--- _id: '12696' abstract: - lang: eng text: "Background: Fighting disease while fighting rivals exposes males to constraints and tradeoffs during male-male competition. We here tested how both the stage and intensity of infection with the fungal pathogen Metarhizium robertsii interfered with fighting success in Cardiocondyla obscurior ant males. Males of this species have evolved long lifespans during which they can gain many matings with the young queens of the colony, if successful in male-male competition. Since male fights occur inside the colony, the outcome of male-male competition can further be biased by interference of the colony’s worker force.\r\nResults: We found that severe, but not yet mild, infection strongly impaired male fighting success. In late-stage infection, this could be attributed to worker aggression directed towards the infected rather than the healthy male and an already very high male morbidity even in the absence of fighting. Shortly after pathogen exposure, however, male mortality was particularly increased during combat. Since these males mounted a strong immune response, their reduced fighting success suggests a trade-off between immune investment and competitive ability already early in the infection. Even if the males themselves showed no difference in the number of attacks they raised against their healthy rivals across infection stages and levels, severely infected males were thus losing in male-male competition from an early stage of infection on.\r\nConclusions: Males of the ant C. obscurior have evolved high immune investment, triggering an effective immune response very fast after fungal exposure. This allows them to cope with mild pathogen exposures without cost to their success in male-male competition, and hence to gain multiple mating opportunities with the emerging virgin queens of the colony. Under severe infection, however, they are weak fighters and rarely survive a combat already at early infection when raising an immune response, as well as at progressed infection, when they are morbid and preferentially targeted by worker aggression. Workers thereby remove males that pose a future disease threat by biasing male-male competition. Our study thus revealed a novel social immunity mechanism how social insect workers protect the colony against disease risk." acknowledged_ssus: - _id: LifeSc acknowledgement: "We are thankful to Mike Bidochka for the fungal strain, Lukas Schrader for sharing the C. obscurior genome data for primer development, the Lab Support Facility of ISTA for general laboratory support and help with the permit approval procedures, and the Finca El Quinto for letting us collect ants on their property. We thank the Social Immunity Team at ISTA for help with ant collection and experimental help, in particular Elina Hanhimäki and Marta Gorecka for behavioural observation, and Elisabeth Naderlinger for spore load PCRs. We further thank the Social Immunity Team and Jürgen Heinze for continued discussion and comments on the manuscript.\r\nOpen access funding provided by Institute of Science and Technology Austria (ISTA). This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771402 to SC). " article_number: '37' article_processing_charge: Yes article_type: original author: - first_name: Sina full_name: Metzler, Sina id: 48204546-F248-11E8-B48F-1D18A9856A87 last_name: Metzler orcid: 0000-0002-9547-2494 - first_name: Jessica full_name: Kirchner, Jessica id: 21516227-15aa-11ec-9fb2-c6e8ffc155d3 last_name: Kirchner - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Metzler S, Kirchner J, Grasse AV, Cremer S. Trade-offs between immunity and competitive ability in fighting ant males. BMC Ecology and Evolution. 