-B48F-1D18A9856A87 last_name: Önal orcid: 0000-0002-2771-2011 - first_name: Carolina full_name: Borges Merjane, Carolina id: 4305C450-F248-11E8-B48F-1D18A9856A87 last_name: Borges Merjane orcid: 0000-0003-0005-401X - first_name: Elodie full_name: Le Monnier, Elodie id: 3B59276A-F248-11E8-B48F-1D18A9856A87 last_name: Le Monnier - first_name: Utsa full_name: Roy, Utsa id: 4d26cf11-5355-11ee-ae5a-eb05e255b9b2 last_name: Roy - first_name: Yukihiro full_name: Nakamura, Yukihiro last_name: Nakamura - first_name: Tetsushi full_name: Sadakata, Tetsushi last_name: Sadakata - first_name: Makoto full_name: Sanbo, Makoto last_name: Sanbo - first_name: Masumi full_name: Hirabayashi, Masumi last_name: Hirabayashi - first_name: JeongSeop full_name: Rhee, JeongSeop last_name: Rhee - first_name: Nils full_name: Brose, Nils last_name: Brose - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 citation: ama: Koppensteiner P, Bhandari P, Önal C, et al. GABAB receptors induce phasic release from medial habenula terminals through activity-dependent recruitment of release-ready vesicles. Proceedings of the National Academy of Sciences. 2024;121(8). doi:10.1073/pnas.2301449121 apa: Koppensteiner, P., Bhandari, P., Önal, C., Borges Merjane, C., Le Monnier, E., Roy, U., … Shigemoto, R. (2024). GABAB receptors induce phasic release from medial habenula terminals through activity-dependent recruitment of release-ready vesicles. Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2301449121 chicago: Koppensteiner, Peter, Pradeep Bhandari, Cihan Önal, Carolina Borges Merjane, Elodie Le Monnier, Utsa Roy, Yukihiro Nakamura, et al. “GABAB Receptors Induce Phasic Release from Medial Habenula Terminals through Activity-Dependent Recruitment of Release-Ready Vesicles.” Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences, 2024. https://doi.org/10.1073/pnas.2301449121. ieee: P. Koppensteiner et al., “GABAB receptors induce phasic release from medial habenula terminals through activity-dependent recruitment of release-ready vesicles,” Proceedings of the National Academy of Sciences, vol. 121, no. 8. Proceedings of the National Academy of Sciences, 2024. ista: Koppensteiner P, Bhandari P, Önal C, Borges Merjane C, Le Monnier E, Roy U, Nakamura Y, Sadakata T, Sanbo M, Hirabayashi M, Rhee J, Brose N, Jonas PM, Shigemoto R. 2024. GABAB receptors induce phasic release from medial habenula terminals through activity-dependent recruitment of release-ready vesicles. Proceedings of the National Academy of Sciences. 121(8), e2301449121. mla: Koppensteiner, Peter, et al. “GABAB Receptors Induce Phasic Release from Medial Habenula Terminals through Activity-Dependent Recruitment of Release-Ready Vesicles.” Proceedings of the National Academy of Sciences, vol. 121, no. 8, e2301449121, Proceedings of the National Academy of Sciences, 2024, doi:10.1073/pnas.2301449121. short: P. Koppensteiner, P. Bhandari, C. Önal, C. Borges Merjane, E. Le Monnier, U. Roy, Y. Nakamura, T. Sadakata, M. Sanbo, M. Hirabayashi, J. Rhee, N. Brose, P.M. Jonas, R. Shigemoto, Proceedings of the National Academy of Sciences 121 (2024). date_created: 2024-03-05T09:23:55Z date_published: 2024-02-20T00:00:00Z date_updated: 2024-03-12T13:44:18Z day: '20' ddc: - '570' department: - _id: RySh - _id: PeJo doi: 10.1073/pnas.2301449121 ec_funded: 1 external_id: pmid: - '38346189' file: - access_level: open_access checksum: b25b2a057c266ff317a48b0d54d6fc8a content_type: application/pdf creator: dernst date_created: 2024-03-12T13:42:42Z date_updated: 2024-03-12T13:42:42Z file_id: '15110' file_name: 2024_PNAS_Koppensteiner.pdf file_size: 13648221 relation: main_file success: 1 file_date_updated: 2024-03-12T13:42:42Z has_accepted_license: '1' intvolume: ' 121' issue: '8' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '02' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 25CA28EA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694539' name: 'In situ analysis of single channel subunit composition in neurons: physiological implication in synaptic plasticity and behaviour' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Proceedings of the National Academy of Sciences publication_identifier: eissn: - 1091-6490 issn: - 0027-8424 publication_status: published publisher: Proceedings of the National Academy of Sciences quality_controlled: '1' related_material: link: - description: News on ISTA Website relation: press_release url: https://ista.ac.at/en/news/neuronal-insights-flash-and-freeze-fracture/ record: - id: '13173' relation: research_data status: public status: public title: GABAB receptors induce phasic release from medial habenula terminals through activity-dependent recruitment of release-ready vesicles tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 121 year: '2024' ... --- _id: '14843' abstract: - lang: eng text: The coupling between Ca2+ channels and release sensors is a key factor defining the signaling properties of a synapse. However, the coupling nanotopography at many synapses remains unknown, and it is unclear how it changes during development. To address these questions, we examined coupling at the cerebellar inhibitory basket cell (BC)-Purkinje cell (PC) synapse. Biophysical analysis of transmission by paired recording and intracellular pipette perfusion revealed that the effects of exogenous Ca2+ chelators decreased during development, despite constant reliance of release on P/Q-type Ca2+ channels. Structural analysis by freeze-fracture replica labeling (FRL) and transmission electron microscopy (EM) indicated that presynaptic P/Q-type Ca2+ channels formed nanoclusters throughout development, whereas docked vesicles were only clustered at later developmental stages. Modeling suggested a developmental transformation from a more random to a more clustered coupling nanotopography. Thus, presynaptic signaling developmentally approaches a point-to-point configuration, optimizing speed, reliability, and energy efficiency of synaptic transmission. acknowledged_ssus: - _id: EM-Fac - _id: PreCl - _id: M-Shop acknowledgement: We thank Drs. David DiGregorio and Erwin Neher for critically reading an earlier version of the manuscript, Ralf Schneggenburger for helpful discussions, Benjamin Suter and Katharina Lichter for support with image analysis, Chris Wojtan for advice on numerical solution of partial differential equations, Maria Reva for help with Ripley analysis, Alois Schlögl for programming, and Akari Hagiwara and Toshihisa Ohtsuka for anti-ELKS antibody. We are grateful to Florian Marr, Christina Altmutter, and Vanessa Zheden for excellent technical assistance and to Eleftheria Kralli-Beller for manuscript editing. This research was supported by the Scientific Services Units (SSUs) of ISTA (Electron Microscopy Facility, Preclinical Facility, and Machine Shop). The project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 692692), the Fonds zur Förderung der Wissenschaftlichen Forschung (Z 312-B27, Wittgenstein award; P 36232-B), all to P.J., and a DOC fellowship of the Austrian Academy of Sciences to J.-J.C. article_processing_charge: No article_type: original author: - first_name: JingJing full_name: Chen, JingJing id: 2C4E65C8-F248-11E8-B48F-1D18A9856A87 last_name: Chen - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Chong full_name: Chen, Chong id: 3DFD581A-F248-11E8-B48F-1D18A9856A87 last_name: Chen - first_name: Itaru full_name: Arai, Itaru id: 32A73F6C-F248-11E8-B48F-1D18A9856A87 last_name: Arai - first_name: Olena full_name: Kim, Olena id: 3F8ABDDA-F248-11E8-B48F-1D18A9856A87 last_name: Kim - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 citation: ama: Chen J, Kaufmann W, Chen C, et al. Developmental transformation of Ca2+ channel-vesicle nanotopography at a central GABAergic synapse. Neuron. doi:10.1016/j.neuron.2023.12.002 apa: Chen, J., Kaufmann, W., Chen, C., Arai, itaru, Kim, O., Shigemoto, R., & Jonas, P. M. (n.d.). Developmental transformation of Ca2+ channel-vesicle nanotopography at a central GABAergic synapse. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2023.12.002 chicago: Chen, JingJing, Walter Kaufmann, Chong Chen, itaru Arai, Olena Kim, Ryuichi Shigemoto, and Peter M Jonas. “Developmental Transformation of Ca2+ Channel-Vesicle Nanotopography at a Central GABAergic Synapse.” Neuron. Elsevier, n.d. https://doi.org/10.1016/j.neuron.2023.12.002. ieee: J. Chen et al., “Developmental transformation of Ca2+ channel-vesicle nanotopography at a central GABAergic synapse,” Neuron. Elsevier. ista: Chen J, Kaufmann W, Chen C, Arai itaru, Kim O, Shigemoto R, Jonas PM. Developmental transformation of Ca2+ channel-vesicle nanotopography at a central GABAergic synapse. Neuron. mla: Chen, JingJing, et al. “Developmental Transformation of Ca2+ Channel-Vesicle Nanotopography at a Central GABAergic Synapse.” Neuron, Elsevier, doi:10.1016/j.neuron.2023.12.002. short: J. Chen, W. Kaufmann, C. Chen, itaru Arai, O. Kim, R. Shigemoto, P.M. Jonas, Neuron (n.d.). date_created: 2024-01-21T23:00:56Z date_published: 2024-01-11T00:00:00Z date_updated: 2024-03-14T13:14:18Z day: '11' department: - _id: PeJo - _id: EM-Fac - _id: RySh doi: 10.1016/j.neuron.2023.12.002 ec_funded: 1 external_id: pmid: - '38215739' language: - iso: eng month: '01' oa_version: None pmid: 1 project: - _id: 25B7EB9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '692692' name: Biophysics and circuit function of a giant cortical glumatergic synapse - _id: 25C5A090-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00312 name: The Wittgenstein Prize - _id: bd88be38-d553-11ed-ba76-81d5a70a6ef5 grant_number: P36232 name: Mechanisms of GABA release in hippocampal circuits - _id: 26B66A3E-B435-11E9-9278-68D0E5697425 grant_number: '25383' name: Development of nanodomain coupling between Ca2+ channels and release sensors at a central inhibitory synapse publication: Neuron publication_identifier: eissn: - 1097-4199 issn: - 0896-6273 publication_status: inpress publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on ISTA Website relation: press_release url: https://ista.ac.at/en/news/synapses-brought-to-the-point/ record: - id: '15101' relation: dissertation_contains status: public scopus_import: '1' status: public title: Developmental transformation of Ca2+ channel-vesicle nanotopography at a central GABAergic synapse type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '14253' abstract: - lang: eng text: Junctions between the endoplasmic reticulum (ER) and the plasma membrane (PM) are specialized membrane contacts ubiquitous in eukaryotic cells. Concentration of intracellular signaling machinery near ER-PM junctions allows these domains to serve critical roles in lipid and Ca2+ signaling and homeostasis. Subcellular compartmentalization of protein kinase A (PKA) signaling also regulates essential cellular functions, however, no specific association between PKA and ER-PM junctional domains is known. Here, we show that in brain neurons type I PKA is directed to Kv2.1 channel-dependent ER-PM junctional domains via SPHKAP, a type I PKA-specific anchoring protein. SPHKAP association with type I PKA regulatory subunit RI and ER-resident VAP proteins results in the concentration of type I PKA between stacked ER cisternae associated with ER-PM junctions. This ER-associated PKA signalosome enables reciprocal regulation between PKA and Ca2+ signaling machinery to support Ca2+ influx and excitation-transcription coupling. These data reveal that neuronal ER-PM junctions support a receptor-independent form of PKA signaling driven by membrane depolarization and intracellular Ca2+, allowing conversion of information encoded in electrical signals into biochemical changes universally recognized throughout the cell. acknowledgement: We thank Kayla Templeton and Peter Turcanu for technical assistance, Michelle Salemi for assistance with LC-MS data acquisition and analysis, Dr. Belvin Gong for advice on monoclonal antibody generation, Drs. Maria Casas Prat and Eamonn Dickson for assistance with super-resolution TIRF microscopy, Dr. Oscar Cerda for assistance with the design of TAT-FFAT peptides, Dr. Fernando Santana for helpful discussions, and Dr. Jodi Nunnari for a careful reading of our manuscript. We also thank Dr. Alan Howe, Dr. Sohum Mehta, and Dr. Jin Zhang for providing plasmids used in this study. This project was funded by NIH Grants R01NS114210 and R21NS101648 (J.S.T.), and F32NS108519 (N.C.V.). article_number: '5231' article_processing_charge: Yes article_type: original author: - first_name: Nicholas C. full_name: Vierra, Nicholas C. last_name: Vierra - first_name: Luisa full_name: Ribeiro-Silva, Luisa last_name: Ribeiro-Silva - first_name: Michael full_name: Kirmiz, Michael last_name: Kirmiz - first_name: Deborah full_name: Van Der List, Deborah last_name: Van Der List - first_name: Pradeep full_name: Bhandari, Pradeep id: 45EDD1BC-F248-11E8-B48F-1D18A9856A87 last_name: Bhandari orcid: 0000-0003-0863-4481 - first_name: Olivia A. full_name: Mack, Olivia A. last_name: Mack - first_name: James full_name: Carroll, James last_name: Carroll - first_name: Elodie full_name: Le Monnier, Elodie id: 3B59276A-F248-11E8-B48F-1D18A9856A87 last_name: Le Monnier - first_name: Sue A. full_name: Aicher, Sue A. last_name: Aicher - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: James S. full_name: Trimmer, James S. last_name: Trimmer citation: ama: Vierra NC, Ribeiro-Silva L, Kirmiz M, et al. Neuronal ER-plasma membrane junctions couple excitation to Ca2+-activated PKA signaling. Nature Communications. 