--- _id: '676' abstract: - lang: eng text: The segregation of different cell types into distinct tissues is a fundamental process in metazoan development. Differences in cell adhesion and cortex tension are commonly thought to drive cell sorting by regulating tissue surface tension (TST). However, the role that differential TST plays in cell segregation within the developing embryo is as yet unclear. Here, we have analyzed the role of differential TST for germ layer progenitor cell segregation during zebrafish gastrulation. Contrary to previous observations that differential TST drives germ layer progenitor cell segregation in vitro, we show that germ layers display indistinguishable TST within the gastrulating embryo, arguing against differential TST driving germ layer progenitor cell segregation in vivo. We further show that the osmolarity of the interstitial fluid (IF) is an important factor that influences germ layer TST in vivo, and that lower osmolarity of the IF compared with standard cell culture medium can explain why germ layers display differential TST in culture but not in vivo. Finally, we show that directed migration of mesendoderm progenitors is required for germ layer progenitor cell segregation and germ layer formation. article_processing_charge: No article_type: original author: - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Jim full_name: Veldhuis, Jim last_name: Veldhuis - first_name: Vanessa full_name: Barone, Vanessa id: 419EECCC-F248-11E8-B48F-1D18A9856A87 last_name: Barone orcid: 0000-0003-2676-3367 - first_name: Daniel full_name: Capek, Daniel id: 31C42484-F248-11E8-B48F-1D18A9856A87 last_name: Capek orcid: 0000-0001-5199-9940 - first_name: Jean-Léon full_name: Maître, Jean-Léon id: 48F1E0D8-F248-11E8-B48F-1D18A9856A87 last_name: Maître orcid: 0000-0002-3688-1474 - first_name: Wayne full_name: Brodland, Wayne last_name: Brodland - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Krens G, Veldhuis J, Barone V, et al. Interstitial fluid osmolarity modulates the action of differential tissue surface tension in progenitor cell segregation during gastrulation. Development. 2017;144(10):1798-1806. doi:10.1242/dev.144964 apa: Krens, G., Veldhuis, J., Barone, V., Capek, D., Maître, J.-L., Brodland, W., & Heisenberg, C.-P. J. (2017). Interstitial fluid osmolarity modulates the action of differential tissue surface tension in progenitor cell segregation during gastrulation. Development. Company of Biologists. https://doi.org/10.1242/dev.144964 chicago: Krens, Gabriel, Jim Veldhuis, Vanessa Barone, Daniel Capek, Jean-Léon Maître, Wayne Brodland, and Carl-Philipp J Heisenberg. “Interstitial Fluid Osmolarity Modulates the Action of Differential Tissue Surface Tension in Progenitor Cell Segregation during Gastrulation.” Development. Company of Biologists, 2017. https://doi.org/10.1242/dev.144964. ieee: G. Krens et al., “Interstitial fluid osmolarity modulates the action of differential tissue surface tension in progenitor cell segregation during gastrulation,” Development, vol. 144, no. 10. Company of Biologists, pp. 1798–1806, 2017. ista: Krens G, Veldhuis J, Barone V, Capek D, Maître J-L, Brodland W, Heisenberg C-PJ. 2017. Interstitial fluid osmolarity modulates the action of differential tissue surface tension in progenitor cell segregation during gastrulation. Development. 144(10), 1798–1806. mla: Krens, Gabriel, et al. “Interstitial Fluid Osmolarity Modulates the Action of Differential Tissue Surface Tension in Progenitor Cell Segregation during Gastrulation.” Development, vol. 144, no. 10, Company of Biologists, 2017, pp. 1798–806, doi:10.1242/dev.144964. short: G. Krens, J. Veldhuis, V. Barone, D. Capek, J.-L. Maître, W. Brodland, C.