2023;23. doi:10.1186/s12862-023-02137-7 apa: Metzler, S., Kirchner, J., Grasse, A. V., & Cremer, S. (2023). Trade-offs between immunity and competitive ability in fighting ant males. BMC Ecology and Evolution. Springer Nature. https://doi.org/10.1186/s12862-023-02137-7 chicago: Metzler, Sina, Jessica Kirchner, Anna V Grasse, and Sylvia Cremer. “Trade-Offs between Immunity and Competitive Ability in Fighting Ant Males.” BMC Ecology and Evolution. Springer Nature, 2023. https://doi.org/10.1186/s12862-023-02137-7. ieee: S. Metzler, J. Kirchner, A. V. Grasse, and S. Cremer, “Trade-offs between immunity and competitive ability in fighting ant males,” BMC Ecology and Evolution, vol. 23. Springer Nature, 2023. ista: Metzler S, Kirchner J, Grasse AV, Cremer S. 2023. Trade-offs between immunity and competitive ability in fighting ant males. BMC Ecology and Evolution. 23, 37. mla: Metzler, Sina, et al. “Trade-Offs between Immunity and Competitive Ability in Fighting Ant Males.” BMC Ecology and Evolution, vol. 23, 37, Springer Nature, 2023, doi:10.1186/s12862-023-02137-7. short: S. Metzler, J. Kirchner, A.V. Grasse, S. Cremer, BMC Ecology and Evolution 23 (2023). date_created: 2023-02-28T07:38:17Z date_published: 2023-08-07T00:00:00Z date_updated: 2023-12-13T11:13:14Z day: '07' ddc: - '570' department: - _id: SyCr doi: 10.1186/s12862-023-02137-7 ec_funded: 1 external_id: isi: - '001042643600002' pmid: - '37550612' file: - access_level: open_access checksum: 95966dc7d242d2c85bdd4fe14233dbd8 content_type: application/pdf creator: dernst date_created: 2023-08-14T07:51:47Z date_updated: 2023-08-14T07:51:47Z file_id: '14048' file_name: 2023_BMCEcology_Metzler.pdf file_size: 2004276 relation: main_file success: 1 file_date_updated: 2023-08-14T07:51:47Z has_accepted_license: '1' intvolume: ' 23' isi: 1 language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '08' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 2649B4DE-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '771402' name: Epidemics in ant societies on a chip publication: BMC Ecology and Evolution publication_identifier: issn: - 2730-7182 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '12693' relation: research_data status: public scopus_import: '1' status: public title: Trade-offs between immunity and competitive ability in fighting ant males tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 23 year: '2023' ... --- _id: '10727' abstract: - lang: eng text: "Social insects are a common model to study disease dynamics in social animals. Even though pathogens should thrive in social insect colonies as the hosts engage in frequent social interactions, are closely related and live in a pathogen-rich environment, disease outbreaks are rare. This is because social insects have evolved mechanisms to keep pathogens at bay – and fight disease as a collective. Social insect colonies are often viewed as “superorganisms” with division of labor between reproductive “germ-like” queens and males and “somatic” workers, which together form an interdependent reproductive unit that parallels a multicellular body. Superorganisms possess a “social immune system” that comprises of collective disease defenses performed by the workers - summarized as “social immunity”. In social groups immunization (reduced susceptibility to a parasite upon secondary exposure to the same parasite) can e.g. be triggered by social interactions (“social immunization”). Social immunization can be caused by (i) asymptomatic low-level infections that are acquired during caregiving to a contagious individual that can give an immune boost, which can induce protection upon later encounter with the same pathogen (active immunization) or (ii) by transfer of immune effectors between individuals (passive immunization).\r\nIn the second chapter, I built up on a study that I co-authored that found that low-level infections can not only be protective, but also be costly and make the host more susceptible to detrimental superinfections after contact to a very dissimilar pathogen. I here now tested different degrees of phylogenetically-distant fungal strains of M. brunneum and M. robertsii in L. neglectus and can describe the occurrence of cross-protection of social immunization if the first and second pathogen are from the same level. Interestingly, low-level infections only provided protection when the first strain was less virulent than the second strain and elicited higher immune gene expression.