2023;14. doi:10.1038/s41467-023-40930-6 apa: Vierra, N. C., Ribeiro-Silva, L., Kirmiz, M., Van Der List, D., Bhandari, P., Mack, O. A., … Trimmer, J. S. (2023). Neuronal ER-plasma membrane junctions couple excitation to Ca2+-activated PKA signaling. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-40930-6 chicago: Vierra, Nicholas C., Luisa Ribeiro-Silva, Michael Kirmiz, Deborah Van Der List, Pradeep Bhandari, Olivia A. Mack, James Carroll, et al. “Neuronal ER-Plasma Membrane Junctions Couple Excitation to Ca2+-Activated PKA Signaling.” Nature Communications. Springer Nature, 2023. https://doi.org/10.1038/s41467-023-40930-6. ieee: N. C. Vierra et al., “Neuronal ER-plasma membrane junctions couple excitation to Ca2+-activated PKA signaling,” Nature Communications, vol. 14. Springer Nature, 2023. ista: Vierra NC, Ribeiro-Silva L, Kirmiz M, Van Der List D, Bhandari P, Mack OA, Carroll J, Le Monnier E, Aicher SA, Shigemoto R, Trimmer JS. 2023. Neuronal ER-plasma membrane junctions couple excitation to Ca2+-activated PKA signaling. Nature Communications. 14, 5231. mla: Vierra, Nicholas C., et al. “Neuronal ER-Plasma Membrane Junctions Couple Excitation to Ca2+-Activated PKA Signaling.” Nature Communications, vol. 14, 5231, Springer Nature, 2023, doi:10.1038/s41467-023-40930-6. short: N.C. Vierra, L. Ribeiro-Silva, M. Kirmiz, D. Van Der List, P. Bhandari, O.A. Mack, J. Carroll, E. Le Monnier, S.A. Aicher, R. Shigemoto, J.S. Trimmer, Nature Communications 14 (2023). date_created: 2023-09-03T22:01:14Z date_published: 2023-08-26T00:00:00Z date_updated: 2023-09-06T06:53:32Z day: '26' ddc: - '570' department: - _id: RySh doi: 10.1038/s41467-023-40930-6 external_id: pmid: - '37633939' file: - access_level: open_access checksum: 6ab8aab4e957f626a09a1c73db3388fb content_type: application/pdf creator: dernst date_created: 2023-09-06T06:50:07Z date_updated: 2023-09-06T06:50:07Z file_id: '14270' file_name: 2023_NatureComm_Vierra.pdf file_size: 9412549 relation: main_file success: 1 file_date_updated: 2023-09-06T06:50:07Z has_accepted_license: '1' intvolume: ' 14' language: - iso: eng month: '08' oa: 1 oa_version: Published Version pmid: 1 publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Neuronal ER-plasma membrane junctions couple excitation to Ca2+-activated PKA signaling tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2023' ... --- _id: '13202' abstract: - lang: eng text: Phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) plays an essential role in neuronal activities through interaction with various proteins involved in signaling at membranes. However, the distribution pattern of PI(4,5)P2 and the association with these proteins on the neuronal cell membranes remain elusive. In this study, we established a method for visualizing PI(4,5)P2 by SDS-digested freeze-fracture replica labeling (SDS-FRL) to investigate the quantitative nanoscale distribution of PI(4,5)P2 in cryo-fixed brain. We demonstrate that PI(4,5)P2 forms tiny clusters with a mean size of ∼1000 nm2 rather than randomly distributed in cerebellar neuronal membranes in male C57BL/6J mice. These clusters show preferential accumulation in specific membrane compartments of different cell types, in particular, in Purkinje cell (PC) spines and granule cell (GC) presynaptic active zones. Furthermore, we revealed extensive association of PI(4,5)P2 with CaV2.1 and GIRK3 across different membrane compartments, whereas its association with mGluR1α was compartment specific. These results suggest that our SDS-FRL method provides valuable insights into the physiological functions of PI(4,5)P2 in neurons. acknowledged_ssus: - _id: EM-Fac acknowledgement: This work was supported by The Institute of Science and Technology (IST) Austria, the European Union's Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie Grant Agreement No. 793482 (to K.E.) and by the European Research Council (ERC) Grant Agreement No. 694539 (to R.S.). We thank Nicoleta Condruz (IST Austria, Klosterneuburg, Austria) for technical assistance with sample preparation, the Electron Microscopy Facility of IST Austria (Klosterneuburg, Austria) for technical support with EM works, Natalia Baranova (University of Vienna, Vienna, Austria) and Martin Loose (IST Austria, Klosterneuburg, Austria) for advice on liposome preparation, and Yugo Fukazawa (University of Fukui, Fukui, Japan) for comments. article_processing_charge: No article_type: original author: - first_name: Kohgaku full_name: Eguchi, Kohgaku id: 2B7846DC-F248-11E8-B48F-1D18A9856A87 last_name: Eguchi orcid: 0000-0002-6170-2546 - first_name: Elodie full_name: Le Monnier, Elodie id: 3B59276A-F248-11E8-B48F-1D18A9856A87 last_name: Le Monnier - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 citation: ama: Eguchi K, Le Monnier E, Shigemoto R. Nanoscale phosphoinositide distribution on cell membranes of mouse cerebellar neurons. The Journal of Neuroscience. 2023;43(23):4197-4216. doi:10.1523/JNEUROSCI.1514-22.2023 apa: Eguchi, K., Le Monnier, E., & Shigemoto, R. (2023). Nanoscale phosphoinositide distribution on cell membranes of mouse cerebellar neurons. The Journal of Neuroscience. Society for Neuroscience. https://doi.org/10.1523/JNEUROSCI.1514-22.2023 chicago: Eguchi, Kohgaku, Elodie Le Monnier, and Ryuichi Shigemoto. “Nanoscale Phosphoinositide Distribution on Cell Membranes of Mouse Cerebellar Neurons.” The Journal of Neuroscience. Society for Neuroscience, 2023. https://doi.org/10.1523/JNEUROSCI.1514-22.2023. ieee: K. Eguchi, E. Le Monnier, and R. Shigemoto, “Nanoscale phosphoinositide distribution on cell membranes of mouse cerebellar neurons,” The Journal of Neuroscience, vol. 43, no. 23. Society for Neuroscience, pp. 4197–4216, 2023. ista: Eguchi K, Le Monnier E, Shigemoto R. 2023. Nanoscale phosphoinositide distribution on cell membranes of mouse cerebellar neurons. The Journal of Neuroscience. 43(23), 4197–4216. mla: Eguchi, Kohgaku, et al. “Nanoscale Phosphoinositide Distribution on Cell Membranes of Mouse Cerebellar Neurons.” The Journal of Neuroscience, vol. 43, no. 23, Society for Neuroscience, 2023, pp. 4197–216, doi:10.1523/JNEUROSCI.1514-22.2023. short: K. Eguchi, E. Le Monnier, R. Shigemoto, The Journal of Neuroscience 43 (2023) 4197–4216. date_created: 2023-07-09T22:01:12Z date_published: 2023-06-07T00:00:00Z date_updated: 2023-10-18T07:12:47Z day: '07' ddc: - '570' department: - _id: RySh doi: 10.1523/JNEUROSCI.1514-22.2023 ec_funded: 1 external_id: isi: - '001020132100005' pmid: - '37160366' file: - access_level: open_access checksum: 70b2141870e0bf1c94fd343e18fdbc32 content_type: application/pdf creator: alisjak date_created: 2023-07-10T09:04:58Z date_updated: 2023-07-10T09:04:58Z file_id: '13205' file_name: 2023_JN_Eguchi.pdf file_size: 7794425 relation: main_file success: 1 file_date_updated: 2023-07-10T09:04:58Z has_accepted_license: '1' intvolume: ' 43' isi: 1 issue: '23' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 4197-4216 pmid: 1 project: - _id: 2659CC84-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '793482' name: 'Ultrastructural analysis of phosphoinositides in nerve terminals: distribution, dynamics and physiological roles in synaptic transmission' - _id: 25CA28EA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694539' name: 'In situ analysis of single channel subunit composition in neurons: physiological implication in synaptic plasticity and behaviour' publication: The Journal of Neuroscience publication_identifier: eissn: - 1529-2401 issn: - 0270-6474 publication_status: published publisher: Society for Neuroscience quality_controlled: '1' scopus_import: '1' status: public title: Nanoscale phosphoinositide distribution on cell membranes of mouse cerebellar neurons tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 43 year: '2023' ... --- _id: '13173' abstract: - lang: eng text: GABAB receptor (GBR) activation inhibits neurotransmitter release in axon terminals in the brain, except in medial habenula (MHb) terminals, which show robust potentiation. However, mechanisms underlying this enigmatic potentiation remain elusive. Here, we report that GBR activation on MHb terminals induces an activity-dependent transition from a facilitating, tonic to a depressing, phasic neurotransmitter release mode. This transition is accompanied by a 4.1-fold increase in readily releasable vesicle pool (RRP) size and a 3.5-fold increase of docked synaptic vesicles at the presynaptic active zone (AZ). Strikingly, tonic and phasic release exhibit distinct coupling distances and are selectively affected by deletion of synaptoporin (SPO) and Ca2+-dependent activator protein for secretion 2 (CAPS2), respectively. SPO modulates augmentation, the short-term plasticity associated with tonic release, and CAPS2 retains the increased RRP for initial responses in phasic response trains. Double pre-embedding immunolabeling confirmed the co-localization of CAPS2 and SPO inside the same terminal. The cytosolic protein CAPS2 showed a synaptic vesicle (SV)-associated distribution similar to the vesicular transmembrane protein SPO. A newly developed “Flash and Freeze-fracture” method revealed the release of SPO-associated vesicles in both tonic and phasic modes and activity-dependent recruitment of CAPS2 to the AZ during phasic release, which lasted several minutes. Overall, these results indicate that GBR activation translocates CAPS2 to the AZ along with the fusion of CAPS2-associated SVs, contributing to a persistent RRP increase. Thus, we discovered structural and molecular mechanisms underlying tonic and phasic neurotransmitter release and their transition by GBR activation in MHb terminals. article_processing_charge: No author: - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 citation: ama: Shigemoto R. Transition from tonic to phasic neurotransmitter release by presynaptic GABAB receptor activation in medial habenula terminals. 2023. doi:10.15479/AT:ISTA:13173 apa: Shigemoto, R. (2023). Transition from tonic to phasic neurotransmitter release by presynaptic GABAB receptor activation in medial habenula terminals. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:13173 chicago: Shigemoto, Ryuichi. “Transition from Tonic to Phasic Neurotransmitter Release by Presynaptic GABAB Receptor Activation in Medial Habenula Terminals.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/AT:ISTA:13173. ieee: R. Shigemoto, “Transition from tonic to phasic neurotransmitter release by presynaptic GABAB receptor activation in medial habenula terminals.” Institute of Science and Technology Austria, 2023. ista: Shigemoto R. 2023. Transition from tonic to phasic neurotransmitter release by presynaptic GABAB receptor activation in medial habenula terminals, Institute of Science and Technology Austria, 10.15479/AT:ISTA:13173. mla: Shigemoto, Ryuichi. Transition from Tonic to Phasic Neurotransmitter Release by Presynaptic GABAB Receptor Activation in Medial Habenula Terminals. Institute of Science and Technology Austria, 2023, doi:10.15479/AT:ISTA:13173. short: R. Shigemoto, (2023). date_created: 2023-06-29T13:16:42Z date_published: 2023-07-29T00:00:00Z date_updated: 2024-03-12T13:44:18Z day: '29' ddc: - '571' department: - _id: RySh doi: 10.15479/AT:ISTA:13173 file: - access_level: closed checksum: ed59170869ba621f89f7c1894092192f content_type: application/x-zip-compressed creator: shigemot date_created: 2023-06-29T13:11:22Z date_updated: 2023-11-17T14:30:44Z description: After review an updated version of the data is provided file_id: '13174' file_name: Raw data for Koppensteiner et al.zip file_size: 542873672 relation: main_file title: Outdated Version - access_level: open_access checksum: c07860eb82b4d367245f1b589fe5c250 content_type: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet creator: patrickd date_created: 2023-11-17T14:13:02Z date_updated: 2023-11-17T14:13:02Z file_id: '14550' file_name: 11-17-23 Updated Koppensteiner et al. raw data.xlsx file_size: 915079 relation: main_file success: 1 - access_level: open_access checksum: abf84b1699edac4349dc3a92d466fb7b content_type: application/x-zip-compressed creator: dernst date_created: 2024-02-06T07:21:43Z date_updated: 2024-02-06T07:21:43Z file_id: '14942' file_name: EM_Images.zip file_size: 544868924 relation: main_file success: 1 file_date_updated: 2024-02-06T07:21:43Z has_accepted_license: '1' keyword: - medial habenula - GABAB receptor - vesicle release - Flash and Freeze - Flash and Freeze-fracture license: https://creativecommons.org/licenses/by-nc/4.0/ month: '07' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '15084' relation: used_in_publication status: public status: public title: Transition from tonic to phasic neurotransmitter release by presynaptic GABAB receptor activation in medial habenula terminals tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '10890' abstract: - lang: eng text: Upon the arrival of action potentials at nerve terminals, neurotransmitters are released from synaptic vesicles (SVs) by exocytosis. CaV2.1, 2.2, and 2.3 are the major subunits of the voltage-gated calcium channel (VGCC) responsible for increasing intraterminal calcium levels and triggering SV exocytosis in the central nervous system (CNS) synapses. The two-dimensional analysis of CaV2 distributions using sodium dodecyl sulfate (SDS)-digested freeze-fracture replica labeling (SDS-FRL) has revealed their numbers, densities, and nanoscale clustering patterns in individual presynaptic active zones. The variation in these properties affects the coupling of VGCCs with calcium sensors on SVs, synaptic efficacy, and temporal precision of transmission. In this study, we summarize how the morphological parameters of CaV2 distribution obtained using SDS-FRL differ depending on the different types of synapses and could correspond to functional properties in synaptic transmission. acknowledgement: "This work was supported by the European Research Council advanced grant No. 694539 and the joint German-Austrian DFG and FWF project SYNABS (FWF: I-4638-B) to RS.