-P.J. Heisenberg, Development 144 (2017) 1798–1806. date_created: 2018-12-11T11:47:52Z date_published: 2017-05-15T00:00:00Z date_updated: 2024-03-28T23:30:26Z day: '15' ddc: - '570' department: - _id: Bio - _id: CaHe doi: 10.1242/dev.144964 external_id: pmid: - '28512197' file: - access_level: open_access checksum: bc25125fb664706cdf180e061429f91d content_type: application/pdf creator: dernst date_created: 2019-09-24T06:56:22Z date_updated: 2020-07-14T12:47:39Z file_id: '6905' file_name: 2017_Development_Krens.pdf file_size: 8194516 relation: main_file file_date_updated: 2020-07-14T12:47:39Z has_accepted_license: '1' intvolume: ' 144' issue: '10' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 1798 - 1806 pmid: 1 publication: Development publication_identifier: issn: - '09501991' publication_status: published publisher: Company of Biologists publist_id: '7047' quality_controlled: '1' related_material: record: - id: '961' relation: dissertation_contains status: public - id: '50' relation: dissertation_contains status: public scopus_import: 1 status: public title: Interstitial fluid osmolarity modulates the action of differential tissue surface tension in progenitor cell segregation during gastrulation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 144 year: '2017' ... --- _id: '1923' abstract: - lang: eng text: We derive the equations for a thin, axisymmetric elastic shell subjected to an internal active stress giving rise to active tension and moments within the shell. We discuss the stability of a cylindrical elastic shell and its response to a localized change in internal active stress. This description is relevant to describe the cellular actomyosin cortex, a thin shell at the cell surface behaving elastically at a short timescale and subjected to active internal forces arising from myosin molecular motor activity. We show that the recent observations of cell deformation following detachment of adherent cells (Maître J-L et al 2012 Science 338 253-6) are well accounted for by this mechanical description. The actin cortex elastic and bending moduli can be obtained from a quantitative analysis of cell shapes observed in these experiments. Our approach thus provides a non-invasive, imaging-based method for the extraction of cellular physical parameters. article_number: '065005' author: - first_name: Hélène full_name: Berthoumieux, Hélène last_name: Berthoumieux - first_name: Jean-Léon full_name: Maître, Jean-Léon id: 48F1E0D8-F248-11E8-B48F-1D18A9856A87 last_name: Maître orcid: 0000-0002-3688-1474 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Ewa full_name: Paluch, Ewa last_name: Paluch - first_name: Frank full_name: Julicher, Frank last_name: Julicher - first_name: Guillaume full_name: Salbreux, Guillaume last_name: Salbreux citation: ama: Berthoumieux H, Maître J-L, Heisenberg C-PJ, Paluch E, Julicher F, Salbreux G. Active elastic thin shell theory for cellular deformations. New Journal of Physics. 2014;16. doi:10.1088/1367-2630/16/6/065005 apa: Berthoumieux, H., Maître, J.-L., Heisenberg, C.-P. J., Paluch, E., Julicher, F., & Salbreux, G. (2014). Active elastic thin shell theory for cellular deformations. New Journal of Physics. IOP Publishing Ltd. https://doi.org/10.1088/1367-2630/16/6/065005 chicago: Berthoumieux, Hélène, Jean-Léon Maître, Carl-Philipp J Heisenberg, Ewa Paluch, Frank Julicher, and Guillaume Salbreux. “Active Elastic Thin Shell Theory for Cellular Deformations.” New Journal of Physics. IOP Publishing Ltd., 2014. https://doi.org/10.1088/1367-2630/16/6/065005. ieee: H. Berthoumieux, J.-L. Maître, C.-P. J. Heisenberg, E. Paluch, F. Julicher, and G. Salbreux, “Active elastic thin shell theory for cellular deformations,” New Journal of Physics, vol. 16. IOP Publishing Ltd., 2014. ista: Berthoumieux H, Maître J-L, Heisenberg C-PJ, Paluch E, Julicher F, Salbreux G. 2014. Active elastic thin shell theory for cellular deformations. New Journal of Physics. 16, 065005. mla: Berthoumieux, Hélène, et al. “Active Elastic Thin Shell Theory for Cellular Deformations.” New Journal of Physics, vol. 16, 065005, IOP Publishing Ltd., 2014, doi:10.1088/1367-2630/16/6/065005. short: H. Berthoumieux, J.