\r\nIn the third and fourth chapters, I expanded on the role of social immunity in sexual selection, a so far unstudied field. I used the fungus Metarhizium robertsii and the ant Cardiocondyla obscurior as a model, as in this species mating occurs in the presence of workers and can be studied under laboratory conditions. Before males mate with virgin queens in the nest they engage in fierce combat over the access to their mating partners.\r\nFirst, I focused on male-male competition in the third chapter and found that fighting with a contagious male is costly as it can lead to contamination of the rival, but that workers can decrease the risk of disease contraction by performing sanitary care.\r\nIn the fourth chapter, I studied the effect of fungal infection on survival and mating success of sexuals (freshly emerged queens and males) and found that worker-performed sanitary care can buffer the negative effect that a pathogenic contagion would have on sexuals by spore removal from the exposed individuals. When social immunity was prevented and queens could contract spores from their mating partner, very low dosages led to negative consequences: their lifespan was reduced and they produced fewer offspring with poor immunocompetence compared to healthy queens. Interestingly, cohabitation with a late-stage infected male where no spore transfer was possible had a positive effect on offspring immunity – male offspring of mothers that apparently perceived an infected partner in their vicinity reacted more sensitively to fungal challenge than male offspring without paternal pathogen history." acknowledged_ssus: - _id: LifeSc alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Sina full_name: Metzler, Sina id: 48204546-F248-11E8-B48F-1D18A9856A87 last_name: Metzler orcid: 0000-0002-9547-2494 citation: ama: Metzler S. Pathogen-mediated sexual selection and immunization in ant colonies. 2022. doi:10.15479/AT:ISTA:10727 apa: Metzler, S. (2022). Pathogen-mediated sexual selection and immunization in ant colonies. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:10727 chicago: Metzler, Sina. “Pathogen-Mediated Sexual Selection and Immunization in Ant Colonies.” Institute of Science and Technology Austria, 2022. https://doi.org/10.15479/AT:ISTA:10727. ieee: S. Metzler, “Pathogen-mediated sexual selection and immunization in ant colonies,” Institute of Science and Technology Austria, 2022. ista: Metzler S. 2022. Pathogen-mediated sexual selection and immunization in ant colonies. Institute of Science and Technology Austria. mla: Metzler, Sina. Pathogen-Mediated Sexual Selection and Immunization in Ant Colonies. Institute of Science and Technology Austria, 2022, doi:10.15479/AT:ISTA:10727. short: S. Metzler, Pathogen-Mediated Sexual Selection and Immunization in Ant Colonies, Institute of Science and Technology Austria, 2022. date_created: 2022-02-04T15:45:12Z date_published: 2022-02-07T00:00:00Z date_updated: 2023-09-07T13:43:23Z day: '07' ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: SyCr doi: 10.15479/AT:ISTA:10727 ec_funded: 1 file: - access_level: closed checksum: 47ba18bb270dd6cc266e0a3f7c69d0e4 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: smetzler date_created: 2022-02-04T15:36:12Z date_updated: 2023-02-03T23:30:03Z embargo_to: open_access file_id: '10728' file_name: Thesis_Sina_Metzler.docx file_size: 6757886 relation: source_file - access_level: open_access checksum: f3ec07d5d6b20ae6e46bfeedebce9027 content_type: application/pdf creator: smetzler date_created: 2022-02-04T15:36:43Z date_updated: 2023-02-03T23:30:03Z embargo: 2023-02-02 file_id: '10730' file_name: Thesis_Sina_Metzler_A2.pdf file_size: 6314921 relation: main_file - access_level: open_access checksum: dedd14b7be7a75d63018dbfc68dd8113 content_type: application/pdf creator: smetzler date_created: 2022-02-07T10:35:02Z date_updated: 2023-02-04T23:30:03Z embargo: 2023-02-02 file_id: '10742' file_name: Thesis_Sina_Metzler_print.pdf file_size: 6882557 relation: main_file file_date_updated: 2023-02-04T23:30:03Z has_accepted_license: '1' language: - iso: eng month: '02' oa: 1 oa_version: Published Version project: - _id: 2649B4DE-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '771402' name: Epidemics in ant societies on a chip publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 title: Pathogen-mediated sexual selection and immunization in ant colonies type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2022' ... --- _id: '413' abstract: - lang: eng text: Being cared for when sick is a benefit of sociality that can reduce disease and improve survival of group members. However, individuals providing care risk contracting infectious diseases themselves. If they contract a low pathogen dose, they may develop low-level infections that do not cause disease but still affect host immunity by either decreasing or increasing the host’s vulnerability to subsequent infections. Caring for contagious individuals can thus significantly alter the future disease susceptibility of caregivers. Using ants and their fungal pathogens as a model system, we tested if the altered disease susceptibility of experienced caregivers, in turn, affects their expression of sanitary care behavior. We found that low-level infections contracted during sanitary care had protective or neutral effects on secondary exposure to the same (homologous) pathogen but consistently caused high mortality on superinfection with a different (heterologous) pathogen. In response to this risk, the ants selectively adjusted the expression of their sanitary care. Specifically, the ants performed less grooming and more antimicrobial disinfection when caring for nestmates contaminated with heterologous pathogens compared with homologous ones. By modulating the components of sanitary care in this way the ants acquired less infectious particles of the heterologous pathogens, resulting in reduced superinfection. The performance of risk-adjusted sanitary care reveals the remarkable capacity of ants to react to changes in their disease susceptibility, according to their own infection history and to flexibly adjust collective care to individual risk. article_processing_charge: No author: - first_name: Matthias full_name: Konrad, Matthias id: 46528076-F248-11E8-B48F-1D18A9856A87 last_name: Konrad - first_name: Christopher full_name: Pull, Christopher id: 3C7F4840-F248-11E8-B48F-1D18A9856A87 last_name: Pull orcid: 0000-0003-1122-3982 - first_name: Sina full_name: Metzler, Sina id: 48204546-F248-11E8-B48F-1D18A9856A87 last_name: Metzler orcid: 0000-0002-9547-2494 - first_name: Katharina full_name: Seif, Katharina id: 90F7894A-02CF-11E9-976E-E38CFE5CBC1D last_name: Seif - first_name: Elisabeth full_name: Naderlinger, Elisabeth id: 31757262-F248-11E8-B48F-1D18A9856A87 last_name: Naderlinger - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Konrad M, Pull C, Metzler S, et al. Ants avoid superinfections by performing risk-adjusted sanitary care. PNAS. 2018;115(11):2782-2787. doi:10.1073/pnas.1713501115 apa: Konrad, M., Pull, C., Metzler, S., Seif, K., Naderlinger, E., Grasse, A. V., & Cremer, S. (2018). Ants avoid superinfections by performing risk-adjusted sanitary care. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1713501115 chicago: Konrad, Matthias, Christopher Pull, Sina Metzler, Katharina Seif, Elisabeth Naderlinger, Anna V Grasse, and Sylvia Cremer. “Ants Avoid Superinfections by Performing Risk-Adjusted Sanitary Care.” PNAS. National Academy of Sciences, 2018. https://doi.org/10.1073/pnas.1713501115. ieee: M. Konrad et al., “Ants avoid superinfections by performing risk-adjusted sanitary care,” PNAS, vol. 115, no. 11. National Academy of Sciences, pp. 2782–2787, 2018. ista: Konrad M, Pull C, Metzler S, Seif K, Naderlinger E, Grasse AV, Cremer S. 2018. Ants avoid superinfections by performing risk-adjusted sanitary care. PNAS. 115(11), 2782–2787. mla: Konrad, Matthias, et al. “Ants Avoid Superinfections by Performing Risk-Adjusted Sanitary Care.” PNAS, vol. 115, no. 11, National Academy of Sciences, 2018, pp. 2782–87, doi:10.1073/pnas.1713501115. short: M. Konrad, C. Pull, S. Metzler, K. Seif, E. Naderlinger, A.V. Grasse, S. Cremer, PNAS 115 (2018) 2782–2787. date_created: 2018-12-11T11:46:20Z date_published: 2018-03-13T00:00:00Z date_updated: 2023-09-08T13:22:21Z day: '13' department: - _id: SyCr doi: 