\r\nThe authors thank Walter Kaufmann for his critical comments on the manuscript." article_number: '846615' article_processing_charge: No article_type: original author: - first_name: Kohgaku full_name: Eguchi, Kohgaku id: 2B7846DC-F248-11E8-B48F-1D18A9856A87 last_name: Eguchi orcid: 0000-0002-6170-2546 - first_name: Jacqueline-Claire full_name: Montanaro-Punzengruber, Jacqueline-Claire id: 3786AB44-F248-11E8-B48F-1D18A9856A87 last_name: Montanaro-Punzengruber - first_name: Elodie full_name: Le Monnier, Elodie id: 3B59276A-F248-11E8-B48F-1D18A9856A87 last_name: Le Monnier - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 citation: ama: Eguchi K, Montanaro-Punzengruber J-C, Le Monnier E, Shigemoto R. The number and distinct clustering patterns of voltage-gated Calcium channels in nerve terminals. Frontiers in Neuroanatomy. 2022;16. doi:10.3389/fnana.2022.846615 apa: Eguchi, K., Montanaro-Punzengruber, J.-C., Le Monnier, E., & Shigemoto, R. (2022). The number and distinct clustering patterns of voltage-gated Calcium channels in nerve terminals. Frontiers in Neuroanatomy. Frontiers. https://doi.org/10.3389/fnana.2022.846615 chicago: Eguchi, Kohgaku, Jacqueline-Claire Montanaro-Punzengruber, Elodie Le Monnier, and Ryuichi Shigemoto. “The Number and Distinct Clustering Patterns of Voltage-Gated Calcium Channels in Nerve Terminals.” Frontiers in Neuroanatomy. Frontiers, 2022. https://doi.org/10.3389/fnana.2022.846615. ieee: K. Eguchi, J.-C. Montanaro-Punzengruber, E. Le Monnier, and R. Shigemoto, “The number and distinct clustering patterns of voltage-gated Calcium channels in nerve terminals,” Frontiers in Neuroanatomy, vol. 16. Frontiers, 2022. ista: Eguchi K, Montanaro-Punzengruber J-C, Le Monnier E, Shigemoto R. 2022. The number and distinct clustering patterns of voltage-gated Calcium channels in nerve terminals. Frontiers in Neuroanatomy. 16, 846615. mla: Eguchi, Kohgaku, et al. “The Number and Distinct Clustering Patterns of Voltage-Gated Calcium Channels in Nerve Terminals.” Frontiers in Neuroanatomy, vol. 16, 846615, Frontiers, 2022, doi:10.3389/fnana.2022.846615. short: K. Eguchi, J.-C. Montanaro-Punzengruber, E. Le Monnier, R. Shigemoto, Frontiers in Neuroanatomy 16 (2022). date_created: 2022-03-20T23:01:39Z date_published: 2022-02-24T00:00:00Z date_updated: 2023-08-03T06:07:18Z day: '24' ddc: - '570' department: - _id: RySh doi: 10.3389/fnana.2022.846615 ec_funded: 1 external_id: isi: - '000766662700001' pmid: - '35280978' file: - access_level: open_access checksum: 51ec9b90e7da919e22c01a15489eaacd content_type: application/pdf creator: dernst date_created: 2022-03-21T09:41:19Z date_updated: 2022-03-21T09:41:19Z file_id: '10911' file_name: 2022_FrontiersNeuroanatomy_Eguchi.pdf file_size: 2416395 relation: main_file success: 1 file_date_updated: 2022-03-21T09:41:19Z has_accepted_license: '1' intvolume: ' 16' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 25CA28EA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694539' name: 'In situ analysis of single channel subunit composition in neurons: physiological implication in synaptic plasticity and behaviour' - _id: 05970B30-7A3F-11EA-A408-12923DDC885E grant_number: I04638 name: LGI1 antibody-induced pathophysiology in synapses publication: Frontiers in Neuroanatomy publication_identifier: eissn: - '16625129' publication_status: published publisher: Frontiers quality_controlled: '1' scopus_import: '1' status: public title: The number and distinct clustering patterns of voltage-gated Calcium channels in nerve terminals tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 16 year: '2022' ... --- _id: '10889' abstract: - lang: eng text: Genetically encoded tags have introduced extensive lines of application from purification of tagged proteins to their visualization at the single molecular, cellular, histological and whole-body levels. Combined with other rapidly developing technologies such as clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, proteomics, super-resolution microscopy and proximity labeling, a large variety of genetically encoded tags have been developed in the last two decades. In this review, I focus on the current status of tag development for electron microscopic (EM) visualization of proteins with metal particle labeling. Compared with conventional immunoelectron microscopy using gold particles, tag-mediated metal particle labeling has several advantages that could potentially improve the sensitivity, spatial and temporal resolution, and applicability to a wide range of proteins of interest (POIs). It may enable researchers to detect single molecules in situ, allowing the quantitative measurement of absolute numbers and exact localization patterns of POI in the ultrastructural context. Thus, genetically encoded tags for EM could revolutionize the field as green fluorescence protein did for light microscopy, although we still have many challenges to overcome before reaching this goal. acknowledgement: European Research Council Advanced Grant (694539 to R.S.). article_processing_charge: No article_type: original author: - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 citation: ama: Shigemoto R. Electron microscopic visualization of single molecules by tag-mediated metal particle labeling. Microscopy. 2022;71(Supplement_1):i72-i80. doi:10.1093/jmicro/dfab048 apa: Shigemoto, R. (2022). Electron microscopic visualization of single molecules by tag-mediated metal particle labeling. Microscopy. Oxford Academic. https://doi.org/10.1093/jmicro/dfab048 chicago: Shigemoto, Ryuichi. “Electron Microscopic Visualization of Single Molecules by Tag-Mediated Metal Particle Labeling.” Microscopy. Oxford Academic, 2022. https://doi.org/10.1093/jmicro/dfab048. ieee: R. Shigemoto, “Electron microscopic visualization of single molecules by tag-mediated metal particle labeling,” Microscopy, vol. 71, no. Supplement_1. Oxford Academic, pp. i72–i80, 2022. ista: Shigemoto R. 2022. Electron microscopic visualization of single molecules by tag-mediated metal particle labeling. Microscopy. 71(Supplement_1), i72–i80. mla: Shigemoto, Ryuichi. “Electron Microscopic Visualization of Single Molecules by Tag-Mediated Metal Particle Labeling.” Microscopy, vol. 71, no. Supplement_1, Oxford Academic, 2022, pp. i72–80, doi:10.1093/jmicro/dfab048. short: R. Shigemoto, Microscopy 71 (2022) i72–i80. date_created: 2022-03-20T23:01:39Z date_published: 2022-03-01T00:00:00Z date_updated: 2023-08-03T06:08:01Z day: '01' department: - _id: RySh doi: 10.1093/jmicro/dfab048 ec_funded: 1 external_id: isi: - '000768384100011' pmid: - '35275179' intvolume: ' 71' isi: 1 issue: Supplement_1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1093/jmicro/dfab048 month: '03' oa: 1 oa_version: Published Version page: i72-i80 pmid: 1 project: - _id: 25CA28EA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694539' name: 'In situ analysis of single channel subunit composition in neurons: physiological implication in synaptic plasticity and behaviour' publication: Microscopy publication_identifier: eissn: - 2050-5701 issn: - 2050-5698 publication_status: published publisher: Oxford Academic quality_controlled: '1' scopus_import: '1' status: public title: Electron microscopic visualization of single molecules by tag-mediated metal particle labeling type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 71 year: '2022' ... --- _id: '12212' abstract: - lang: eng text: Alzheimer’s disease (AD) is characterized by a reorganization of brain activity determining network hyperexcitability and loss of synaptic plasticity. Precisely, a dysfunction in metabotropic GABAB receptor signalling through G protein-gated inwardly rectifying K+ (GIRK or Kir3) channels on the hippocampus has been postulated. Thus, we determined the impact of amyloid-β (Aβ) pathology in GIRK channel density, subcellular distribution, and its association with GABAB receptors in hippocampal CA1 pyramidal neurons from the APP/PS1 mouse model using quantitative SDS-digested freeze-fracture replica labelling (SDS-FRL) and proximity ligation in situ assay (P-LISA). In wild type mice, single SDS-FRL detection revealed a similar dendritic gradient for GIRK1 and GIRK2 in CA1 pyramidal cells, with higher densities in spines, and GIRK3 showed a lower and uniform distribution. Double SDS-FRL showed a co-clustering of GIRK2 and GIRK1 in post- and presynaptic compartments, but not for GIRK2 and GIRK3. Likewise, double GABAB1 and GIRK2 SDS-FRL detection displayed a high degree of co-clustering in nanodomains (40–50 nm) mostly in spines and axon terminals. In APP/PS1 mice, the density of GIRK2 and GIRK1, but not for GIRK3, was significantly reduced along the neuronal surface of CA1 pyramidal cells and in axon terminals contacting them. Importantly, GABAB1 and GIRK2 co-clustering was not present in APP/PS1 mice. Similarly, P-LISA experiments revealed a significant reduction in GABAB1 and GIRK2 interaction on the hippocampus of this animal model. Overall, our results provide compelling evidence showing a significant reduction on the cell surface density of pre- and postsynaptic GIRK1 and GIRK2, but not GIRK3, and a decline in GABAB receptors and GIRK2 channels co-clustering in hippocampal pyramidal neurons from APP/PS1 mice, thus suggesting that a disruption in the GABAB receptor–GIRK channel membrane assembly causes dysregulation in the GABAB signalling via GIRK channels in this AD animal model. acknowledgement: "We thank Ms. Diane Latawiec for the English revision of the manuscript. Funding sources were the Spanish Ministerio de Economía y Competitividad, Junta de Comunidades de Castilla-La Mancha (Spain), and Life Science Innovation Center at University of Fukui. We thank Centres de Recerca de Catalunya (CERCA) Programme/Generalitat de Catalunya for IDIBELL institutional support. We thank Hitoshi Takagi and Takako Maegawa at the University of Fukui for their technical assistance on SDS-FRL experiments.\r\nThis work was supported by grants from the Spanish Ministerio de Economía y Competitividad (BFU2015-63769-R, RTI2018-095812-B-I00, and PID2021-125875OB-I00) and Junta de Comunidades de Castilla-La Mancha (SBPLY/17/180501/000229 and SBPLY/21/180501/000064) to RL, Life Science Innovation Center at University of Fukui and JSPS KAKENHI (Grant Numbers 16H04662, 19H03323, and 20H05058) to YF, and Margarita Salas fellowship from Ministerio de Universidades and Universidad de Castilla-La Mancha to AMB." article_number: '136' article_processing_charge: No article_type: original author: - first_name: Alejandro full_name: Martín-Belmonte, Alejandro last_name: Martín-Belmonte - first_name: Carolina full_name: Aguado, Carolina last_name: Aguado - first_name: Rocío full_name: Alfaro-Ruiz, Rocío last_name: Alfaro-Ruiz - first_name: Ana Esther full_name: Moreno-Martínez, Ana Esther last_name: Moreno-Martínez - first_name: Luis full_name: de la Ossa, Luis last_name: de la Ossa - first_name: Ester full_name: Aso, Ester last_name: Aso - first_name: Laura full_name: Gómez-Acero, Laura last_name: Gómez-Acero - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: Yugo full_name: Fukazawa, Yugo last_name: Fukazawa - first_name: Francisco full_name: Ciruela, Francisco last_name: Ciruela - first_name: Rafael full_name: Luján, Rafael last_name: Luján citation: ama: Martín-Belmonte A, Aguado C, Alfaro-Ruiz R, et al. Nanoscale alterations in GABAB receptors and GIRK channel organization on the hippocampus of APP/PS1 mice. Alzheimer’s Research & Therapy. 