-L. Maître, C.-P.J. Heisenberg, E. Paluch, F. Julicher, G. Salbreux, New Journal of Physics 16 (2014). date_created: 2018-12-11T11:54:44Z date_published: 2014-06-01T00:00:00Z date_updated: 2021-01-12T06:54:06Z day: '01' ddc: - '570' department: - _id: CaHe doi: 10.1088/1367-2630/16/6/065005 file: - access_level: open_access checksum: 8dbe81ec656bf1264d8889bda9b2b985 content_type: application/pdf creator: system date_created: 2018-12-12T10:16:16Z date_updated: 2020-07-14T12:45:21Z file_id: '5202' file_name: IST-2016-429-v1+1_document.pdf file_size: 941387 relation: main_file file_date_updated: 2020-07-14T12:45:21Z has_accepted_license: '1' intvolume: ' 16' language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: New Journal of Physics publication_status: published publisher: IOP Publishing Ltd. publist_id: '5171' pubrep_id: '429' quality_controlled: '1' scopus_import: 1 status: public title: Active elastic thin shell theory for cellular deformations tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 16 year: '2014' ... --- _id: '2469' abstract: - lang: eng text: Cadherins are transmembrane proteins that mediate cell–cell adhesion in animals. By regulating contact formation and stability, cadherins play a crucial role in tissue morphogenesis and homeostasis. Here, we review the three major unctions of cadherins in cell–cell contact formation and stability. Two of those functions lead to a decrease in interfacial ension at the forming cell–cell contact, thereby promoting contact expansion — first, by providing adhesion tension that lowers interfacial tension at the cell–cell contact, and second, by signaling to the actomyosin cytoskeleton in order to reduce cortex tension and thus interfacial tension at the contact. The third function of cadherins in cell–cell contact formation is to stabilize the contact by resisting mechanical forces that pull on the contact. author: - first_name: Jean-Léon full_name: Maître, Jean-Léon id: 48F1E0D8-F248-11E8-B48F-1D18A9856A87 last_name: Maître orcid: 0000-0002-3688-1474 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Maître J-L, Heisenberg C-PJ. Three functions of cadherins in cell adhesion. Current Biology. 2013;23(14):R626-R633. doi:10.1016/j.cub.2013.06.019 apa: Maître, J.-L., & Heisenberg, C.-P. J. (2013). Three functions of cadherins in cell adhesion. Current Biology. Cell Press. https://doi.org/10.1016/j.cub.2013.06.019 chicago: Maître, Jean-Léon, and Carl-Philipp J Heisenberg. “Three Functions of Cadherins in Cell Adhesion.” Current Biology. Cell Press, 2013. https://doi.org/10.1016/j.cub.2013.06.019. ieee: J.-L. Maître and C.-P. J. Heisenberg, “Three functions of cadherins in cell adhesion,” Current Biology, vol. 23, no. 14. Cell Press, pp. R626–R633, 2013. ista: Maître J-L, Heisenberg C-PJ. 2013. Three functions of cadherins in cell adhesion. Current Biology. 23(14), R626–R633. mla: Maître, Jean-Léon, and Carl-Philipp J. Heisenberg. “Three Functions of Cadherins in Cell Adhesion.” Current Biology, vol. 23, no. 14, Cell Press, 2013, pp. R626–33, doi:10.1016/j.cub.2013.06.019. short: J.-L. Maître, C.-P.J. Heisenberg, Current Biology 23 (2013) R626–R633. date_created: 2018-12-11T11:57:51Z date_published: 2013-07-22T00:00:00Z date_updated: 2021-01-12T06:57:40Z day: '22' ddc: - '570' department: - _id: CaHe doi: 10.1016/j.cub.2013.06.019 external_id: pmid: - '23885883' file: - access_level: open_access checksum: 6a424b2f007b41d4955a9135793b2162 content_type: application/pdf creator: dernst date_created: 2019-01-24T15:40:22Z date_updated: 2020-07-14T12:45:41Z file_id: '5881' file_name: 2013_CurrentBiology_Maitre.pdf file_size: 247320 relation: main_file file_date_updated: 2020-07-14T12:45:41Z has_accepted_license: '1' intvolume: ' 23' issue: '14' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: R626 - R633 pmid: 1 publication: Current Biology publication_status: published