10.1073/pnas.1713501115 ec_funded: 1 external_id: isi: - '000427245400069' pmid: - '29463746' intvolume: ' 115' isi: 1 issue: '11' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pubmed/29463746 month: '03' oa: 1 oa_version: Published Version page: 2782 - 2787 pmid: 1 project: - _id: 25DC711C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '243071' name: 'Social Vaccination in Ant Colonies: from Individual Mechanisms to Society Effects' publication: PNAS publication_status: published publisher: National Academy of Sciences publist_id: '7416' quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/helping-in-spite-of-risk-ants-perform-risk-averse-sanitary-care-of-infectious-nest-mates/ scopus_import: '1' status: public title: Ants avoid superinfections by performing risk-adjusted sanitary care type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 115 year: '2018' ... --- _id: '426' abstract: - lang: eng text: Sperm cells are the most morphologically diverse cells across animal taxa. Within species, sperm and ejaculate traits have been suggested to vary with the male's competitive environment, e.g., level of sperm competition, female mating status and quality, and also with male age, body mass, physiological condition, and resource availability. Most previous studies have based their conclusions on the analysis of only one or a few ejaculates per male without investigating differences among the ejaculates of the same individual. This masks potential ejaculate-specific traits. Here, we provide data on the length, quantity, and viability of sperm ejaculated by wingless males of the ant Cardiocondyla obscurior. Males of this ant species are relatively long-lived and can mate with large numbers of female sexuals throughout their lives. We analyzed all ejaculates across the individuals' lifespan and manipulated the availability of mating partners. Our study shows that both the number and size of sperm cells transferred during copulations differ among individuals and also among ejaculates of the same male. Sperm quality does not decrease with male age, but the variation in sperm number between ejaculates indicates that males need considerable time to replenish their sperm supplies. Producing many ejaculates in a short time appears to be traded-off against male longevity rather than sperm quality. acknowledgement: "Research with C. obscurior from Brazil was permitted by Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, IBAMA (permit no. 20324-1). We thank the German Science Foundation ( DFG ) for funding ( Schr1135/2-1 ), T. Suckert for help with sperm length measurements and A.K. Huylmans for advice concerning graphs. One referee made helpful comments on the manuscript.\r\n" article_processing_charge: No author: - first_name: Sina full_name: Metzler, Sina id: 48204546-F248-11E8-B48F-1D18A9856A87 last_name: Metzler orcid: 0000-0002-9547-2494 - first_name: Alexandra full_name: Schrempf, Alexandra last_name: Schrempf - first_name: Jürgen full_name: Heinze, Jürgen last_name: Heinze citation: ama: Metzler S, Schrempf A, Heinze J. Individual- and ejaculate-specific sperm traits in ant males. Journal of Insect Physiology. 2018;107:284-290. doi:10.1016/j.jinsphys.2017.12.003 apa: Metzler, S., Schrempf, A., & Heinze, J. (2018). Individual- and ejaculate-specific sperm traits in ant males. Journal of Insect Physiology. Elsevier. https://doi.org/10.1016/j.jinsphys.2017.12.003 chicago: Metzler, Sina, Alexandra Schrempf, and Jürgen Heinze. “Individual- and Ejaculate-Specific Sperm Traits in Ant Males.” Journal of Insect Physiology. Elsevier, 2018. https://doi.org/10.1016/j.jinsphys.2017.12.003. ieee: S. Metzler, A. Schrempf, and J. Heinze, “Individual- and ejaculate-specific sperm traits in ant males,” Journal of Insect Physiology, vol. 107. Elsevier, pp. 284–290, 2018. ista: Metzler S, Schrempf A, Heinze J. 2018. Individual- and ejaculate-specific sperm traits in ant males. Journal of Insect Physiology. 