2022;14. doi:10.1186/s13195-022-01078-5 apa: Martín-Belmonte, A., Aguado, C., Alfaro-Ruiz, R., Moreno-Martínez, A. E., de la Ossa, L., Aso, E., … Luján, R. (2022). Nanoscale alterations in GABAB receptors and GIRK channel organization on the hippocampus of APP/PS1 mice. Alzheimer’s Research & Therapy. Springer Nature. https://doi.org/10.1186/s13195-022-01078-5 chicago: Martín-Belmonte, Alejandro, Carolina Aguado, Rocío Alfaro-Ruiz, Ana Esther Moreno-Martínez, Luis de la Ossa, Ester Aso, Laura Gómez-Acero, et al. “Nanoscale Alterations in GABAB Receptors and GIRK Channel Organization on the Hippocampus of APP/PS1 Mice.” Alzheimer’s Research & Therapy. Springer Nature, 2022. https://doi.org/10.1186/s13195-022-01078-5. ieee: A. Martín-Belmonte et al., “Nanoscale alterations in GABAB receptors and GIRK channel organization on the hippocampus of APP/PS1 mice,” Alzheimer’s Research & Therapy, vol. 14. Springer Nature, 2022. ista: Martín-Belmonte A, Aguado C, Alfaro-Ruiz R, Moreno-Martínez AE, de la Ossa L, Aso E, Gómez-Acero L, Shigemoto R, Fukazawa Y, Ciruela F, Luján R. 2022. Nanoscale alterations in GABAB receptors and GIRK channel organization on the hippocampus of APP/PS1 mice. Alzheimer’s Research & Therapy. 14, 136. mla: Martín-Belmonte, Alejandro, et al. “Nanoscale Alterations in GABAB Receptors and GIRK Channel Organization on the Hippocampus of APP/PS1 Mice.” Alzheimer’s Research & Therapy, vol. 14, 136, Springer Nature, 2022, doi:10.1186/s13195-022-01078-5. short: A. Martín-Belmonte, C. Aguado, R. Alfaro-Ruiz, A.E. Moreno-Martínez, L. de la Ossa, E. Aso, L. Gómez-Acero, R. Shigemoto, Y. Fukazawa, F. Ciruela, R. Luján, Alzheimer’s Research & Therapy 14 (2022). date_created: 2023-01-16T09:45:51Z date_published: 2022-09-21T00:00:00Z date_updated: 2023-08-04T09:23:10Z day: '21' ddc: - '570' department: - _id: RySh doi: 10.1186/s13195-022-01078-5 external_id: isi: - '000857985500001' file: - access_level: open_access checksum: 88e49715ad6a1abf0fdb27efd65368dc content_type: application/pdf creator: dernst date_created: 2023-01-27T07:53:18Z date_updated: 2023-01-27T07:53:18Z file_id: '12413' file_name: 2022_AlzheimersResearch_MartinBelmont.pdf file_size: 11013325 relation: main_file success: 1 file_date_updated: 2023-01-27T07:53:18Z has_accepted_license: '1' intvolume: ' 14' isi: 1 keyword: - Cognitive Neuroscience - Neurology (clinical) - Neurology language: - iso: eng month: '09' oa: 1 oa_version: Published Version publication: Alzheimer's Research & Therapy publication_identifier: issn: - 1758-9193 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Nanoscale alterations in GABAB receptors and GIRK channel organization on the hippocampus of APP/PS1 mice tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2022' ... --- _id: '7551' abstract: - lang: eng text: Novelty facilitates formation of memories. The detection of novelty and storage of contextual memories are both mediated by the hippocampus, yet the mechanisms that link these two functions remain to be defined. Dentate granule cells (GCs) of the dorsal hippocampus fire upon novelty exposure forming engrams of contextual memory. However, their key excitatory inputs from the entorhinal cortex are not responsive to novelty and are insufficient to make dorsal GCs fire reliably. Here we uncover a powerful glutamatergic pathway to dorsal GCs from ventral hippocampal mossy cells (MCs) that relays novelty, and is necessary and sufficient for driving dorsal GCs activation. Furthermore, manipulation of ventral MCs activity bidirectionally regulates novelty-induced contextual memory acquisition. Our results show that ventral MCs activity controls memory formation through an intra-hippocampal interaction mechanism gated by novelty. acknowledgement: We thank Peter Jonas and Peter Somogyi for critically reading the manuscript, Satoshi Kida for helpful discussion, Taijia Makinen for providing the Prox1-creERT2 mouse line, and Hiromu Yawo for the VAMP2-Venus construct. We also thank Vivek Jayaraman, Ph.D.; Rex A. Kerr, Ph.D.; Douglas S. Kim, Ph.D.; Loren L. Looger, Ph.D.; and Karel Svoboda, Ph.D. from the GENIE Project, Janelia Farm Research Campus, Howard Hughes Medical Institute for the viral constructs used for GCaMP6s expression. We also thank Jacqueline Montanaro, Vanessa Zheden, David Kleindienst, and Laura Burnett for technical assistance, as well as Robert Beattie for imaging assistance. This work was supported by a European Research Council Advanced Grant 694539 to R.S. article_processing_charge: No article_type: original author: - first_name: Felipe A full_name: Fredes Tolorza, Felipe A id: 384825DA-F248-11E8-B48F-1D18A9856A87 last_name: Fredes Tolorza - first_name: Maria A full_name: Silva Sifuentes, Maria A id: 371B3D6E-F248-11E8-B48F-1D18A9856A87 last_name: Silva Sifuentes - first_name: Peter full_name: Koppensteiner, Peter id: 3B8B25A8-F248-11E8-B48F-1D18A9856A87 last_name: Koppensteiner - first_name: Kenta full_name: Kobayashi, Kenta last_name: Kobayashi - first_name: Maximilian A full_name: Jösch, Maximilian A id: 2BD278E6-F248-11E8-B48F-1D18A9856A87 last_name: Jösch orcid: 0000-0002-3937-1330 - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 citation: ama: Fredes Tolorza FA, Silva Sifuentes MA, Koppensteiner P, Kobayashi K, Jösch MA, Shigemoto R. Ventro-dorsal hippocampal pathway gates novelty-induced contextual memory formation. Current Biology. 2021;31(1):P25-38.E5. doi:10.1016/j.cub.2020.09.074 apa: Fredes Tolorza, F. A., Silva Sifuentes, M. A., Koppensteiner, P., Kobayashi, K., Jösch, M. A., & Shigemoto, R. (2021). Ventro-dorsal hippocampal pathway gates novelty-induced contextual memory formation. Current Biology. Elsevier. https://doi.org/10.1016/j.cub.2020.09.074 chicago: Fredes Tolorza, Felipe A, Maria A Silva Sifuentes, Peter Koppensteiner, Kenta Kobayashi, Maximilian A Jösch, and Ryuichi Shigemoto. “Ventro-Dorsal Hippocampal Pathway Gates Novelty-Induced Contextual Memory Formation.” Current Biology. Elsevier, 2021. https://doi.org/10.1016/j.cub.2020.09.074. ieee: F. A. Fredes Tolorza, M. A. Silva Sifuentes, P. Koppensteiner, K. Kobayashi, M. A. Jösch, and R. Shigemoto, “Ventro-dorsal hippocampal pathway gates novelty-induced contextual memory formation,” Current Biology, vol. 31, no. 1. Elsevier, p. P25–38.E5, 2021. ista: Fredes Tolorza FA, Silva Sifuentes MA, Koppensteiner P, Kobayashi K, Jösch MA, Shigemoto R. 2021. Ventro-dorsal hippocampal pathway gates novelty-induced contextual memory formation. Current Biology. 31(1), P25–38.E5. mla: Fredes Tolorza, Felipe A., et al. “Ventro-Dorsal Hippocampal Pathway Gates Novelty-Induced Contextual Memory Formation.” Current Biology, vol. 31, no. 1, Elsevier, 2021, p. P25–38.E5, doi:10.1016/j.cub.2020.09.074. short: F.A. Fredes Tolorza, M.A. Silva Sifuentes, P. Koppensteiner, K. Kobayashi, M.A. Jösch, R. Shigemoto, Current Biology 31 (2021) P25–38.E5. date_created: 2020-02-28T10:56:18Z date_published: 2021-01-11T00:00:00Z date_updated: 2023-08-04T10:47:11Z day: '11' ddc: - '570' department: - _id: MaJö - _id: RySh doi: 10.1016/j.cub.2020.09.074 ec_funded: 1 external_id: isi: - '000614361000020' file: - access_level: open_access checksum: b7b9c8bc84a08befce365c675229a7d1 content_type: application/pdf creator: dernst date_created: 2020-10-19T13:31:28Z date_updated: 2020-10-19T13:31:28Z file_id: '8678' file_name: 2021_CurrentBiology_Fredes.pdf file_size: 4915964 relation: main_file success: 1 file_date_updated: 2020-10-19T13:31:28Z has_accepted_license: '1' intvolume: ' 31' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: P25-38.E5 project: - _id: 25CA28EA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694539' name: 'In situ analysis of single channel subunit composition in neurons: physiological implication in synaptic plasticity and behaviour' publication: Current Biology publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/remembering-novelty/ status: public title: Ventro-dorsal hippocampal pathway gates novelty-induced contextual memory formation tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 31 year: '2021' ... --- _id: '9330' abstract: - lang: eng text: In nerve cells the genes encoding for α2δ subunits of voltage-gated calcium channels have been linked to synaptic functions and neurological disease. Here we show that α2δ subunits are essential for the formation and organization of glutamatergic synapses. Using a cellular α2δ subunit triple-knockout/knockdown model, we demonstrate a failure in presynaptic differentiation evidenced by defective presynaptic calcium channel clustering and calcium influx, smaller presynaptic active zones, and a strongly reduced accumulation of presynaptic vesicle-associated proteins (synapsin and vGLUT). The presynaptic defect is associated with the downscaling of postsynaptic AMPA receptors and the postsynaptic density. The role of α2δ isoforms as synaptic organizers is highly redundant, as each individual α2δ isoform can rescue presynaptic calcium channel trafficking and expression of synaptic proteins. Moreover, α2δ-2 and α2δ-3 with mutated metal ion-dependent adhesion sites can fully rescue presynaptic synapsin expression but only partially calcium channel trafficking, suggesting that the regulatory role of α2δ subunits is independent from its role as a calcium channel subunit. Our findings influence the current view on excitatory synapse formation. First, our study suggests that postsynaptic differentiation is secondary to presynaptic differentiation. Second, the dependence of presynaptic differentiation on α2δ implicates α2δ subunits as potential nucleation points for the organization of synapses. Finally, our results suggest that α2δ subunits act as transsynaptic organizers of glutamatergic synapses, thereby aligning the synaptic active zone with the postsynaptic density. acknowledged_ssus: - _id: EM-Fac acknowledgement: "We thank Arnold Schwartz for providing α2δ-1 knockout mice; Ariane Benedetti, Sabine Baumgartner, Sandra Demetz, and Irene Mahlknecht for technical support; Nadine Ortner and Andreas Lieb for electrophysiological experiments; the team of the Electron Microscopy Facility at the Institute of Science and Technology Austria for technical support related to ultrastructural analysis; Hermann Dietrich and Anja Beierfuß and her team for animal care; Jutta Engel and Jörg Striessnig for critical discussions; and Bruno Benedetti and Bernhard Flucher for critical discussions and reading the manuscript. This study was supported by Austrian Science Fund Grants P24079, F44060, F44150, and DOC30-B30 (to G.J.O.) and T855 (to M.C.), European Research Council Grant AdG 694539 (to R.S.), Deutsche Forschungsgemeinschaft\r\nGrant SFB1348-TP A03 (to M.M.), and Interdisziplinäre Zentrum für Klinische Forschung Münster Grant Mi3/004/19 (to M.M.). This work is part of the PhD theses of C.L.S., S.M.G., and C.A." article_processing_charge: No article_type: original author: - first_name: Clemens L. full_name: Schöpf, Clemens L. last_name: Schöpf - first_name: Cornelia full_name: Ablinger, Cornelia last_name: Ablinger - first_name: Stefanie M. full_name: Geisler, Stefanie M. last_name: Geisler - first_name: Ruslan I. full_name: Stanika, Ruslan I. last_name: Stanika - first_name: Marta full_name: Campiglio, Marta last_name: Campiglio - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Benedikt full_name: Nimmervoll, Benedikt last_name: Nimmervoll - first_name: Bettina full_name: Schlick, Bettina last_name: Schlick - first_name: Johannes full_name: Brockhaus, Johannes last_name: Brockhaus - first_name: Markus full_name: Missler, Markus last_name: Missler - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: Gerald J. full_name: Obermair, Gerald J. last_name: Obermair citation: ama: Schöpf CL, Ablinger C, Geisler SM, et al. Presynaptic α2δ subunits are key organizers of glutamatergic synapses. PNAS. 2021;118(14). doi:10.1073/pnas.1920827118 apa: Schöpf, C. L., Ablinger, C., Geisler, S. M., Stanika, R. I., Campiglio, M., Kaufmann, W., … Obermair, G. J. (2021). Presynaptic α2δ subunits are key organizers of glutamatergic synapses. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1920827118 chicago: Schöpf, Clemens L., Cornelia Ablinger, Stefanie M. Geisler, Ruslan I. Stanika, Marta Campiglio, Walter Kaufmann, Benedikt Nimmervoll, et al. “Presynaptic Α2δ Subunits Are Key Organizers of Glutamatergic Synapses.” PNAS. National Academy of Sciences, 2021. https://doi.org/10.1073/pnas.1920827118. ieee: C. L. Schöpf et al., “Presynaptic α2δ subunits are key organizers of glutamatergic synapses,” PNAS, vol. 118, no. 14. National Academy of Sciences, 2021. ista: Schöpf CL, Ablinger C, Geisler SM, Stanika RI, Campiglio M, Kaufmann W, Nimmervoll B, Schlick B, Brockhaus J, Missler M, Shigemoto R, Obermair GJ. 2021. Presynaptic α2δ subunits are key organizers of glutamatergic synapses. PNAS. 118(14). mla: Schöpf, Clemens L., et al. “Presynaptic Α2δ Subunits Are Key Organizers of Glutamatergic Synapses.” PNAS, vol. 118, no. 14, National Academy of Sciences, 2021, doi:10.1073/pnas.1920827118. short: C.L. Schöpf, C. Ablinger, S.M. Geisler, R.I. Stanika, M. Campiglio, W. Kaufmann, B. Nimmervoll, B. Schlick, J. Brockhaus, M. Missler, R. Shigemoto, G.J. Obermair, PNAS 118 (2021). date_created: 2021-04-18T22:01:40Z date_published: 2021-04-06T00:00:00Z date_updated: 2023-08-08T13:08:47Z day: '06' ddc: - '570' department: - _id: EM-Fac - _id: RySh doi: 10.1073/pnas.1920827118 ec_funded: 1 external_id: isi: - '000637398300002' file: - access_level: open_access checksum: dd014f68ae9d7d8d8fc4139a24e04506 content_type: application/pdf creator: dernst date_created: 2021-04-19T10:10:56Z date_updated: 2021-04-19T10:10:56Z file_id: '9340' file_name: 2021_PNAS_Schoepf.pdf file_size: 2603911 relation: main_file success: 1 file_date_updated: 2021-04-19T10:10:56Z has_accepted_license: '1' intvolume: ' 118' isi: 1 issue: '14' language: - iso: eng month: '04' oa: 1 oa_version: Published Version project: - _id: 25CA28EA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694539' name: 'In situ analysis of single channel subunit composition in neurons: physiological implication in synaptic plasticity and behaviour' publication: PNAS publication_identifier: eissn: - 1091-6490 publication_status: published publisher: National Academy of Sciences quality_controlled: '1' scopus_import: '1' status: public title: Presynaptic α2δ subunits are key organizers of glutamatergic synapses tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 118 year: '2021' ... --- _id: '9641' abstract: - lang: eng text: At the encounter with a novel environment, contextual memory formation is greatly enhanced, accompanied with increased arousal and active exploration. Although this phenomenon has been widely observed in animal and human daily life, how the novelty in the environment is detected and contributes to contextual memory formation has lately started to be unveiled. The hippocampus has been studied for many decades for its largely known roles in encoding spatial memory, and a growing body of evidence indicates a differential involvement of dorsal and ventral hippocampal divisions in novelty detection. In this brief review article, we discuss the recent findings of the role of mossy cells in the ventral hippocampal moiety in novelty detection and put them in perspective with other novelty-related pathways in the hippocampus. We propose a mechanism for novelty-driven memory acquisition in the dentate gyrus by the direct projection of ventral mossy cells to dorsal dentate granule cells. By this projection, the ventral hippocampus sends novelty signals to the dorsal hippocampus, opening a gate for memory encoding in dentate granule cells based on information coming from the entorhinal cortex. We conclude that, contrary to the presently accepted functional independence, the dorsal and ventral hippocampi cooperate to link the novelty and contextual information, and this dorso-ventral interaction is crucial for the novelty-dependent memory formation. acknowledgement: This work was supported by a European Research Council Advanced Grant 694539 to Ryuichi Shigemoto. article_number: '107486' article_processing_charge: No article_type: original author: - first_name: Felipe full_name: Fredes, Felipe last_name: Fredes - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 citation: ama: Fredes F, Shigemoto R. The role of hippocampal mossy cells in novelty detection. Neurobiology of Learning and Memory. 2021;183. doi:10.1016/j.nlm.2021.107486 apa: Fredes, F., & Shigemoto, R. (2021). The role of hippocampal mossy cells in novelty detection. Neurobiology of Learning and Memory. Elsevier. https://doi.org/10.1016/j.nlm.2021.107486 chicago: Fredes, Felipe, and Ryuichi Shigemoto. “The Role of Hippocampal Mossy Cells in Novelty Detection.” Neurobiology of Learning and Memory. Elsevier, 2021. https://doi.org/10.1016/j.nlm.2021.107486. ieee: F. Fredes and R. Shigemoto, “The role of hippocampal mossy cells in novelty detection,” Neurobiology of Learning and Memory, vol. 183. Elsevier, 2021. ista: Fredes F, Shigemoto R. 2021. The role of hippocampal mossy cells in novelty detection. Neurobiology of Learning and Memory. 183, 107486. mla: Fredes, Felipe, and Ryuichi Shigemoto. “The Role of Hippocampal Mossy Cells in Novelty Detection.” Neurobiology of Learning and Memory, vol. 183, 107486, Elsevier, 2021, doi:10.1016/j.nlm.2021.107486. short: F. Fredes, R. Shigemoto, Neurobiology of Learning and Memory 183 (2021). date_created: 2021-07-11T22:01:16Z date_published: 2021-06-30T00:00:00Z date_updated: 2023-08-10T14:10:37Z day: '30' ddc: - '610' department: - _id: RySh doi: 10.1016/j.nlm.2021.107486 ec_funded: 1 external_id: isi: - '000677694900004' pmid: - '34214666' file: - access_level: open_access checksum: 8e8298a9e8c7df146ad23f32c2a63929 content_type: application/pdf creator: cziletti date_created: 2021-07-19T13:46:06Z date_updated: 2021-07-19T13:46:06Z file_id: '9694' file_name: 2021_NeurobLearnMemory_Fredes.pdf file_size: 1994793 relation: main_file success: 1 file_date_updated: 2021-07-19T13:46:06Z has_accepted_license: '1' intvolume: ' 183' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 25CA28EA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694539' name: 'In situ analysis of single channel subunit composition in neurons: physiological implication in synaptic plasticity and behaviour' publication: Neurobiology of Learning and Memory publication_identifier: eissn: - '10959564' issn: - '10747427' publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: The role of hippocampal mossy cells in novelty detection tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 183 year: '2021' ... --- _id: '10051' abstract: - lang: eng text: 'Rab-interacting molecule (RIM)-binding protein 2 (BP2) is a multidomain protein of the presynaptic active zone (AZ). By binding to RIM, bassoon (Bsn), and voltage-gated Ca2+ channels (CaV), it is considered to be a central organizer of the topography of CaV and release sites of synaptic vesicles (SVs) at the AZ. Here, we used RIM-BP2 knock-out (KO) mice and their wild-type (WT) littermates of either sex to investigate the role of RIM-BP2 at the endbulb of Held synapse of auditory nerve fibers (ANFs) with bushy cells (BCs) of the cochlear nucleus, a fast relay of the auditory pathway with high release probability. Disruption of RIM-BP2 lowered release probability altering short-term plasticity and reduced evoked EPSCs. Analysis of SV pool dynamics during high-frequency train stimulation indicated a reduction of SVs with high release probability but an overall normal size of the readily releasable SV pool (RRP). The Ca2+-dependent fast component of SV replenishment after RRP depletion was slowed. Ultrastructural analysis by superresolution light and electron microscopy revealed an impaired topography of presynaptic CaV and a reduction of docked and membrane-proximal SVs at the AZ. We conclude that RIM-BP2 organizes the topography of CaV, and promotes SV tethering and docking. This way RIM-BP2 is critical for establishing a high initial release probability as required to reliably signal sound onset information that we found to be degraded in BCs of RIM-BP2-deficient mice in vivo. SIGNIFICANCE STATEMENT: Rab-interacting molecule (RIM)-binding proteins (BPs) are key organizers of the active zone (AZ). Using a multidisciplinary approach to the calyceal endbulb of Held synapse that transmits auditory information at rates of up to hundreds of Hertz with submillisecond precision we demonstrate a requirement for RIM-BP2 for normal auditory signaling. Endbulb synapses lacking RIM-BP2 show a reduced release probability despite normal whole-terminal Ca2+ influx and abundance of the key priming protein Munc13-1, a reduced rate of SV replenishment, as well as an altered topography of voltage-gated (CaV)2.1 Ca2+ channels, and fewer docked and membrane proximal synaptic vesicles (SVs). This hampers transmission of sound onset information likely affecting downstream neural computations such as of sound localization.' acknowledgement: This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the Collaborative Sensory Research Center 1286 [to C.W. (A4) and T.M. (B5)] and under Germany’s Excellence Strategy Grant EXC 2067/1-390729940. We thank S. Gerke, A.J. Goldak, and C. Senger-Freitag for expert technical assistance; G. Hoch for developing image analysis routines; and S. Chepurwar and N. Strenzke for technical support and discussion regarding in vivo experiments. We also thank Dr. Christian Rosenmund, Dr. Katharina Grauel, and Dr. Stephan Sigrist for providing RIM-BP2 KO mice and Dr. Masahiko Watanabe for providing the anti-neurexin-antibody, and Dr. Toshihisa Ohtsuka for the anti-ELKS-antibody. J. Neef for help with the STED imaging and image analysis; E. Neher and S. Rizzoli for discussion and comments on the manuscript; K. Eguchi for help with the statistical analysis; and C. H. Huang and J. Neef for constant support and scientific discussion. article_processing_charge: No article_type: original author: - first_name: Tanvi full_name: Butola, Tanvi last_name: Butola - first_name: Theocharis full_name: Alvanos, Theocharis last_name: Alvanos - first_name: Anika full_name: Hintze, Anika last_name: Hintze - first_name: Peter full_name: Koppensteiner, Peter id: 3B8B25A8-F248-11E8-B48F-1D18A9856A87 last_name: Koppensteiner orcid: 0000-0002-3509-1948 - first_name: David full_name: Kleindienst, David id: 42E121A4-F248-11E8-B48F-1D18A9856A87 last_name: Kleindienst - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: Carolin full_name: Wichmann, Carolin last_name: Wichmann - first_name: Tobias full_name: Moser, Tobias last_name: Moser citation: ama: Butola T, Alvanos T, Hintze A, et al. RIM-binding protein 2 organizes Ca21 channel topography and regulates release probability and vesicle replenishment at a fast central synapse. Journal of Neuroscience. 2021;41(37):7742-7767. doi:10.1523/JNEUROSCI.0586-21.2021 apa: Butola, T., Alvanos, T., Hintze, A., Koppensteiner, P., Kleindienst, D., Shigemoto, R., … Moser, T. (2021). RIM-binding protein 2 organizes Ca21 channel topography and regulates release probability and vesicle replenishment at a fast central synapse. Journal of Neuroscience. Society for Neuroscience. https://doi.org/10.1523/JNEUROSCI.0586-21.2021 chicago: Butola, Tanvi, Theocharis Alvanos, Anika Hintze, Peter Koppensteiner, David Kleindienst, Ryuichi Shigemoto, Carolin Wichmann, and Tobias Moser. “RIM-Binding Protein 2 Organizes Ca21 Channel Topography and Regulates Release Probability and Vesicle Replenishment at a Fast Central Synapse.” Journal of Neuroscience. Society for Neuroscience, 2021. https://doi.org/10.1523/JNEUROSCI.0586-21.2021. ieee: T. Butola et al., “RIM-binding protein 2 organizes Ca21 channel topography and regulates release probability and vesicle replenishment at a fast central synapse,” Journal of Neuroscience, vol. 41, no. 37. Society for Neuroscience, pp. 7742–7767, 2021. ista: Butola T, Alvanos T, Hintze A, Koppensteiner P, Kleindienst D, Shigemoto R, Wichmann C, Moser T. 2021. RIM-binding protein 2 organizes Ca21 channel topography and regulates release probability and vesicle replenishment at a fast central synapse. Journal of Neuroscience. 