publisher: Cell Press publist_id: '4433' quality_controlled: '1' scopus_import: 1 status: public title: Three functions of cadherins in cell adhesion tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 23 year: '2013' ... --- _id: '2884' author: - first_name: Jean-Léon full_name: Maître, Jean-Léon id: 48F1E0D8-F248-11E8-B48F-1D18A9856A87 last_name: Maître orcid: 0000-0002-3688-1474 - first_name: Hélène full_name: Berthoumieux, Hélène last_name: Berthoumieux - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Guillaume full_name: Salbreux, Guillaume last_name: Salbreux - first_name: Frank full_name: Julicher, Frank last_name: Julicher - first_name: Ewa full_name: Paluch, Ewa last_name: Paluch - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Maître J-L, Berthoumieux H, Krens G, et al. Cell adhesion mechanics of zebrafish gastrulation. Medecine Sciences. 2013;29(2):147-150. doi:10.1051/medsci/2013292011 apa: Maître, J.-L., Berthoumieux, H., Krens, G., Salbreux, G., Julicher, F., Paluch, E., & Heisenberg, C.-P. J. (2013). Cell adhesion mechanics of zebrafish gastrulation. Medecine Sciences. Éditions Médicales et Scientifiques. https://doi.org/10.1051/medsci/2013292011 chicago: Maître, Jean-Léon, Hélène Berthoumieux, Gabriel Krens, Guillaume Salbreux, Frank Julicher, Ewa Paluch, and Carl-Philipp J Heisenberg. “Cell Adhesion Mechanics of Zebrafish Gastrulation.” Medecine Sciences. Éditions Médicales et Scientifiques, 2013. https://doi.org/10.1051/medsci/2013292011. ieee: J.-L. Maître et al., “Cell adhesion mechanics of zebrafish gastrulation,” Medecine Sciences, vol. 29, no. 2. Éditions Médicales et Scientifiques, pp. 147–150, 2013. ista: Maître J-L, Berthoumieux H, Krens G, Salbreux G, Julicher F, Paluch E, Heisenberg C-PJ. 2013. Cell adhesion mechanics of zebrafish gastrulation. Medecine Sciences. 29(2), 147–150. mla: Maître, Jean-Léon, et al. “Cell Adhesion Mechanics of Zebrafish Gastrulation.” Medecine Sciences, vol. 29, no. 2, Éditions Médicales et Scientifiques, 2013, pp. 147–50, doi:10.1051/medsci/2013292011. short: J.-L. Maître, H. Berthoumieux, G. Krens, G. Salbreux, F. Julicher, E. Paluch, C.-P.J. Heisenberg, Medecine Sciences 29 (2013) 147–150. date_created: 2018-12-11T12:00:08Z date_published: 2013-02-01T00:00:00Z date_updated: 2021-01-12T07:00:28Z day: '01' department: - _id: CaHe doi: 10.1051/medsci/2013292011 intvolume: ' 29' issue: '2' language: - iso: eng month: '02' oa_version: None page: 147 - 150 project: - _id: 252064B8-B435-11E9-9278-68D0E5697425 grant_number: HE_3231/6-1 name: Analysis of the Formation and Function of Different Cell Protusion Types During Cell Migration in Vivo - _id: 2527D5CC-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 812-B12 name: Cell Cortex and Germ Layer Formation in Zebrafish Gastrulation publication: Medecine Sciences publication_status: published publisher: Éditions Médicales et Scientifiques publist_id: '3877' quality_controlled: '1' scopus_import: 1 status: public title: Cell adhesion mechanics of zebrafish gastrulation type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 29 year: '2013' ... --- _id: '2951' abstract: - lang: eng text: Differential cell adhesion and cortex tension are thought to drive cell sorting by controlling cell-cell contact formation. Here, we show that cell adhesion and cortex tension have different mechanical functions in controlling progenitor cell-cell contact formation and sorting during zebrafish gastrulation. Cortex tension controls cell-cell contact expansion by modulating interfacial tension at the contact. By contrast, adhesion has little direct function in contact expansion, but instead is needed to mechanically couple the cortices of adhering cells at their contacts, allowing cortex tension to control contact expansion. The coupling function of adhesion is mediated by E-cadherin and limited by the mechanical anchoring of E-cadherin to the cortex. Thus, cell adhesion