107, 284–290. mla: Metzler, Sina, et al. “Individual- and Ejaculate-Specific Sperm Traits in Ant Males.” Journal of Insect Physiology, vol. 107, Elsevier, 2018, pp. 284–90, doi:10.1016/j.jinsphys.2017.12.003. short: S. Metzler, A. Schrempf, J. Heinze, Journal of Insect Physiology 107 (2018) 284–290. date_created: 2018-12-11T11:46:25Z date_published: 2018-05-01T00:00:00Z date_updated: 2023-09-12T07:43:26Z day: '01' department: - _id: SyCr doi: 10.1016/j.jinsphys.2017.12.003 external_id: isi: - '000434751100034' intvolume: ' 107' isi: 1 language: - iso: eng month: '05' oa_version: None page: 284-290 publication: Journal of Insect Physiology publication_status: published publisher: Elsevier publist_id: '7397' quality_controlled: '1' scopus_import: '1' status: public title: Individual- and ejaculate-specific sperm traits in ant males type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 107 year: '2018' ... --- _id: '55' abstract: - lang: eng text: Many animals use antimicrobials to prevent or cure disease [1,2]. For example, some animals will ingest plants with medicinal properties, both prophylactically to prevent infection and therapeutically to self-medicate when sick. Antimicrobial substances are also used as topical disinfectants, to prevent infection, protect offspring and to sanitise their surroundings [1,2]. Social insects (ants, bees, wasps and termites) build nests in environments with a high abundance and diversity of pathogenic microorganisms — such as soil and rotting wood — and colonies are often densely crowded, creating conditions that favour disease outbreaks. Consequently, social insects have evolved collective disease defences to protect their colonies from epidemics. These traits can be seen as functionally analogous to the immune system of individual organisms [3,4]. This ‘social immunity’ utilises antimicrobials to prevent and eradicate infections, and to keep the brood and nest clean. However, these antimicrobial compounds can be harmful to the insects themselves, and it is unknown how colonies prevent collateral damage when using them. Here, we demonstrate that antimicrobial acids, produced by workers to disinfect the colony, are harmful to the delicate pupal brood stage, but that the pupae are protected from the acids by the presence of a silk cocoon. Garden ants spray their nests with an antimicrobial poison to sanitize contaminated nestmates and brood. Here, Pull et al show that they also prophylactically sanitise their colonies, and that the silk cocoon serves as a barrier to protect developing pupae, thus preventing collateral damage during nest sanitation. article_processing_charge: No article_type: original author: - first_name: Christopher full_name: Pull, Christopher id: 3C7F4840-F248-11E8-B48F-1D18A9856A87 last_name: Pull orcid: 0000-0003-1122-3982 - first_name: Sina full_name: Metzler, Sina id: 48204546-F248-11E8-B48F-1D18A9856A87 last_name: Metzler orcid: 0000-0002-9547-2494 - first_name: Elisabeth full_name: Naderlinger, Elisabeth id: 31757262-F248-11E8-B48F-1D18A9856A87 last_name: Naderlinger - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Pull C, Metzler S, Naderlinger E, Cremer S. Protection against the lethal side effects of social immunity in ants. Current Biology. 2018;28(19):R1139-R1140. doi:10.1016/j.cub.2018.08.063 apa: Pull, C., Metzler, S., Naderlinger, E., & Cremer, S. (2018). Protection against the lethal side effects of social immunity in ants. Current Biology. Cell Press. https://doi.org/10.1016/j.cub.2018.08.063 chicago: Pull, Christopher, Sina Metzler, Elisabeth Naderlinger, and Sylvia Cremer. “Protection against the Lethal Side Effects of Social Immunity in Ants.” Current Biology. Cell Press, 2018. https://doi.org/10.1016/j.cub.2018.08.063. ieee: C. Pull, S. Metzler, E. Naderlinger, and S. Cremer, “Protection against the lethal side effects of social immunity in ants,” Current Biology, vol. 28, no. 19. Cell Press, pp. R1139–R1140, 2018. ista: Pull C, Metzler S, Naderlinger E, Cremer S. 2018. Protection against the lethal side effects of social immunity in ants. Current Biology. 