41(37), 7742–7767. mla: Butola, Tanvi, et al. “RIM-Binding Protein 2 Organizes Ca21 Channel Topography and Regulates Release Probability and Vesicle Replenishment at a Fast Central Synapse.” Journal of Neuroscience, vol. 41, no. 37, Society for Neuroscience, 2021, pp. 7742–67, doi:10.1523/JNEUROSCI.0586-21.2021. short: T. Butola, T. Alvanos, A. Hintze, P. Koppensteiner, D. Kleindienst, R. Shigemoto, C. Wichmann, T. Moser, Journal of Neuroscience 41 (2021) 7742–7767. date_created: 2021-09-27T14:33:13Z date_published: 2021-09-15T00:00:00Z date_updated: 2023-08-14T06:56:30Z day: '15' ddc: - '570' department: - _id: RySh doi: 10.1523/JNEUROSCI.0586-21.2021 external_id: isi: - '000752287700005' pmid: - '34353898' file: - access_level: open_access checksum: 769ab627c7355a50ccfd445e43a5f351 content_type: application/pdf creator: dernst date_created: 2022-05-31T09:10:15Z date_updated: 2022-05-31T09:10:15Z file_id: '11423' file_name: 2021_JourNeuroscience_Butola.pdf file_size: 11571961 relation: main_file success: 1 file_date_updated: 2022-05-31T09:10:15Z has_accepted_license: '1' intvolume: ' 41' isi: 1 issue: '37' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 7742-7767 pmid: 1 publication: Journal of Neuroscience publication_identifier: eissn: - 1529-2401 issn: - 0270-6474 publication_status: published publisher: Society for Neuroscience quality_controlled: '1' scopus_import: '1' status: public title: RIM-binding protein 2 organizes Ca21 channel topography and regulates release probability and vesicle replenishment at a fast central synapse tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 41 year: '2021' ... --- _id: '10403' abstract: - lang: eng text: Synaptic transmission, connectivity, and dendritic morphology mature in parallel during brain development and are often disrupted in neurodevelopmental disorders. Yet how these changes influence the neuronal computations necessary for normal brain function are not well understood. To identify cellular mechanisms underlying the maturation of synaptic integration in interneurons, we combined patch-clamp recordings of excitatory inputs in mouse cerebellar stellate cells (SCs), three-dimensional reconstruction of SC morphology with excitatory synapse location, and biophysical modeling. We found that postnatal maturation of postsynaptic strength was homogeneously reduced along the somatodendritic axis, but dendritic integration was always sublinear. However, dendritic branching increased without changes in synapse density, leading to a substantial gain in distal inputs. Thus, changes in synapse distribution, rather than dendrite cable properties, are the dominant mechanism underlying the maturation of neuronal computation. These mechanisms favor the emergence of a spatially compartmentalized two-stage integration model promoting location-dependent integration within dendritic subunits. acknowledgement: This study was supported by the Centre National de la Recherche Scientifique and the Agence Nationale de la Recherche (ANR-13-BSV4-00166, to LC and DAD). TA was supported by fellowships from the Fondation pour la Recherche Medicale and the Swedish Research Council. We thank Dmitry Ershov from the Image Analysis Hub of the Institut Pasteur, Elodie Le Monnier, Elena Hollergschwandtner, Vanessa Zheden, and Corinne Nantet for technical support and Haining Zhong for providing the Venus-tagged PSD95 mouse line. We would like to thank Alberto Bacci, Ann Lohof, and Nelson Rebola for comments on the manuscript. article_number: e65954 article_processing_charge: No article_type: original author: - first_name: Celia full_name: Biane, Celia last_name: Biane - first_name: Florian full_name: Rückerl, Florian last_name: Rückerl - first_name: Therese full_name: Abrahamsson, Therese last_name: Abrahamsson - first_name: Cécile full_name: Saint-Cloment, Cécile last_name: Saint-Cloment - first_name: Jean full_name: Mariani, Jean last_name: Mariani - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: David A. full_name: Digregorio, David A. last_name: Digregorio - first_name: Rachel M. full_name: Sherrard, Rachel M. last_name: Sherrard - first_name: Laurence full_name: Cathala, Laurence last_name: Cathala citation: ama: Biane C, Rückerl F, Abrahamsson T, et al. Developmental emergence of two-stage nonlinear synaptic integration in cerebellar interneurons. eLife. 2021;10. doi:10.7554/eLife.65954 apa: Biane, C., Rückerl, F., Abrahamsson, T., Saint-Cloment, C., Mariani, J., Shigemoto, R., … Cathala, L. (2021). Developmental emergence of two-stage nonlinear synaptic integration in cerebellar interneurons. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.65954 chicago: Biane, Celia, Florian Rückerl, Therese Abrahamsson, Cécile Saint-Cloment, Jean Mariani, Ryuichi Shigemoto, David A. Digregorio, Rachel M. Sherrard, and Laurence Cathala. “Developmental Emergence of Two-Stage Nonlinear Synaptic Integration in Cerebellar Interneurons.” ELife. eLife Sciences Publications, 2021. https://doi.org/10.7554/eLife.65954. ieee: C. Biane et al., “Developmental emergence of two-stage nonlinear synaptic integration in cerebellar interneurons,” eLife, vol. 10. eLife Sciences Publications, 2021. ista: Biane C, Rückerl F, Abrahamsson T, Saint-Cloment C, Mariani J, Shigemoto R, Digregorio DA, Sherrard RM, Cathala L. 2021. Developmental emergence of two-stage nonlinear synaptic integration in cerebellar interneurons. eLife. 10, e65954. mla: Biane, Celia, et al. “Developmental Emergence of Two-Stage Nonlinear Synaptic Integration in Cerebellar Interneurons.” ELife, vol. 10, e65954, eLife Sciences Publications, 2021, doi:10.7554/eLife.65954. short: C. Biane, F. Rückerl, T. Abrahamsson, C. Saint-Cloment, J. Mariani, R. Shigemoto, D.A. Digregorio, R.M. Sherrard, L. Cathala, ELife 10 (2021). date_created: 2021-12-05T23:01:40Z date_published: 2021-11-03T00:00:00Z date_updated: 2023-08-14T13:12:07Z day: '03' ddc: - '570' department: - _id: RySh doi: 10.7554/eLife.65954 external_id: isi: - '000715789500001' file: - access_level: open_access checksum: c7c33c3319428d56e332e22349c50ed3 content_type: application/pdf creator: cchlebak date_created: 2021-12-10T08:31:41Z date_updated: 2021-12-10T08:31:41Z file_id: '10528' file_name: 2021_eLife_Biane.pdf file_size: 13131322 relation: main_file success: 1 file_date_updated: 2021-12-10T08:31:41Z has_accepted_license: '1' intvolume: ' 10' isi: 1 language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: eLife publication_identifier: eissn: - 2050-084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: Developmental emergence of two-stage nonlinear synaptic integration in cerebellar interneurons tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 10 year: '2021' ... --- _id: '9437' abstract: - lang: eng text: The synaptic connection from medial habenula (MHb) to interpeduncular nucleus (IPN) is critical for emotion-related behaviors and uniquely expresses R-type Ca2+ channels (Cav2.3) and auxiliary GABAB receptor (GBR) subunits, the K+-channel tetramerization domain-containing proteins (KCTDs). Activation of GBRs facilitates or inhibits transmitter release from MHb terminals depending on the IPN subnucleus, but the role of KCTDs is unknown. We therefore examined the localization and function of Cav2.3, GBRs, and KCTDs in this pathway in mice. We show in heterologous cells that KCTD8 and KCTD12b directly bind to Cav2.3 and that KCTD8 potentiates Cav2.3 currents in the absence of GBRs. In the rostral IPN, KCTD8, KCTD12b, and Cav2.3 co-localize at the presynaptic active zone. Genetic deletion indicated a bidirectional modulation of Cav2.3-mediated release by these KCTDs with a compensatory increase of KCTD8 in the active zone in KCTD12b-deficient mice. The interaction of Cav2.3 with KCTDs therefore scales synaptic strength independent of GBR activation. acknowledgement: We are grateful to Akari Hagiwara and Toshihisa Ohtsuka for CAST antibody, and Masahiko Watanabe for neurexin antibody. We thank David Adams for kindly providing the stable Cav2.3 cell line. Cav2.3 KO mice were kindly provided by Tsutomu Tanabe. This project has received funding from the European Research Council (ERC) and European Commission (EC), under the European Union’s Horizon 2020 research and innovation programme (ERC grant agreement no. 694539 to Ryuichi Shigemoto, no. 692692 to Peter Jonas, and the Marie Skłodowska-Curie grant agreement no. 665385 to Cihan Önal), the Swiss National Science Foundation Grant 31003A-172881 to Bernhard Bettler and Deutsche Forschungsgemeinschaft (For 2143) and BIOSS-2 to Akos Kulik. article_number: e68274 article_processing_charge: No article_type: original author: - first_name: Pradeep full_name: Bhandari, Pradeep id: 45EDD1BC-F248-11E8-B48F-1D18A9856A87 last_name: Bhandari orcid: 0000-0003-0863-4481 - first_name: David H full_name: Vandael, David H id: 3AE48E0A-F248-11E8-B48F-1D18A9856A87 last_name: Vandael orcid: 0000-0001-7577-1676 - first_name: Diego full_name: Fernández-Fernández, Diego last_name: Fernández-Fernández - first_name: Thorsten full_name: Fritzius, Thorsten last_name: Fritzius - first_name: David full_name: Kleindienst, David id: 42E121A4-F248-11E8-B48F-1D18A9856A87 last_name: Kleindienst - first_name: Hüseyin C full_name: Önal, Hüseyin C id: 4659D740-F248-11E8-B48F-1D18A9856A87 last_name: Önal orcid: 0000-0002-2771-2011 - first_name: Jacqueline-Claire full_name: Montanaro-Punzengruber, Jacqueline-Claire id: 3786AB44-F248-11E8-B48F-1D18A9856A87 last_name: Montanaro-Punzengruber - first_name: Martin full_name: Gassmann, Martin last_name: Gassmann - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 - first_name: Akos full_name: Kulik, Akos last_name: Kulik - first_name: Bernhard full_name: Bettler, Bernhard last_name: Bettler - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: Peter full_name: Koppensteiner, Peter id: 3B8B25A8-F248-11E8-B48F-1D18A9856A87 last_name: Koppensteiner orcid: 0000-0002-3509-1948 citation: ama: Bhandari P, Vandael DH, Fernández-Fernández D, et al. GABAB receptor auxiliary subunits modulate Cav2.3-mediated release from medial habenula terminals. eLife. 2021;10. doi:10.7554/ELIFE.68274 apa: Bhandari, P., Vandael, D. H., Fernández-Fernández, D., Fritzius, T., Kleindienst, D., Önal, H. C., … Koppensteiner, P. (2021). GABAB receptor auxiliary subunits modulate Cav2.3-mediated release from medial habenula terminals. ELife. eLife Sciences Publications. https://doi.org/10.7554/ELIFE.68274 chicago: Bhandari, Pradeep, David H Vandael, Diego Fernández-Fernández, Thorsten Fritzius, David Kleindienst, Hüseyin C Önal, Jacqueline-Claire Montanaro-Punzengruber, et al. “GABAB Receptor Auxiliary Subunits Modulate Cav2.3-Mediated Release from Medial Habenula Terminals.” ELife. eLife Sciences Publications, 2021. https://doi.org/10.7554/ELIFE.68274. ieee: P. Bhandari et al., “GABAB receptor auxiliary subunits modulate Cav2.3-mediated release from medial habenula terminals,” eLife, vol. 10. eLife Sciences Publications, 2021. ista: Bhandari P, Vandael DH, Fernández-Fernández D, Fritzius T, Kleindienst D, Önal HC, Montanaro-Punzengruber J-C, Gassmann M, Jonas PM, Kulik A, Bettler B, Shigemoto R, Koppensteiner P. 2021. GABAB receptor auxiliary subunits modulate Cav2.3-mediated release from medial habenula terminals. eLife. 10, e68274. mla: Bhandari, Pradeep, et al. “GABAB Receptor Auxiliary Subunits Modulate Cav2.3-Mediated Release from Medial Habenula Terminals.” ELife, vol. 10, e68274, eLife Sciences Publications, 2021, doi:10.7554/ELIFE.68274. short: P. Bhandari, D.H. Vandael, D. Fernández-Fernández, T. Fritzius, D. Kleindienst, H.C. Önal, J.-C. Montanaro-Punzengruber, M. Gassmann, P.M. Jonas, A. Kulik, B. Bettler, R. Shigemoto, P. Koppensteiner, ELife 10 (2021). date_created: 2021-05-30T22:01:23Z date_published: 2021-04-29T00:00:00Z date_updated: 2024-03-27T23:30:30Z day: '29' ddc: - '570' department: - _id: RySh - _id: PeJo doi: 10.7554/ELIFE.68274 ec_funded: 1 external_id: isi: - '000651761700001' file: - access_level: open_access checksum: 6ebcb79999f889766f7cd79ee134ad28 content_type: application/pdf creator: cziletti date_created: 2021-05-31T09:43:09Z date_updated: 2021-05-31T09:43:09Z file_id: '9440' file_name: 2021_eLife_Bhandari.pdf file_size: 8174719 relation: main_file success: 1 file_date_updated: 2021-05-31T09:43:09Z has_accepted_license: '1' intvolume: ' 10' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version project: - _id: 25CA28EA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694539' name: 'In situ analysis of single channel subunit composition in neurons: physiological implication in synaptic plasticity and behaviour' - _id: 25B7EB9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '692692' name: Biophysics and circuit function of a giant cortical glumatergic synapse - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: eLife publication_identifier: eissn: - 2050-084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' related_material: link: - relation: earlier_version url: https://doi.org/10.1101/2020.04.16.045112 record: - id: '9562' relation: dissertation_contains status: public scopus_import: '1' status: public title: GABAB receptor auxiliary subunits modulate Cav2.3-mediated release from medial habenula terminals tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 10 year: '2021' ... --- _id: '9756' abstract: - lang: eng text: High-resolution visualization and quantification of membrane proteins contribute to the understanding of their functions and the roles they play in physiological and pathological conditions. Sodium dodecyl sulfate-digested freeze-fracture replica labeling (SDS-FRL) is a powerful electron microscopy method to study quantitatively the two-dimensional distribution of transmembrane proteins and their tightly associated proteins. During treatment with SDS, intracellular organelles and proteins not anchored to the replica are dissolved, whereas integral membrane proteins captured and stabilized by carbon/platinum deposition remain on the replica. Their intra- and extracellular domains become exposed on the surface of the replica, facilitating the accessibility of antibodies and, therefore, providing higher labeling efficiency than those obtained