provides the mechanical scaffold for cell cortex tension to drive cell sorting during gastrulation. acknowledged_ssus: - _id: SSU author: - first_name: Jean-Léon full_name: Maître, Jean-Léon id: 48F1E0D8-F248-11E8-B48F-1D18A9856A87 last_name: Maître orcid: 0000-0002-3688-1474 - first_name: Hélène full_name: Berthoumieux, Hélène last_name: Berthoumieux - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Guillaume full_name: Salbreux, Guillaume last_name: Salbreux - first_name: Frank full_name: Julicher, Frank last_name: Julicher - first_name: Ewa full_name: Paluch, Ewa last_name: Paluch - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Maître J-L, Berthoumieux H, Krens G, et al. Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science. 2012;338(6104):253-256. doi:10.1126/science.1225399 apa: Maître, J.-L., Berthoumieux, H., Krens, G., Salbreux, G., Julicher, F., Paluch, E., & Heisenberg, C.-P. J. (2012). Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.1225399 chicago: Maître, Jean-Léon, Hélène Berthoumieux, Gabriel Krens, Guillaume Salbreux, Frank Julicher, Ewa Paluch, and Carl-Philipp J Heisenberg. “Adhesion Functions in Cell Sorting by Mechanically Coupling the Cortices of Adhering Cells.” Science. American Association for the Advancement of Science, 2012. https://doi.org/10.1126/science.1225399. ieee: J.-L. Maître et al., “Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells,” Science, vol. 338, no. 6104. American Association for the Advancement of Science, pp. 253–256, 2012. ista: Maître J-L, Berthoumieux H, Krens G, Salbreux G, Julicher F, Paluch E, Heisenberg C-PJ. 2012. Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science. 338(6104), 253–256. mla: Maître, Jean-Léon, et al. “Adhesion Functions in Cell Sorting by Mechanically Coupling the Cortices of Adhering Cells.” Science, vol. 338, no. 6104, American Association for the Advancement of Science, 2012, pp. 253–56, doi:10.1126/science.1225399. short: J.-L. Maître, H. Berthoumieux, G. Krens, G. Salbreux, F. Julicher, E. Paluch, C.-P.J. Heisenberg, Science 338 (2012) 253–256. date_created: 2018-12-11T12:00:31Z date_published: 2012-10-12T00:00:00Z date_updated: 2021-01-12T07:40:00Z day: '12' department: - _id: CaHe doi: 10.1126/science.1225399 intvolume: ' 338' issue: '6104' language: - iso: eng month: '10' oa_version: None page: 253 - 256 publication: Science publication_status: published publisher: American Association for the Advancement of Science publist_id: '3777' quality_controlled: '1' scopus_import: 1 status: public title: Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 338 year: '2012' ... --- _id: '3396' abstract: - lang: eng text: Facial branchiomotor neurons (FBMNs) in zebrafish and mouse embryonic hindbrain undergo a characteristic tangential migration from rhombomere (r) 4, where they are born, to r6/7. Cohesion among neuroepithelial cells (NCs) has been suggested to function in FBMN migration by inhibiting FBMNs positioned in the basal neuroepithelium such that they move apically between NCs towards the midline of the neuroepithelium instead of tangentially along the basal side of the neuroepithelium towards r6/7. However, direct experimental evaluation of this hypothesis is still lacking. Here, we have used a combination of biophysical cell adhesion measurements and high-resolution time-lapse microscopy to determine the role of NC cohesion in FBMN migration. We show that reducing NC cohesion by interfering with Cadherin 2 (Cdh2) activity results in FBMNs positioned at the basal side of the neuroepithelium moving apically towards the neural tube midline instead of tangentially towards r6/7. In embryos with strongly reduced NC cohesion, ectopic apical FBMN movement frequently results in fusion of the bilateral FBMN clusters over the apical midline of the neural tube. By contrast, reducing cohesion among FBMNs by interfering with Contactin 2 (Cntn2) expression in these cells