28(19), R1139–R1140. mla: Pull, Christopher, et al. “Protection against the Lethal Side Effects of Social Immunity in Ants.” Current Biology, vol. 28, no. 19, Cell Press, 2018, pp. R1139–40, doi:10.1016/j.cub.2018.08.063. short: C. Pull, S. Metzler, E. Naderlinger, S. Cremer, Current Biology 28 (2018) R1139–R1140. date_created: 2018-12-11T11:44:23Z date_published: 2018-10-08T00:00:00Z date_updated: 2023-09-15T12:06:46Z day: '08' department: - _id: SyCr doi: 10.1016/j.cub.2018.08.063 external_id: isi: - '000446693400008' intvolume: ' 28' isi: 1 issue: '19' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.cub.2018.08.063 month: '10' oa: 1 oa_version: Published Version page: R1139 - R1140 publication: Current Biology publication_status: published publisher: Cell Press publist_id: '7999' quality_controlled: '1' scopus_import: '1' status: public title: Protection against the lethal side effects of social immunity in ants type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 28 year: '2018' ... --- _id: '1184' abstract: - lang: eng text: Across multicellular organisms, the costs of reproduction and self-maintenance result in a life history trade-off between fecundity and longevity. Queens of perennial social Hymenoptera are both highly fertile and long-lived, and thus, this fundamental trade-off is lacking. Whether social insect males similarly evade the fecundity/longevity trade-off remains largely unstudied. Wingless males of the ant genus Cardiocondyla stay in their natal colonies throughout their relatively long lives and mate with multiple female sexuals. Here, we show that Cardiocondyla obscurior males that were allowed to mate with large numbers of female sexuals had a shortened life span compared to males that mated at a low frequency or virgin males. Although frequent mating negatively affects longevity, males clearly benefit from a “live fast, die young strategy” by inseminating as many female sexuals as possible at a cost to their own survival. acknowledgement: 'German Science Foundation. Grant Number: SCHR 1135/2-1. We thank M. Adam for handling part of the setups and J. Zoellner for behavioral observations.' author: - first_name: Sina full_name: Metzler, Sina id: 48204546-F248-11E8-B48F-1D18A9856A87 last_name: Metzler - first_name: Jürgen full_name: Heinze, Jürgen last_name: Heinze - first_name: Alexandra full_name: Schrempf, Alexandra last_name: Schrempf citation: ama: Metzler S, Heinze J, Schrempf A. Mating and longevity in ant males. Ecology and Evolution. 2016;6(24):8903-8906. doi:10.1002/ece3.2474 apa: Metzler, S., Heinze, J., & Schrempf, A. (2016). Mating and longevity in ant males. Ecology and Evolution. Wiley-Blackwell. https://doi.org/10.1002/ece3.2474 chicago: Metzler, Sina, Jürgen Heinze, and Alexandra Schrempf. “Mating and Longevity in Ant Males.” Ecology and Evolution. Wiley-Blackwell, 2016. https://doi.org/10.1002/ece3.2474. ieee: S. Metzler, J. Heinze, and A. Schrempf, “Mating and longevity in ant males,” Ecology and Evolution, vol. 6, no. 24. Wiley-Blackwell, pp. 8903–8906, 2016. ista: Metzler S, Heinze J, Schrempf A. 2016. Mating and longevity in ant males. Ecology and Evolution. 6(24), 8903–8906. mla: Metzler, Sina, et al. “Mating and Longevity in Ant Males.” Ecology and Evolution, vol. 6, no. 24, Wiley-Blackwell, 2016, pp. 8903–06, doi:10.1002/ece3.2474. short: S. Metzler, J. Heinze, A. Schrempf, Ecology and Evolution 6 (2016) 8903–8906. date_created: 2018-12-11T11:50:36Z date_published: 2016-12-01T00:00:00Z date_updated: 2021-01-12T06:48:55Z day: '01' ddc: - '576' - '592' department: - _id: SyCr doi: 10.1002/ece3.2474 file: - access_level: open_access checksum: 789026eb9e1be2a0da08376f29f569cf content_type: application/pdf creator: system date_created: 2018-12-12T10:14:12Z date_updated: 2020-07-14T12:44:37Z file_id: '5062' file_name: IST-2017-736-v1+1_Metzler_et_al-2016-Ecology_and_Evolution.pdf file_size: 328414 relation: main_file file_date_updated: 2020-07-14T12:44:37Z has_accepted_license: '1' intvolume: ' 6' issue: '24' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 8903 - 8906 publication: Ecology and Evolution publication_status: published publisher: Wiley-Blackwell publist_id: '6169' pubrep_id: '736' quality_controlled: '1' scopus_import: 1 status: public title: Mating and longevity in ant males tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2016' ...