with other immunoelectron microscopy techniques. In this chapter, we describe the protocols of SDS-FRL adapted for mammalian brain samples, and optimization of the SDS treatment to increase the labeling efficiency for quantification of Cav2.1, the alpha subunit of P/Q-type voltage-dependent calcium channels utilizing deep learning algorithms. acknowledgement: This work was supported by the European Union (European Research Council Advanced grant no. 694539 and Human Brain Project Ref. 720270 to R. S.) and the Austrian Academy of Sciences (DOC fellowship to D.K.). alternative_title: - Neuromethods article_processing_charge: No author: - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: David full_name: Kleindienst, David id: 42E121A4-F248-11E8-B48F-1D18A9856A87 last_name: Kleindienst - first_name: Harumi full_name: Harada, Harumi id: 2E55CDF2-F248-11E8-B48F-1D18A9856A87 last_name: Harada orcid: 0000-0001-7429-7896 - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 citation: ama: 'Kaufmann W, Kleindienst D, Harada H, Shigemoto R. High-Resolution localization and quantitation of membrane proteins by SDS-digested freeze-fracture replica labeling (SDS-FRL). In: Receptor and Ion Channel Detection in the Brain. Vol 169. Neuromethods. New York: Humana; 2021:267-283. doi:10.1007/978-1-0716-1522-5_19' apa: 'Kaufmann, W., Kleindienst, D., Harada, H., & Shigemoto, R. (2021). High-Resolution localization and quantitation of membrane proteins by SDS-digested freeze-fracture replica labeling (SDS-FRL). In Receptor and Ion Channel Detection in the Brain (Vol. 169, pp. 267–283). New York: Humana. https://doi.org/10.1007/978-1-0716-1522-5_19' chicago: 'Kaufmann, Walter, David Kleindienst, Harumi Harada, and Ryuichi Shigemoto. “High-Resolution Localization and Quantitation of Membrane Proteins by SDS-Digested Freeze-Fracture Replica Labeling (SDS-FRL).” In Receptor and Ion Channel Detection in the Brain, 169:267–83. Neuromethods. New York: Humana, 2021. https://doi.org/10.1007/978-1-0716-1522-5_19.' ieee: 'W. Kaufmann, D. Kleindienst, H. Harada, and R. Shigemoto, “High-Resolution localization and quantitation of membrane proteins by SDS-digested freeze-fracture replica labeling (SDS-FRL),” in Receptor and Ion Channel Detection in the Brain, vol. 169, New York: Humana, 2021, pp. 267–283.' ista: 'Kaufmann W, Kleindienst D, Harada H, Shigemoto R. 2021.High-Resolution localization and quantitation of membrane proteins by SDS-digested freeze-fracture replica labeling (SDS-FRL). In: Receptor and Ion Channel Detection in the Brain. Neuromethods, vol. 169, 267–283.' mla: Kaufmann, Walter, et al. “High-Resolution Localization and Quantitation of Membrane Proteins by SDS-Digested Freeze-Fracture Replica Labeling (SDS-FRL).” Receptor and Ion Channel Detection in the Brain, vol. 169, Humana, 2021, pp. 267–83, doi:10.1007/978-1-0716-1522-5_19. short: W. Kaufmann, D. Kleindienst, H. Harada, R. Shigemoto, in:, Receptor and Ion Channel Detection in the Brain, Humana, New York, 2021, pp. 267–283. date_created: 2021-07-30T09:34:56Z date_published: 2021-07-27T00:00:00Z date_updated: 2024-03-27T23:30:30Z day: '27' ddc: - '573' department: - _id: RySh - _id: EM-Fac doi: 10.1007/978-1-0716-1522-5_19 ec_funded: 1 has_accepted_license: '1' intvolume: ' 169' keyword: - 'Freeze-fracture replica: Deep learning' - Immunogold labeling - Integral membrane protein - Electron microscopy language: - iso: eng month: '07' oa_version: None page: 267-283 place: New York project: - _id: 25CA28EA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694539' name: 'In situ analysis of single channel subunit composition in neurons: physiological implication in synaptic plasticity and behaviour' - _id: 25CBA828-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '720270' name: Human Brain Project Specific Grant Agreement 1 (HBP SGA 1) publication: ' Receptor and Ion Channel Detection in the Brain' publication_identifier: eisbn: - '9781071615225' isbn: - '9781071615218' publication_status: published publisher: Humana quality_controlled: '1' related_material: record: - id: '9562' relation: dissertation_contains status: public series_title: Neuromethods status: public title: High-Resolution localization and quantitation of membrane proteins by SDS-digested freeze-fracture replica labeling (SDS-FRL) type: book_chapter user_id: D865714E-FA4E-11E9-B85B-F5C5E5697425 volume: 169 year: '2021' ... --- _id: '7148' abstract: - lang: eng text: In the cerebellum, GluD2 is exclusively expressed in Purkinje cells, where it regulates synapse formation and regeneration, synaptic plasticity, and motor learning. Delayed cognitive development in humans with GluD2 gene mutations suggests extracerebellar functions of GluD2. However, extracerebellar expression of GluD2 and its relationship with that of GluD1 are poorly understood. GluD2 mRNA and protein were widely detected, with relatively high levels observed in the olfactory glomerular layer, medial prefrontal cortex, cingulate cortex, retrosplenial granular cortex, olfactory tubercle, subiculum, striatum, lateral septum, anterodorsal thalamic nucleus, and arcuate hypothalamic nucleus. These regions were also enriched for GluD1, and many individual neurons coexpressed the two GluDs. In the retrosplenial granular cortex, GluD1 and GluD2 were selectively expressed at PSD‐95‐expressing glutamatergic synapses, and their coexpression on the same synapses was shown by SDS‐digested freeze‐fracture replica labeling. Biochemically, GluD1 and GluD2 formed coimmunoprecipitable complex formation in HEK293T cells and in the cerebral cortex and hippocampus. We further estimated the relative protein amount by quantitative immunoblotting using GluA2/GluD2 and GluA2/GluD1 chimeric proteins as standards for titration of GluD1 and GluD2 antibodies. Intriguingly, the relative amount of GluD2 was almost comparable to that of GluD1 in the postsynaptic density fraction prepared from the cerebral cortex and hippocampus. In contrast, GluD2 was overwhelmingly predominant in the cerebellum. Thus, we have determined the relative extracerebellar expression of GluD1 and GluD2 at regional, neuronal, and synaptic levels. These data provide a molecular–anatomical basis for possible competitive and cooperative interactions of GluD family members at synapses in various brain regions. acknowledgement: This study was supported by Grants-in-Aid for Scientific Research to K.K. (18K06813), Y.M. (17K08503, 17H0631319), and K.S. (16H04650) and a grant for Scientific Research on Innovative Areas to K.S (16H06276) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). We thank K. Akashi, I. Watanabe-Iida, Y. Suzuki, and H. Azechi for technical assistance and advice, and H. Uchida for valuable discussions. We thank E. Kushiya,I. Yabe, C. Ohori, Y. Mochizuki, Y. Ishikawa, and N. Ishimoto for technical assistance in generating GluD1-KO mice. article_processing_charge: No article_type: original author: - first_name: Chihiro full_name: Nakamoto, Chihiro last_name: Nakamoto - first_name: Kohtarou full_name: Konno, Kohtarou last_name: Konno - first_name: Taisuke full_name: Miyazaki, Taisuke last_name: Miyazaki - first_name: Ena full_name: Nakatsukasa, Ena last_name: Nakatsukasa - first_name: Rie full_name: Natsume, Rie last_name: Natsume - first_name: Manabu full_name: Abe, Manabu last_name: Abe - first_name: Meiko full_name: Kawamura, Meiko last_name: Kawamura - first_name: Yugo full_name: Fukazawa, Yugo last_name: Fukazawa - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: Miwako full_name: Yamasaki, Miwako last_name: Yamasaki - first_name: Kenji full_name: Sakimura, Kenji last_name: Sakimura - first_name: Masahiko full_name: Watanabe, Masahiko last_name: Watanabe citation: ama: Nakamoto C, Konno K, Miyazaki T, et al. Expression mapping, quantification, and complex formation of GluD1 and GluD2 glutamate receptors in adult mouse brain. Journal of Comparative Neurology. 2020;528(6):1003-1027. doi:10.1002/cne.24792 apa: Nakamoto, C., Konno, K., Miyazaki, T., Nakatsukasa, E., Natsume, R., Abe, M., … Watanabe, M. (2020). Expression mapping, quantification, and complex formation of GluD1 and GluD2 glutamate receptors in adult mouse brain. Journal of Comparative Neurology. Wiley. https://doi.org/10.1002/cne.24792 chicago: Nakamoto, Chihiro, Kohtarou Konno, Taisuke Miyazaki, Ena Nakatsukasa, Rie Natsume, Manabu Abe, Meiko Kawamura, et al. “Expression Mapping, Quantification, and Complex Formation of GluD1 and GluD2 Glutamate Receptors in Adult Mouse Brain.” Journal of Comparative Neurology. Wiley, 2020. https://doi.org/10.1002/cne.24792. ieee: C. Nakamoto et al., “Expression mapping, quantification, and complex formation of GluD1 and GluD2 glutamate receptors in adult mouse brain,” Journal of Comparative Neurology, vol. 528, no. 6. Wiley, pp. 1003–1027, 2020. ista: Nakamoto C, Konno K, Miyazaki T, Nakatsukasa E, Natsume R, Abe M, Kawamura M, Fukazawa Y, Shigemoto R, Yamasaki M, Sakimura K, Watanabe M. 2020. Expression mapping, quantification, and complex formation of GluD1 and GluD2 glutamate receptors in adult mouse brain. Journal of Comparative Neurology. 528(6), 1003–1027. mla: Nakamoto, Chihiro, et al. “Expression Mapping, Quantification, and Complex Formation of GluD1 and GluD2 Glutamate Receptors in Adult Mouse Brain.” Journal of Comparative Neurology, vol. 528, no. 6, Wiley, 2020, pp. 1003–27, doi:10.1002/cne.24792. short: C. Nakamoto, K. Konno, T. Miyazaki, E. Nakatsukasa, R. Natsume, M. Abe, M. Kawamura, Y. Fukazawa, R. Shigemoto, M. Yamasaki, K. Sakimura, M. Watanabe, Journal of Comparative Neurology 528 (2020) 1003–1027. date_created: 2019-12-04T16:09:29Z date_published: 2020-04-01T00:00:00Z date_updated: 2023-08-17T14:06:50Z day: '01' ddc: - '571' - '599' department: - _id: RySh doi: 10.1002/cne.24792 external_id: isi: - '000496410200001' pmid: - '31625608' has_accepted_license: '1' intvolume: ' 528' isi: 1 issue: '6' language: - iso: eng month: '04' oa_version: None page: 1003-1027 pmid: 1 publication: Journal of Comparative Neurology publication_identifier: eissn: - 1096-9861 issn: - 0021-9967 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Expression mapping, quantification, and complex formation of GluD1 and GluD2 glutamate receptors in adult mouse brain type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 528 year: '2020' ... --- _id: '7664' abstract: - lang: eng text: Metabotropic γ-aminobutyric acid (GABAB) receptors contribute to the control of network activity and information processing in hippocampal circuits by regulating neuronal excitability and synaptic transmission. The dysfunction in the dentate gyrus (DG) has been implicated in Alzheimer´s disease (AD). Given the involvement of GABAB receptors in AD, to determine their subcellular localisation and possible alteration in granule cells of the DG in a mouse model of AD at 12 months of age, we used high-resolution immunoelectron microscopic analysis. Immunohistochemistry at the light microscopic level showed that the regional and cellular expression pattern of GABAB1 was similar in an AD model mouse expressing mutated human amyloid precursor protein and presenilin1 (APP/PS1) and in age-matched wild type mice. High-resolution immunoelectron microscopy revealed a distance-dependent gradient of immunolabelling for GABAB receptors, increasing from proximal to distal dendrites in both wild type and APP/PS1 mice. However, the overall density of GABAB receptors at the neuronal surface of these postsynaptic compartments of granule cells was significantly reduced in APP/PS1 mice. Parallel to this reduction in surface receptors, we found a significant increase in GABAB1 at cytoplasmic sites. GABAB receptors were also detected at presynaptic sites in the molecular layer of the DG. We also found a decrease in plasma membrane GABAB receptors in axon terminals contacting dendritic spines of granule cells, which was more pronounced in the outer than in the inner molecular layer. Altogether, our data showing post- and presynaptic reduction in surface GABAB receptors in the DG suggest the alteration of the GABAB-mediated modulation of excitability and synaptic transmission in granule cells, which may contribute to the cognitive dysfunctions in the APP/PS1 model of AD article_number: '2459' article_processing_charge: No article_type: original author: - first_name: Alejandro full_name: Martín-Belmonte, Alejandro last_name: Martín-Belmonte - first_name: Carolina full_name: Aguado, Carolina last_name: Aguado - first_name: Rocío full_name: Alfaro-Ruíz, Rocío last_name: Alfaro-Ruíz - first_name: Ana Esther full_name: Moreno-Martínez, Ana Esther last_name: Moreno-Martínez - first_name: Luis full_name: De La Ossa, Luis last_name: De La Ossa - first_name: José full_name: Martínez-Hernández, José last_name: Martínez-Hernández - first_name: Alain full_name: Buisson, Alain last_name: Buisson - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: Yugo full_name: Fukazawa, Yugo last_name: Fukazawa - first_name: Rafael full_name: Luján, Rafael last_name: Luján citation: ama: Martín-Belmonte A, Aguado C, Alfaro-Ruíz R, et al. Density of GABAB receptors is reduced in granule cells of the hippocampus in a mouse model of Alzheimer’s disease. International journal of molecular sciences. 