has little effect on apical FBMN movement, but reduces the fusion of the bilateral FBMN clusters in embryos with strongly diminished NC cohesion. These data provide direct experimental evidence that NC cohesion functions in tangential FBMN migration by restricting their apical movement. acknowledged_ssus: - _id: Bio - _id: PreCl article_type: original author: - first_name: Petra full_name: Stockinger, Petra id: 261CB030-E90D-11E9-B182-F697D44B663C last_name: Stockinger - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Jean-Léon full_name: Maître, Jean-Léon id: 48F1E0D8-F248-11E8-B48F-1D18A9856A87 last_name: Maître orcid: 0000-0002-3688-1474 citation: ama: Stockinger P, Heisenberg C-PJ, Maître J-L. Defective neuroepithelial cell cohesion affects tangential branchiomotor neuron migration in the zebrafish neural tube. Development. 2011;138(21):4673-4683. doi:10.1242/dev.071233 apa: Stockinger, P., Heisenberg, C.-P. J., & Maître, J.-L. (2011). Defective neuroepithelial cell cohesion affects tangential branchiomotor neuron migration in the zebrafish neural tube. Development. Company of Biologists. https://doi.org/10.1242/dev.071233 chicago: Stockinger, Petra, Carl-Philipp J Heisenberg, and Jean-Léon Maître. “Defective Neuroepithelial Cell Cohesion Affects Tangential Branchiomotor Neuron Migration in the Zebrafish Neural Tube.” Development. Company of Biologists, 2011. https://doi.org/10.1242/dev.071233. ieee: P. Stockinger, C.-P. J. Heisenberg, and J.-L. Maître, “Defective neuroepithelial cell cohesion affects tangential branchiomotor neuron migration in the zebrafish neural tube,” Development, vol. 138, no. 21. Company of Biologists, pp. 4673–4683, 2011. ista: Stockinger P, Heisenberg C-PJ, Maître J-L. 2011. Defective neuroepithelial cell cohesion affects tangential branchiomotor neuron migration in the zebrafish neural tube. Development. 138(21), 4673–4683. mla: Stockinger, Petra, et al. “Defective Neuroepithelial Cell Cohesion Affects Tangential Branchiomotor Neuron Migration in the Zebrafish Neural Tube.” Development, vol. 138, no. 21, Company of Biologists, 2011, pp. 4673–83, doi:10.1242/dev.071233. short: P. Stockinger, C.-P.J. Heisenberg, J.-L. Maître, Development 138 (2011) 4673–4683. date_created: 2018-12-11T12:03:06Z date_published: 2011-09-28T00:00:00Z date_updated: 2021-01-12T07:43:11Z day: '28' ddc: - '570' department: - _id: CaHe doi: 10.1242/dev.071233 file: - access_level: open_access checksum: ca12b79e01ef36c1ef1aea31cf7e7139 content_type: application/pdf creator: dernst date_created: 2019-10-07T14:19:42Z date_updated: 2020-07-14T12:46:12Z file_id: '6930' file_name: 2011_Development_Stockinger.pdf file_size: 4672439 relation: main_file file_date_updated: 2020-07-14T12:46:12Z has_accepted_license: '1' intvolume: ' 138' issue: '21' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 4673 - 4683 publication: Development publication_status: published publisher: Company of Biologists publist_id: '3210' quality_controlled: '1' scopus_import: 1 status: public title: Defective neuroepithelial cell cohesion affects tangential branchiomotor neuron migration in the zebrafish neural tube type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 138 year: '2011' ... --- _id: '3397' abstract: - lang: eng text: Recent advances in microscopy techniques and biophysical measurements have provided novel insight into the molecular, cellular and biophysical basis of cell adhesion. However, comparably little is known about a core element of cell–cell adhesion—the energy of adhesion at the cell–cell contact. In this review, we discuss approaches to understand the nature and regulation of adhesion energy, and propose strategies to determine adhesion energy between cells in vitro and in vivo. author: - first_name: Jean-Léon full_name: Maître, Jean-Léon id: 48F1E0D8-F248-11E8-B48F-1D18A9856A87 last_name: Maître orcid: 0000-0002-3688-1474 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Maître J-L, Heisenberg C-PJ. The role of adhesion energy in controlling cell-cell contacts. Current Opinion in Cell Biology. 2011;23(5):508-514. doi:10.1016/j.ceb.2011.07.004 apa: Maître, J.-L., & Heisenberg, C.-P. J. (2011). The role of adhesion energy in controlling cell-cell contacts. Current Opinion in Cell Biology. Elsevier. https://doi.org/10.1016/j.ceb.2011.07.004 chicago: Maître, Jean-Léon, and Carl-Philipp J Heisenberg. “The Role of Adhesion Energy in Controlling Cell-Cell Contacts.” Current Opinion in Cell Biology. Elsevier, 2011. https://doi.org/10.1016/j.ceb.2011.07.004. ieee: J.-L. Maître and C.-P. J. Heisenberg, “The role of adhesion energy in controlling cell-cell contacts,” Current Opinion in Cell Biology, vol. 23, no. 5. Elsevier, pp. 508–514, 2011. ista: Maître J-L, Heisenberg C-PJ. 2011. The role of adhesion energy in controlling cell-cell contacts. Current Opinion in Cell Biology. 23(5), 508–514. mla: Maître, Jean-Léon, and Carl-Philipp J. Heisenberg. “The Role of Adhesion Energy in Controlling Cell-Cell Contacts.” Current Opinion in Cell Biology, vol. 23, no. 5, Elsevier, 2011, pp. 508–14, doi:10.1016/j.ceb.2011.07.004. short: J.-L. Maître, C.-P.J. Heisenberg, Current Opinion in Cell Biology 23 (2011) 508–514. date_created: 2018-12-11T12:03:06Z date_published: 2011-10-01T00:00:00Z date_updated: 2021-01-12T07:43:12Z day: '01' department: - _id: CaHe doi: 10.1016/j.ceb.2011.07.004 intvolume: ' 23' issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3188705/ month: '10' oa: 1 oa_version: Submitted Version page: 508 - 514 publication: Current Opinion in Cell Biology publication_status: published publisher: Elsevier publist_id: '3211' quality_controlled: '1' scopus_import: 1 status: public title: The role of adhesion energy in controlling cell-cell contacts type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 23 year: '2011' ... --- _id: '3379' abstract: - lang: eng text: The process of gastrulation is highly conserved across vertebrates on both the genetic and morphological levels, despite great variety in embryonic shape and speed of development. This mechanism spatially separates the germ layers and establishes the organizational foundation for future development. Mesodermal identity is specified in a superficial layer of cells, the epiblast, where cells maintain an epithelioid morphology. These cells involute to join the deeper hypoblast layer where they adopt a migratory, mesenchymal morphology. Expression of a cascade of related transcription factors orchestrates the parallel genetic transition from primitive to mature mesoderm. Although the early and late stages of this process are increasingly well understood, the transition between them has remained largely mysterious. We present here the first high resolution in vivo observations of the blebby transitional morphology of involuting mesodermal cells in a vertebrate embryo. We further demonstrate that the zebrafish spadetail mutation creates a reversible block in the maturation program, stalling cells in the transition state. This mutation creates an ideal system for dissecting the specific properties of cells undergoing the morphological transition of maturing mesoderm, as we demonstrate with a direct measurement of cell–cell adhesion. article_type: original author: - first_name: Richard full_name: Row, Richard last_name: Row - first_name: Jean-Léon full_name: Maître, Jean-Léon id: 48F1E0D8-F248-11E8-B48F-1D18A9856A87 last_name: Maître orcid: 0000-0002-3688-1474 - first_name: Benjamin full_name: Martin, Benjamin last_name: Martin - first_name: Petra full_name: Stockinger, Petra id: 261CB030-E90D-11E9-B182-F697D44B663C last_name: Stockinger - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: David full_name: Kimelman, David last_name: Kimelman citation: ama: Row R, Maître J-L, Martin B, Stockinger P, Heisenberg C-PJ, Kimelman D. Completion of the epithelial to mesenchymal transition in zebrafish mesoderm requires Spadetail. Developmental Biology. 