2020;21(7). doi:10.3390/ijms21072459 apa: Martín-Belmonte, A., Aguado, C., Alfaro-Ruíz, R., Moreno-Martínez, A. E., De La Ossa, L., Martínez-Hernández, J., … Luján, R. (2020). Density of GABAB receptors is reduced in granule cells of the hippocampus in a mouse model of Alzheimer’s disease. International Journal of Molecular Sciences. MDPI. https://doi.org/10.3390/ijms21072459 chicago: Martín-Belmonte, Alejandro, Carolina Aguado, Rocío Alfaro-Ruíz, Ana Esther Moreno-Martínez, Luis De La Ossa, José Martínez-Hernández, Alain Buisson, Ryuichi Shigemoto, Yugo Fukazawa, and Rafael Luján. “Density of GABAB Receptors Is Reduced in Granule Cells of the Hippocampus in a Mouse Model of Alzheimer’s Disease.” International Journal of Molecular Sciences. MDPI, 2020. https://doi.org/10.3390/ijms21072459. ieee: A. Martín-Belmonte et al., “Density of GABAB receptors is reduced in granule cells of the hippocampus in a mouse model of Alzheimer’s disease,” International journal of molecular sciences, vol. 21, no. 7. MDPI, 2020. ista: Martín-Belmonte A, Aguado C, Alfaro-Ruíz R, Moreno-Martínez AE, De La Ossa L, Martínez-Hernández J, Buisson A, Shigemoto R, Fukazawa Y, Luján R. 2020. Density of GABAB receptors is reduced in granule cells of the hippocampus in a mouse model of Alzheimer’s disease. International journal of molecular sciences. 21(7), 2459. mla: Martín-Belmonte, Alejandro, et al. “Density of GABAB Receptors Is Reduced in Granule Cells of the Hippocampus in a Mouse Model of Alzheimer’s Disease.” International Journal of Molecular Sciences, vol. 21, no. 7, 2459, MDPI, 2020, doi:10.3390/ijms21072459. short: A. Martín-Belmonte, C. Aguado, R. Alfaro-Ruíz, A.E. Moreno-Martínez, L. De La Ossa, J. Martínez-Hernández, A. Buisson, R. Shigemoto, Y. Fukazawa, R. Luján, International Journal of Molecular Sciences 21 (2020). date_created: 2020-04-19T22:00:55Z date_published: 2020-04-02T00:00:00Z date_updated: 2023-08-21T06:13:19Z day: '02' ddc: - '570' department: - _id: RySh doi: 10.3390/ijms21072459 external_id: isi: - '000535574200201' pmid: - '32252271' file: - access_level: open_access checksum: b9d2f1657d8c4a74b01a62b474d009b0 content_type: application/pdf creator: dernst date_created: 2020-04-20T11:43:18Z date_updated: 2020-07-14T12:48:01Z file_id: '7669' file_name: 2020_JournMolecSciences_Martin_Belmonte.pdf file_size: 2941197 relation: main_file file_date_updated: 2020-07-14T12:48:01Z has_accepted_license: '1' intvolume: ' 21' isi: 1 issue: '7' language: - iso: eng month: '04' oa: 1 oa_version: Published Version pmid: 1 publication: International journal of molecular sciences publication_identifier: eissn: - '14220067' publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: Density of GABAB receptors is reduced in granule cells of the hippocampus in a mouse model of Alzheimer's disease tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 21 year: '2020' ... --- _id: '7665' abstract: - lang: eng text: Acute brain slice preparation is a powerful experimental model for investigating the characteristics of synaptic function in the brain. Although brain tissue is usually cut at ice-cold temperature (CT) to facilitate slicing and avoid neuronal damage, exposure to CT causes molecular and architectural changes of synapses. To address these issues, we investigated ultrastructural and electrophysiological features of synapses in mouse acute cerebellar slices prepared at ice-cold and physiological temperature (PT). In the slices prepared at CT, we found significant spine loss and reconstruction, synaptic vesicle rearrangement and decrease in synaptic proteins, all of which were not detected in slices prepared at PT. Consistent with these structural findings, slices prepared at PT showed higher release probability. Furthermore, preparation at PT allows electrophysiological recording immediately after slicing resulting in higher detectability of long-term depression (LTD) after motor learning compared with that at CT. These results indicate substantial advantages of the slice preparation at PT for investigating synaptic functions in different physiological conditions. article_number: '63' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Kohgaku full_name: Eguchi, Kohgaku id: 2B7846DC-F248-11E8-B48F-1D18A9856A87 last_name: Eguchi orcid: 0000-0002-6170-2546 - first_name: Philipp full_name: Velicky, Philipp id: 39BDC62C-F248-11E8-B48F-1D18A9856A87 last_name: Velicky orcid: 0000-0002-2340-7431 - first_name: Elena full_name: Hollergschwandtner, Elena id: 3C054040-F248-11E8-B48F-1D18A9856A87 last_name: Hollergschwandtner - first_name: Makoto full_name: Itakura, Makoto last_name: Itakura - first_name: Yugo full_name: Fukazawa, Yugo last_name: Fukazawa - first_name: Johann G full_name: Danzl, Johann G id: 42EFD3B6-F248-11E8-B48F-1D18A9856A87 last_name: Danzl orcid: 0000-0001-8559-3973 - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 citation: ama: Eguchi K, Velicky P, Saeckl E, et al. Advantages of acute brain slices prepared at physiological temperature in the characterization of synaptic functions. Frontiers in Cellular Neuroscience. 2020;14. doi:10.3389/fncel.2020.00063 apa: Eguchi, K., Velicky, P., Saeckl, E., Itakura, M., Fukazawa, Y., Danzl, J. G., & Shigemoto, R. (2020). Advantages of acute brain slices prepared at physiological temperature in the characterization of synaptic functions. Frontiers in Cellular Neuroscience. Frontiers Media. https://doi.org/10.3389/fncel.2020.00063 chicago: Eguchi, Kohgaku, Philipp Velicky, Elena Saeckl, Makoto Itakura, Yugo Fukazawa, Johann G Danzl, and Ryuichi Shigemoto. “Advantages of Acute Brain Slices Prepared at Physiological Temperature in the Characterization of Synaptic Functions.” Frontiers in Cellular Neuroscience. Frontiers Media, 2020. https://doi.org/10.3389/fncel.2020.00063. ieee: K. Eguchi et al., “Advantages of acute brain slices prepared at physiological temperature in the characterization of synaptic functions,” Frontiers in Cellular Neuroscience, vol. 14. Frontiers Media, 2020. ista: Eguchi K, Velicky P, Saeckl E, Itakura M, Fukazawa Y, Danzl JG, Shigemoto R. 2020. Advantages of acute brain slices prepared at physiological temperature in the characterization of synaptic functions. Frontiers in Cellular Neuroscience. 14, 63. mla: Eguchi, Kohgaku, et al. “Advantages of Acute Brain Slices Prepared at Physiological Temperature in the Characterization of Synaptic Functions.” Frontiers in Cellular Neuroscience, vol. 14, 63, Frontiers Media, 2020, doi:10.3389/fncel.2020.00063. short: K. Eguchi, P. Velicky, E. Saeckl, M. Itakura, Y. Fukazawa, J.G. Danzl, R. Shigemoto, Frontiers in Cellular Neuroscience 14 (2020). date_created: 2020-04-19T22:00:55Z date_published: 2020-03-19T00:00:00Z date_updated: 2023-08-21T06:12:48Z day: '19' ddc: - '570' department: - _id: JoDa - _id: RySh doi: 10.3389/fncel.2020.00063 ec_funded: 1 external_id: isi: - '000525582200001' file: - access_level: open_access checksum: 1c145123c6f8dc3e2e4bd5a66a1ad60e content_type: application/pdf creator: dernst date_created: 2020-04-20T10:59:49Z date_updated: 2020-07-14T12:48:01Z file_id: '7668' file_name: 2020_FrontiersCellularNeurosc_Eguchi.pdf file_size: 9227283 relation: main_file file_date_updated: 2020-07-14T12:48:01Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 2659CC84-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '793482' name: 'Ultrastructural analysis of phosphoinositides in nerve terminals: distribution, dynamics and physiological roles in synaptic transmission' - _id: 25CA28EA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694539' name: 'In situ analysis of single channel subunit composition in neurons: physiological implication in synaptic plasticity and behaviour' - _id: 265CB4D0-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03600 name: Optical control of synaptic function via adhesion molecules - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund publication: Frontiers in Cellular Neuroscience publication_identifier: issn: - '16625102' publication_status: published publisher: Frontiers Media quality_controlled: '1' scopus_import: '1' status: public title: Advantages of acute brain slices prepared at physiological temperature in the characterization of synaptic functions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2020' ... --- _id: '7878' abstract: - lang: eng text: Type 1 metabotropic glutamate receptors (mGluR1s) are key elements in neuronal signaling. While their function is well documented in slices, requirements for their activation in vivo are poorly understood. We examine this question in adult mice in vivo using 2-photon imaging of cerebellar molecular layer interneurons (MLIs) expressing GCaMP. In anesthetized mice, parallel fiber activation evokes beam-like Cai rises in postsynaptic MLIs which depend on co-activation of mGluR1s and ionotropic glutamate receptors (iGluRs). In awake mice, blocking mGluR1 decreases Cai rises associated with locomotion. In vitro studies and freeze-fracture electron microscopy show that the iGluR-mGluR1 interaction is synergistic and favored by close association of the two classes of receptors. Altogether our results suggest that mGluR1s, acting in synergy with iGluRs, potently contribute to processing cerebellar neuronal signaling under physiological conditions. article_number: e56839 article_processing_charge: No article_type: original author: - first_name: Jin full_name: Bao, Jin last_name: Bao - first_name: Michael full_name: Graupner, Michael last_name: Graupner - first_name: Guadalupe full_name: Astorga, Guadalupe last_name: Astorga - first_name: Thibault full_name: Collin, Thibault last_name: Collin - first_name: Abdelali full_name: Jalil, Abdelali last_name: Jalil - first_name: Dwi Wahyu full_name: Indriati, Dwi Wahyu last_name: Indriati - first_name: Jonathan full_name: Bradley, Jonathan last_name: Bradley - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: Isabel full_name: Llano, Isabel last_name: Llano citation: ama: Bao J, Graupner M, Astorga G, et al. Synergism of type 1 metabotropic and ionotropic glutamate receptors in cerebellar molecular layer interneurons in vivo. eLife. 2020;9. doi:10.7554/eLife.56839 apa: Bao, J., Graupner, M., Astorga, G., Collin, T., Jalil, A., Indriati, D. W., … Llano, I. (2020). Synergism of type 1 metabotropic and ionotropic glutamate receptors in cerebellar molecular layer interneurons in vivo. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.56839 chicago: Bao, Jin, Michael Graupner, Guadalupe Astorga, Thibault Collin, Abdelali Jalil, Dwi Wahyu Indriati, Jonathan Bradley, Ryuichi Shigemoto, and Isabel Llano. “Synergism of Type 1 Metabotropic and Ionotropic Glutamate Receptors in Cerebellar Molecular Layer Interneurons in Vivo.” ELife. eLife Sciences Publications, 2020. https://doi.org/10.7554/eLife.56839. ieee: J. Bao et al., “Synergism of type 1 metabotropic and ionotropic glutamate receptors in cerebellar molecular layer interneurons in vivo,” eLife, vol. 9. eLife Sciences Publications, 2020. ista: Bao J, Graupner M, Astorga G, Collin T, Jalil A, Indriati DW, Bradley J, Shigemoto R, Llano I. 2020. Synergism of type 1 metabotropic and ionotropic glutamate receptors in cerebellar molecular layer interneurons in vivo. eLife. 9, e56839. mla: Bao, Jin, et al. “Synergism of Type 1 Metabotropic and Ionotropic Glutamate Receptors in Cerebellar Molecular Layer Interneurons in Vivo.” ELife, vol. 9, e56839, eLife Sciences Publications, 2020, doi:10.7554/eLife.56839. short: J. Bao, M. Graupner, G. Astorga, T. Collin, A. Jalil, D.W. Indriati, J. Bradley, R. Shigemoto, I. Llano, ELife 9 (2020). date_created: 2020-05-24T22:00:58Z date_published: 2020-05-13T00:00:00Z date_updated: 2023-08-21T06:26:50Z day: '13' ddc: - '570' department: - _id: RySh doi: 10.7554/eLife.56839 external_id: isi: - '000535191600001' pmid: - '32401196' file: - access_level: open_access checksum: 8ea99bb6660cc407dbdb00c173b01683 content_type: application/pdf creator: dernst date_created: 2020-05-26T09:34:54Z date_updated: 2020-07-14T12:48:04Z file_id: '7891' file_name: 2020_eLife_Bao.pdf file_size: 4832050 relation: main_file file_date_updated: 2020-07-14T12:48:04Z has_accepted_license: '1' intvolume: ' 9' isi: 1 language: - iso: eng month: '05' oa: 1 oa_version: Published Version pmid: 1 publication: eLife publication_identifier: eissn: - 2050084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: Synergism of type 1 metabotropic and ionotropic glutamate receptors in cerebellar molecular layer interneurons in vivo tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2020' ...