2011;354(1):102-110. doi:10.1016/j.ydbio.2011.03.025 apa: Row, R., Maître, J.-L., Martin, B., Stockinger, P., Heisenberg, C.-P. J., & Kimelman, D. (2011). Completion of the epithelial to mesenchymal transition in zebrafish mesoderm requires Spadetail. Developmental Biology. Elsevier. https://doi.org/10.1016/j.ydbio.2011.03.025 chicago: Row, Richard, Jean-Léon Maître, Benjamin Martin, Petra Stockinger, Carl-Philipp J Heisenberg, and David Kimelman. “Completion of the Epithelial to Mesenchymal Transition in Zebrafish Mesoderm Requires Spadetail.” Developmental Biology. Elsevier, 2011. https://doi.org/10.1016/j.ydbio.2011.03.025. ieee: R. Row, J.-L. Maître, B. Martin, P. Stockinger, C.-P. J. Heisenberg, and D. Kimelman, “Completion of the epithelial to mesenchymal transition in zebrafish mesoderm requires Spadetail,” Developmental Biology, vol. 354, no. 1. Elsevier, pp. 102–110, 2011. ista: Row R, Maître J-L, Martin B, Stockinger P, Heisenberg C-PJ, Kimelman D. 2011. Completion of the epithelial to mesenchymal transition in zebrafish mesoderm requires Spadetail. Developmental Biology. 354(1), 102–110. mla: Row, Richard, et al. “Completion of the Epithelial to Mesenchymal Transition in Zebrafish Mesoderm Requires Spadetail.” Developmental Biology, vol. 354, no. 1, Elsevier, 2011, pp. 102–10, doi:10.1016/j.ydbio.2011.03.025. short: R. Row, J.-L. Maître, B. Martin, P. Stockinger, C.-P.J. Heisenberg, D. Kimelman, Developmental Biology 354 (2011) 102–110. date_created: 2018-12-11T12:03:00Z date_published: 2011-06-01T00:00:00Z date_updated: 2021-01-12T07:43:04Z day: '01' department: - _id: CaHe doi: 10.1016/j.ydbio.2011.03.025 external_id: pmid: - '1463614' intvolume: ' 354' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3090540/ month: '06' oa: 1 oa_version: Submitted Version page: 102 - 110 pmid: 1 publication: Developmental Biology publication_status: published publisher: Elsevier publist_id: '3228' quality_controlled: '1' scopus_import: 1 status: public title: Completion of the epithelial to mesenchymal transition in zebrafish mesoderm requires Spadetail type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 354 year: '2011' ... --- _id: '3273' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Jean-Léon full_name: Maître, Jean-Léon id: 48F1E0D8-F248-11E8-B48F-1D18A9856A87 last_name: Maître orcid: 0000-0002-3688-1474 citation: ama: Maître J-L. Mechanics of adhesion and de‐adhesion in zebrafish germ layer progenitors. 2011. apa: Maître, J.-L. (2011). Mechanics of adhesion and de‐adhesion in zebrafish germ layer progenitors. Institute of Science and Technology Austria. chicago: Maître, Jean-Léon. “Mechanics of Adhesion and De‐adhesion in Zebrafish Germ Layer Progenitors.” Institute of Science and Technology Austria, 2011. ieee: J.-L. Maître, “Mechanics of adhesion and de‐adhesion in zebrafish germ layer progenitors,” Institute of Science and Technology Austria, 2011. ista: Maître J-L. 2011. Mechanics of adhesion and de‐adhesion in zebrafish germ layer progenitors. Institute of Science and Technology Austria. mla: Maître, Jean-Léon. Mechanics of Adhesion and De‐adhesion in Zebrafish Germ Layer Progenitors. Institute of Science and Technology Austria, 2011. short: J.-L. Maître, Mechanics of Adhesion and De‐adhesion in Zebrafish Germ Layer Progenitors, Institute of Science and Technology Austria, 2011. date_created: 2018-12-11T12:02:23Z date_published: 2011-12-12T00:00:00Z date_updated: 2023-09-07T11:30:16Z day: '12' degree_awarded: PhD department: - _id: CaHe language: - iso: eng month: '12' oa_version: None publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '3373' status: public supervisor: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 title: Mechanics of adhesion and de‐adhesion in zebrafish germ layer progenitors type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2011' ...